Л. Д. Паценкер, А. И. Локшин, Т. Г. Друшляк, В. Н. Баумер

АЦИЛИРОВАНИЕ 5-ФЕНИЛ-2-(ФУР-2-ИЛ)ОКСАЗОЛА

Обсуждается способность 5-фенил-2-(фур-2-ил) оксазола к ацетилированию и формилированию. С применением рентгеноструктурного анализа установлено, что электрофильное замещение протекает в положении 5 фуранового кольца. Направленность реакций анализируется с позиций энергетической предпочтительности переходных состояний.

Производные 2,5-дизамещенных оксазола с ароматическими и гетероароматическими радикалами представляют большой интерес как органические люминофоры и биологически активные вещества [1]. Одним из возможных путей получения соединений с новыми свойствами является модификация их строения путем введения и преобразования функциональных групп. Весьма перспективными для этого представляются реакции ацетилирования и формилирования.

Как известно, 2,5-дифенилоксазол (I) в реакцию Вильсмейера—Хаака не вступает, а ацилирование хлористым ацетилом по Фриделю—Крафтсу протекает в *пара*-положении 5-фенильного радикала, но только в жестких условиях: с шестикратным избытком AlCl₃ при 7-часовом кипячении в сероутлероде [2] или в расплаве с трехкратным избытком AlCl₃ при 110...120 °C (3 ч), выход 30% [3]. Такая низкая реакционная способность соединения I связана с электроноакцепторным влиянием оксазольного цикла, дезактивирующее действие которого значительно усиливается при комплексообразовании атома азота оксазольного цикла с катализатором. 5-Фенил-2-(тиен-2-ил)оксазол (II), в отличие от 2,5-дифенилоксазола, удается проформилировать с хорошим выходом (60%) в жестких условиях (II—POCl₃—ДМФА, 1 : 6 : 12, 100...105 °C, 50 ч) [4]. Ацетилирование соединения II также протекает в расплаве (II—AcCl—AlCl₃, 1 : 1,1 : 3, 100...110 °C, 20 мин) с выходом 74% [4]. Электрофильный реагент направляется в положение 5 тиофенового ядра.

В продолжение этих исследований мы изучали способность к ацетилированию и формилированию 5-фенил-2-(фур-2-ил)оксазола (III).

Известно, что фуран легче вступает в реакции электрофильного замещения, чем тиофен [4]. Поэтому и в случае его фенилоксазольного производного III ожидалась более высокая реакционная способность по сравнению с тиофенсодержащим аналогом II. Однако ацилирование хлористым ацетилом в трихлорэтилене, гексане или нитробензоле с AlCl3 или SnCl4 в качестве катализатора приводит к образованию лишь случае незначительных количеств ацетильного производного. В трихлорэтилена и гексана температуру варьировали вплоть до кипения растворителей, а для нитробензола — до 120 °С (сильное осмоление). При проведении реакции в условиях, аналогичных ацетилированию соединений I и II (III—AcCI—AlCl₃, 1 : 1,4 : 3, расплав, 100...110 °С, 15 мин), выход целевого соединения IV составил 16%. При этом в реакционной смеси 1466

соотношение ацетилированного IV и исходного III соединений составляет 0,55: 1. Увеличение продолжительности реакции до 30 мин и температуры до 125 °С повышает соотношение IV—III до 7: 1. Дальнейшее нагревание приводит к значительному осмолению.

Следовательно, соединение III в примененных условиях реакции Фриделя-Крафтса оказалось менее реакционноспособным, чем II. Причиной этого, по-видимому, является лучшая проводимость электронных эффектов фурановым циклом по сравнению с тиофеновым [5, с. 120], в результате чего электроноакцепторное влияние фенилоксазольного остатка, значительно усиленное комплексообразованием с катализатором, оказывает в фурановом производном большее дезактивирующее действие. Если следовать такому предположению, то реакцию надо проводить в условиях, максимально снижающих вероятность комплексообразования. Действительно, при кипячении соединения III в уксусном ангидриде с каталитическим количеством перхлората магния в течение 3,5 ч ацетильное производное IV образуется с выходом 60%. При этом с выходом 21% выделено исходное соединение, однако увеличение продолжительности реакции приводит лишь к сильному осмолению реакционной смеси. Интересно отметить, что тиофенсодержащий аналог II в указанных условиях не реагирует. Замещение, независимо от метода ацетилирования, протекает в положении 5 фуранового кольца, что подтверждено рентгеноструктурным анализом соединения IV (рис., табл. 1).

Формилирование соединения III проходит значительно быстрее, чем II (за 3 ч вместо 50) и с лучшим выходом (88% против 60%). Реакция имеет такую же направленность, что и в случае ацетилирования, поскольку из формильного производного V и кетона IV получена одна и та же карбоновая кислота VI.

Таким образом, в условиях, снижающих вероятность комплексообразования по атому азота оксазольного цикла, фурансодержащее производное III более реакционноспособно, чем тиофеновый аналог. Более высокую реакционную способность (и более высокую позиционную селективность) фуранового цикла по сравнению с тиофеновым связывают [5, с. 201] с возможностью протекания реакции по механизму 2,5-присоединения. Однако влияние условий ацилирования соединений II и III на их относительную реакционную способность свидетельствует, что в данном случае такая схема вряд ли реализуется, а, скорее всего, имеет место классический $S_E 2Ar$ механизм, проходящий через стадию образования σ -комплекса [5, с. 164].

Строение и нумерация атомов молекулы III

Таблица 1

Атом	x	у	·z	$U, \text{\AA}^2 \times 10^3$
O (1)	4597(1)	2195(2)	6431(1)	44(1)
O (2)	4552(1)	2059(2)	8823(1)	46(1)
O(3)	4215(2)	1841(2)	10566(1)	68(1)
N	3273(2)	850(2)	7142(1)	50(1)
C (1)	4249(2)	1783(3)	7228(1)	42(1)
C(2)	3742(2)	1413(3)	5781(1)	39(1)
C(3)	2951 (2)	619(3)	6218(1)	48(1)
C(4)	4991 (2)	2353(3)	8051(1)	45(1)
CG	6083(2)	3095(3)	8242(2)	60(1)
C	6364(2)	3231 (3)	9188(2)	57(1)
C (7)	5417(2)	2604(3)	9526(1)	46(1)
C(8)	3846(2)	1585(3)	4837(1)	39(1)
C(9)	4730(2)	2620(3)	4550(2)	47(1)
C(10)	4776(2)	2770(3)	3638(2)	54(1)
C(11)	3960(2)	1898(3)	3002(2)	55(1)
C(12)	3093(2)	848(3)	3279(2)	55(1)
C(13)	3034(2)	694(3)	4185(2)	49(1)
C(14)	5170(2)	2405(3)	10434(1)	52(1)
C(15)	6134(3)	2891 (5)	11195(2)	69(1)
H(3)	2232(17)	-46(28)	5983(13)	54(6)
H(5)	6532(20)	3411 (29)	7794(14)	63(6)
H(6)	7072(19)	3713(28)	9525(14)	60(6)
H(9)	5318(18)	3194(27)	4976(14)	56(6)
H(10)	5397 (20)	3512(30)	3449(14)	65(7)
H(11)	3979(18)	2017(27)	2373(16)	61 (6)
H(12)	2520(20)	233(31)	2836(15)	72(7)
H(13)	2444(18)	-23(31)	4358(13)	62(7)
H(15A)	5755(45)	2726(94)	11757(36)	72(15)
H(15B)	6530(46)	4149(69)	11073(29)	57(14)
H(15C)	6762(51)	1998(80)	11189(37)	70(17)
H(15D)	6838(47)	3176(96)	10986(31)	58(15)
H(15E)	6253(49)	1783(71)	11636(38)	69(15)
H(15F)	5848(46)	3954(78)	11563(36)	74(16)

Координаты атомов (× 10⁴) и тепловые поправки (эквивалентные для неводородных и изотропные для водородных атомов) в молекуле III

Соеди- ненис	ΔH _{обр} , ккал/моль (с, %) 2-P h (2-Fu)						
	I	-3145,54	-3137,64	-3143,89	_		
III	-2801,22	-2786,40	-2799,06	-2771,97			
Соеди- нение	5-P h			Ox			
	<i>n</i> -	М-	0-	4-	N		
I	-3151,33	-3136,38	-3149,90	-3152,78	-3170,83		
ш	-2795,51	-2781,02	-2794,05	-2795,76	-2815,34		

Рассчитанные теплоты образования (ΔH_{odp}) молекул I и III, протовированных по различным положениям 2-фенильного (2-Ph) или 2-(фур-2-ильного) (2-Fu), 5-фенильного (5-Ph) и оксазольного (Ох) циклов

Представлялось интересным проанализировать наблюдаемую направленность реакций электрофильного замещения. так как вопрос о причинах позиционной селективности в фурановом цикле окончательно не решен [5, с. 203]. Различные квантово-химические методы расчета указывают на то, что электронная плотность в α-положениях гетероцикла ниже, чем в β -положениях [5, с. 62; 6]. Это же подтверждают экспериментальные данные SMP ¹³C [5, с. 61—62]. Тем не менее электрофильное замещение в фурановом ядре с очень высокой селективностью проходит именно в а-положении, что, по-видимому, можно объяснить большей термодинамической стабильностью промежуточного о-комплекса, образованного по α-положению (благодаря его большей резонансной стабилизации), по сравнению с *β*-изомером [7, с. 109—110; 8]. Проведенные нами энергетические расчеты по методу MNDO показали, что теплоты образования модельных протонированных по положениям 1, 2 и 3 форм фурана составляют соответственно 193,45, 169,84 и 175,34 ккал/моль. Такой разницы в энергиях достаточно, чтобы практически образовывался исключительно только α-изомер. Электроноакцепторный заместитель (каковым в случае соединения III является фенилоксазольный остаток или его комплекс с катализатором) в положении 2 фуранового цикла обычно не влияет на ориентацию замещения, которое направляется в свободное положение 5 [7, с. 118]. Исключения составляют лишь некоторые особые случаи, например, 2-карбонилсодержащие производные фурана, которые в условиях комплексообразования с катализатором (AlCl3) могут наряду с 5-замещенным давать 4-изомер [8]. Поэтому для соединения III предпочтительность замещения в положении 5 фуранового кольца (по сравнению с положениями 3 и 4) кажется вполне обоснованной.

Однако ацилирование могло бы направляться и не в фурановый цикл. Так, например, при формилировании, бромировании и нитровании 2-(фур-2-ил)оксазола в условиях, исключающих протонирование или комплексообразование, наряду с замещением в положении 5 фуранового кольца наблюдается атака и в свободное положение 5 оксазольного цикла [9]. Кроме того, в 2,5-дифенилоксазоле I замещение протекает в *пара*-положении наиболее удаленного от атома азота 5-фенильного радикала. Такая направленность реакции согласуется с рассчитанными энергиями для различных протонированных форм соединения I (табл. 2): если исключить из рассмотрения нереакционноспособное переходное

1469

состояние, образованное с участием атома азота, то минимальной энергией обладает изомер, протонированный по пара-положению 5 фенильного кольца и положению 4 оксазольного цикла, причем последний оказывается даже более выгодным. Тем не менее в условиях реакции ацетилирования замешение в оксазольном пикле не происходит по стерическим условиям, так как фактически представляет собой аналог орто-положения фенила, и продуктом является 5-(4-ацетилфенильное) реакции елинственным производное. Принимая во внимание эти данные, а также высокую проводимость фурановым циклом электронных влияний, в соединении III можно было предположить конкурирующее замещение и в 5-фенильном фрагменте. Однако проведенные квантово-химические расчеты (табл. 2) энергетической предпочтительности переходного свидетельствуют об состояния именно с участием свободного а-положения фуранового цикла.

Таким образом, наблюдаемая экспериментально направленность электрофильного замещения в соединении III хорошо согласуется с рассчитанными методом MNDO энергиями модельных переходных состояний.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры измерены на спектрометре Specord IR-75 в таблетках КВг. Полуэмпирические квантово-химические расчеты выполнены методом MNDO [10] с полной оптимизацией геометрии.

Рентгеноструктурное исследование. Кристаллы соединения IV для рентгенографирования были получены кристаллизацией из толуола и имели игольчатый габитус. Основные кристаллографические данные: C15H11NO3, Mr = 253,25, моноклинный, пр. гр. P21/a, a= = 11,553(2), b = 7,2416(14), c = 15,075(3) Å, $\beta = 100,10(2)^\circ$; V = 1241,7(4) Å³, Z = 4, $d_{\text{BbH}} = 100,10(2)^\circ$; V = 1241,7(4) Å³, Z = 4, $d_{\text{BbH}} = 100,10(2)^\circ$; V = 1241,7(4) Å³, Z = 4, $d_{\text{BbH}} = 100,10(2)^\circ$; V = 1241,7(4) Å³, Z = 4, $d_{\text{BbH}} = 100,10(2)^\circ$; V = 1241,7(4) Å³, Z = 4, $d_{\text{BbH}} = 100,10(2)^\circ$; V = 1241,7(4) Å³, Z = 4, $d_{\text{BbH}} = 100,10(2)^\circ$; V = 1241,7(4) Å³, Z = 4, $d_{\text{BbH}} = 100,10(2)^\circ$; V = 1241,7(4) Å³, Z = 4, $d_{\text{BbH}} = 100,10(2)^\circ$; V = 1241,7(4) Å³, Z = 4, $d_{\text{BbH}} = 100,10(2)^\circ$; V = 1241,7(4) Å³, Z = 4, $d_{\text{BbH}} = 100,10(2)^\circ$; $V = 1241,7(4)^\circ$ Å³, Z = 4, $d_{\text{BbH}} = 100,10(2)^\circ$; $V = 1241,7(4)^\circ$ Å³, Z = 4, $d_{\text{BbH}} = 100,10(2)^\circ$; $V = 1241,7(4)^\circ$ Å³, Z = 4, $d_{\text{BbH}} = 100,10(2)^\circ$; $V = 1241,7(4)^\circ$ Å³, Z = 4, $d_{\text{BbH}} = 100,10(2)^\circ$; $V = 1241,7(4)^\circ$ Å³, Z = 4, $d_{\text{BbH}} = 100,10(2)^\circ$; $V = 1241,7(4)^\circ$ Å³, Z = 4, $d_{\text{BbH}} = 100,10(2)^\circ$; $V = 1241,7(4)^\circ$ Å³, Z = 4, $d_{\text{BbH}} = 100,10(2)^\circ$; $V = 1241,7(4)^\circ$ Å³, Z = 4, $d_{\text{BbH}} = 100,10(2)^\circ$; $V = 1241,7(4)^\circ$; $V = 1241,7(4)^\circ$ Å³, Z = 4, $d_{\text{BbH}} = 100,10(2)^\circ$; $V = 1241,7(4)^\circ$; 1,55 г/см³, F000 = 528. Рентгенографирование выполнено на автоматическом четырехкружном дифрактометре Siemens P3/PC в молибденовом излучении с графитовым монохроматором в интервале углов 5° ≤ 2θ ≤ 55°. Методом 2θ/θ-сканирования измерено 1192 отражения, из которых 1115 независимых, использованных для расшифровки и уточнения структуры. При уточнении структуры введена поправка на экстинкцию. Структура решена прямым методом и уточнена по Fhk² полноматричным МНК в анизотропном приближении для неводородных атомов и в изотропном для водородных. Разупорядоченные атомы водорода метильной группы найдены из разностного синтеза и уточнены в изотропном приближении без наложения геометрических ограничений. Окончательные показатели достоверности структуры: $R_1 = 0,0282, \omega R_2 = 0,0721$ по наблюдаемым (I > 201) отражениям (соответственно 0,0296 и 0,0758 по всему массиву отражений), S = 1,028, N/M = 1110/229, (Др)_{min} и (Др)_{max} -0,124 и 0,092 е/Å³. Уточнение структуры выполнено по программе SHELXL, расшифровка структуры и оформление результатов — по программному комплексу SHELXTL PLUS [12].

Контроль за ходом реакций и чистотой полученных соединений осуществляли при помощи TCX на пластинках Silufol UV-254, элюент CHCl₃—EtOH, 15:1, а также на хроматографе Милихром-2 (Научприбор, Орел, Россия; колонка КАХ-3 2 × 64 мм, сорбент силасорб 600 Lachema 5,0 мкм, элюент CCl₄—CHCl₃, 2:3). Управление прибором и обработку хроматограмм проводили на PC с помощью оригинальной программы MC-4, которую можно получить у авторов статьи.

5-Фенил-2-(фур-2-ил)оксазол (III) синтезирован по методике [11].

5-Фенил-2-(5-ацетилфур-2-ил)оксазол (IV). А. Смесь 2,10 г (10 ммоль) 5-фенил-2-(фур-2-ил)оксазола III, 4,50 г (34 ммоль) безводного AlCl3 нагревают до плавления и при 125 °С добавляют по каплям 1,2 мл (15 ммоль) хлористого ацетила. Реакционную массу перемешивают при этой температуре 30 мин и горячий расплав выливают в 100 мл воды, подкисленной HCl. Осадок отфильтровывают, хроматографируют на колонке непрерывного действия (адсорбент силохром марки C-120, элюент гексан) и перекристаллизовывают из гептана. Выход 1,3 г (51%). *T*_{пл} 137...138,5 °С. Найдено, %: N 6,06. C15H11NO3. Вычислено, %: N 5,53.

Б. Смесь 10,55г (50ммоль) 5-фенил-2-(фур-2-ил) оксазола III, 0,65 г (2,9 ммоль) безводного перхлората магния и 75 мл уксусного ангидрида кипятят 3,5 ч, охлаждают до 20 °С, выливают в 0,5 л холодной воды и нейтрализуют насыщенным раствором Na₂CO₃. Выделившийся осадок отфильтровывают, промывают водой, сушат, хроматографируют на колонке непрерывного дейст-

вия (адсорбент Al₂O₃ второй степени активности, элюент гексан) и после перекристаллизации из гексана выделяют 2,2 г (21%) исходного соединения III. Затем элюент заменяют на бензол и выделяют ацетильное производное IV, которое перекристаллизовывают из гептана. Выход 7,6 г (60%). $T_{\Pi\Pi}$ 137...138,5 °C. ИК спектр (KBr): 1675⁻¹ (C=O). Пробы смешения образцов кетонов IV, полученных разными методами, не дают депрессии температуры плавления, а их ИК спектры идентичны.

5-Фенил-2-(5-формилфур-2-ил) оксазол (V). Раствор 10,55 г (50 ммоль) соединения I в 40 мл ДМФА охлаждают до 10 °С и при перемешивании за 25 мин добавляют по каплям 15 мл POCl3, поддерживая температуру не выше 20 °С. Смесь перемешивают 1 ч при 20 °С и 3 ч при 100 °С, охлаждают и медленно выливают на 300 г льда, поддерживая рН 6...7 добавлением насыщенного раствора Na₂CO₃. Образовавшийся осадок отфильтровывают, высушивают и очищают на хроматографической колонке непрерывного действия (адсорбент силохром марки C-120, элюент гексан). Выход 10,1 г (84%). Для исследований продукт перекристаллизовывают из этанола и смеси гептан—бензол, 1 : 1. $T_{\Pi \pi}$ 115,5...117 °С. ИК спектр (KBr): 1678 см⁻¹ (C=O). Найдено, %: N 5,84. C₁₄H₉NO₃. Вычислено, %: N 5,86.

5-(5-Фенилоксазол-2-ил)фуран-2-карбоновая кислота (VI). А. К раствору 12 г (0,3 моль) NaOH в 45 мл воды при 0...5 °C добавляют по каплям 14,4 г (0,09 моль) брома. Затем при интенсивном перемешивании порциями добавляют суспензию 3,8 г (15 ммоль) кетона III в 15 мл диоксана, поддерживая температуру не выше 12 °C. Реакционную массу перемешивают при этой температуре 1 ч, добавляют 0,5 г пиросульфита натрия и подкисляют 10% соляной кислотой до рН 2...3. Выпавший осадок отфильтровывают и высушивают. Соединение переосаждают из 10% водного NaOH, хроматографируют на колонке непрерывного действия (адсорбент силохром C-120, элюент трихлорэтилен) и перекристаллизовывают из *пара*-ксилола. Выход 1,9 г (50%). *Т*_{ПЛ} 220,5...222 °C. Найдено, %: N 5,47. С14Н9NO4. Вычислено, %: N 5,49.

Б. К раствору 3,2 г (57 ммоль) КОН в 55 мл этанола добавляют 2,4 г (10 ммоль) соединения V, смесь доводят до кипения, выдерживают 1...2 мин и выливают в 500 мл 4% водного раствора КОН. Образовавшийся осадок 2-фенил-5- (5-гидроксиметилфур-2-ил) оксазола отделяют фильтрованием. Выход 0,85 г (71%). $T_{\rm III}$ 104...105 °С (из бензола). С14H9NO3. ИК спектр (КВг): 3300 (ОН); 2928, 2852 см⁻¹ (СН_{алифатич}). Шелочной фильтрат подкисляют 10% соляной кислотой до pH 2...3 и осадок отфильтровывают. Полученную карбоновую кислоту VI очищают аналогично методу А. Выход 1,1 г (79%). $T_{\rm III}$ 220,5...222 °С. Пробы смешения образцов кислот VI, полученных разными методами, не дают депрессии температуры плавления, а их ИК спектры идентичны. ИК спектр (КВг): 1625, 1675 см⁻¹ (С=О).

СПИСОК ЛИТЕРАТУРЫ

- 1. Красовицкий Б. М., Болотин Б. М. Органические люминофоры. Москва: Химия, 1984. 336 с.
- Katritzky A. R., Schwarz O. A., Rahman A. E. A., Leahy D. E. // J. Heterocycl. Chem. 1984. – Vol. 21. – P. 1673.
- Шершуков В. М., Волков В. Л., Паценкер Л. Д. // Укр. респ. конф. по орган. химии: Тез. докл. — Ужгород, 1986. — С. 357.
- 4. Шершуков В. М., Паценкер Л. Д., Пивненко Н. С. // ХГС. 1989. № 6. С. 839.
- 5. Пожарский А. Ф. Теоретические основы химии гетероциклов. Москва: Химия, 1985. 280 с.
- 6. Абронин И. А., Жидомиров Г. М. // ХГС. 1977. № 1. С. 3.
- Пакетт Л. Основы современной химии гетероциклических соединений. Москва: Мир, 1971. — 352 с.
- 8. Беленький Л. И. // ХГС. 1980. № 12. С. 1587.
- Belen'kii L. I., Gromova G. P., Cheskis M. A., Gol'dfarb Ya. L. // Chem. Scr. 1985. -Vol. 25. - P. 295.
- 10. Dewar M. J. S., Thiel W. // J. Amer. Chem. Soc. 1977. Vol. 99. P. 4899.
- 11. Шкумат А. П., Паценкер Л. Д., Адонина Н. В., Лаврушин В. Ф. // Укр. хим. журн. 1987. Т. 53. С. 529.
- Sheldrick G. M. SHELXTL PLUS. PC version. Siemens Analytical X-Ray Instruments. Inc., Madison, Wisconsin, 1989. — 366 p.

Институт монокристаллов НАН Украины, Харьков 310001 Поступило в редакцию 18.02.97