ПИСЬМА В РЕДАКЦИЮ

ГИДРОКСИЛИРОВАНИЕ КРАТНОЙ СВЯЗИ 1-БЕНЗИЛ-3-МЕТИЛ- Δ^3 -ПИПЕРИДЕИНА МИЦЕЛИАЛЬНЫМИ ГРИБАМИ

Хиральные полигидроксипроизводные пиперидинов в последние годы привлекают внимание исследователей в связи с обнаружением среди них соединений, обладающих противораковой и антивирусной активностью [1—3]. Однако энантиоселективный синтез таких соединений труден и многостадиен [4]. В то же время известно, что микробиологические процессы окисления органических соединений, в частности азотистых гетероциклов, протекают, как правило, регио- и энантиоселективно [5—8].

Мы изучили процесс микробиологического окисления 1-бензил-3-метил- Δ^3 -пиперидеина (I) мицелиальными грибами.

Из исследованных нами пяти штаммов Aspergillus niger, двух штаммов Beauveria bassiana, а также Rhizopus oryzae ВКПМ F-431, Penicillium simplicissimum КМ-16 и Cunninghamella verticillata ВКПМ F-430 последний гриб оказался наиболее активным [9]. Трансформацию осуществляли в растущей культуре клеток указанных грибных штаммов при рН 5,0 по описанной ранее методике [10]. Субстрат для трансформации вносили в количестве 100 мг/л. Продукты трансформации трехкратно экстрагировали хлороформом из культуральной жидкости при рН 10,0. Хлороформенные экстракты упаривали досуха, остаток растворяли в небольшом количестве метанола и анализировали на хромато-масс-спектрометре HP-5890 Series II с масс-селективным детектором HP-5972, кварцевая капиллярная колонка 30м × 0,2мм с неподвижной фазой HP-5МS и программированием температуры от 70 до 250 °C со скоростью 30°/мин.

II:III:IV = 1:2:16

Проведенный (газовая хроматография и масс-спектрометрия) анализ культуральной жидкости показал наличие следующих трансформации (схема): время удерживания, мин; m/z (относительная интенсивность), путь образования или состав ионов. Исходный пиперидеин I: 7,05; 187 (67) (M), 186 (20) (M-H), 172 (43) (M-CH₃), 110 (5) (M-C₆H₅), 96 (9) (М-С₇Н₇), 91 (100) (С₇Н₇). 1-Бензил-3-гидрокси-3-метиллиперидин (II): 7,71; 205 (5) (M), 204 (9) (M-H), 148 (7) (M-C₃H₄OH), 134 (16) $(M-C_4H_6OH)$, 128 (71) $(M-C_6H_5)$, 114 (9) $(M-C_7H_7)$, 91 (100) (C_7H_7) . 1-Бензил-4-гидрокси-3-метилпиперидин (III): 7,78; 205 (26) (M), 204 (19) (M-H), 188 (5) (M-OH), 160 (5) $(M-C_2H_4OH)$, 146 (12) $(M-C_3H_6OH)$, 134 (5) (M-C₄H₆OH), 128 (15) (M-C₆H₅), 114 (28) (M-C₇H₇), 91 (100) (C₇H₇). 1-Бензил-транс-3,4-дигидрокси-3-метиллиперидин (IV): 8,22; 221 (16) (M), 204 (9) (M-OH), 203 (3) (M-H₂O), 188 (5) (M-H₂O—CH₃), 186 (4) (M-OH-H₂O), 146 (7) (M-C₃H₇O₂), 144 (4) (M-C₆H₅), 134 (34) $(M-C_4H_7O_2)$, 130 (14) $(M-C_7H_7)$, 112 (9) $(M-H_2O-C_7H_7)$, 91 (100) (C_7H_7) . Соотношение площадей хроматографических ников соединений I: II: III: IV составляло 2:1:2:16, что позволяет говорить о высокой региоселективности процесса трансформации, т. е. о преимущественном дигидроксилировании кратной связи. Возможно, что интермедиатом в этом процессе является соответствующая 3-эпокись. Сравнение хроматографических и масс-спектрометрических параметров диола II с заведомым синтетическим образцом транс-конфигурации свидетельствует об их идентичности. Полученные результаты показывают потенциальную возможность препаративного получения продуктов микробиологического гидроксилирования пиперидеинов. referencialisti (m. 1906). Promose protesta de la comercia del la comercia del la comercia de la comercia de la comercia de la comercia de la comercia del la comerci

Работа финансировалась Российским фондом фундаментальных исследований (грант 93-03-08887а), которому авторы выражают глубокую благодарность.

список литературы

- 1: Fleet G. W. J., Karpas A., Dwek R. A., Fellows L. E., Tyms A. S., Petursson S., Namgoong S. K., Ramsden N. S., Smith P. W., Jong Chan Son, Wilson F., Witty D. R., Jacob G. S., Rademacher T. W. // FEBs Letters. 1988. Vol. 237. P. 128.
 - Gruters R. A., Neefjes J. J., Tersmette M., De Goede R. E. Y., Tulp A., Husman H. G., Miedema F., Ploegh H. L. // Nature. — 1987. — Vol. 330. — P. 74.
 - 3. Смоленский Е. А., Гришина Г. В., Макеев Г. М., Зефиров Н. С. // ДАН. 1993. Т. 332. — С. 603.
 - 4. Vogel P. // Chimica Oggi. 1992. N 8/9. P. 9.
 - Goti A., Cardona F., Brandi A., Picasso S., Vogel P. // Tetrah. Asym. 1996. Vol. 7. P. 1659.
 - 6. Azerad R. // Bull. soc. chim. Fr. 1995. Vol. 132. P. 17.
- 7. Паршиков И. А., Терентьев П. Б., Модянова Л. В. // ХГС. 1994. № 11/12. С. 1510.
- 8. Furstoss R. // Actual Chim. (Fr.). 1990. N 1. P. 6.
- 9. Sutherland J. B., Freeman J. P., Williams A. J., Cerniglia C. E. // Exp. Mycol. 1994. Vol. 18. P. 271.
- 10. А. с. 1789557 СССР / Паршиков И. А., Воробъева Л. И., Модянова Л. В., Довгилевич Е. В., Терентьев П. Б. // Б. Й. 1993. № 3.

П. Б. Терентьев, И. А. Паршиков, Г. В. Гришина, Н. Ф. Пискункова, Т. И. Чумаков, Г. А. Булахов

Московский государственный университет им. М. В. Ломоносова, Москва 199899

Поступило в редакцию 23.01.97