А. И. Михалев, М. Е. Коньшин, М. И. Вахрин

СИНТЕЗ АМИДОВ

2-ЗАМЕЩЕННЫХ ЦИНХОНИНОВЫХ КИСЛОТ И ИХ ЦИКЛИЗАЦИЯ В АМИДЫ 1,2,4-ТРИАЗОЛО[4,3-а]ХИНОЛИН-9-И 1,2,4-ТРИАЗИНО[4,3-а]ХИНОЛИН-10-КАРБОНОВЫХ КИСЛОТ

Замещенные амиды 2-гидразино- и 2-этилгидразиноцинхониновых кислот при взаимодействии с пировиноградной кислотой и ее этиловым эфиром дают амиды 3-метил-4-оксо-1,2,4-триазино [4,3-a] хинолин-[4,3-a] хинолиновой кислоты, окисляющиеся в замещенные [4,2,4-триазоло [4,3-a] хинолины.

В предыдущих работах [1, 2] нами было показано, что амиды 2-гидразиноцинхониновой кислоты и их N-ацильные производные могут быть использованы как исходные вещества для синтеза биологически активных амидов 1,2,4-триазоло [4,3-а] кинолин-9-карбоновой кислоты. В настоящей работе изучены реакции замещенных амидов 2-гидразино- и 2-этилгидразиноцинхониновых кислот с пировиноградной кислотой, ее этиловым эфиром, муравьиной кислотой, этилортоформиатом и альдегидами с выходом к конденсированным гетероциклам, содержащим фрагмент пинхониновой кислоты.

Ia R = n-Pr, R¹ = H; I6 R = i-Pr, R¹ = H; IB R = 2-MeC₆H₄, R¹ = H; Ir R = 2,5-Me₂C₆H₃, R¹ = H; II R = 2,5-Me₂C₆H₃, R¹ = H; II R = n-Pr, R¹ = Et; II R = n-Pr; III R = n

Характеристики синтезированных соединений

Соеди- нение	Брутто- формула	<u>Найдено, %</u> Вычислено, %			•	Спектры ПМР, δ , м. д.*				
		С	Н	N	<i>Т</i> _{ПЛ} , °С	хино- лил-NH	NH амид	ArH, м*2	прочие протоны	Выход, %
1	<u>.</u> 2	3	4	5	6	7	8	9	10	11 ,
Ie	C ₁₅ H ₂₀ N ₄ O	66.00 66,15	7,32 7,40	20,43 20,57	139140	8,87	10,7	7,68,7	4,17 к (СН ₂), 1,2 т (СН ₃)	76
Іж	C ₁₅ H ₂₀ N ₄ O	66.03 66,15	7.52 7,40	20.67 20,57	145,146	8,80	10,8	7,68,3	4,13 к (СН ₂), 1,3 т (СН ₃)	80
13	$C_{20}H_{22}N_4O$	71.94 71,83	6,78 6,63	16.88 16,76	164165	8,85	10,8	7,68,3	4,15 к (СН ₂), 1,2 т (СН ₃)	85
Iļa	$C_{16}H_{16}N_4O_2$	64.70 64,85	5.52 5,44	18.86 18,91	230231	٠,	8,7	7,48,0	2,13 c (CH ₃)	69
Пб	$C_{16}H_{16}N_4O_2$	64,94 64,85	<u>5.57</u> 5,44	18.83 18,91	227228	·	8,7	7,67,8	2,1 c (CH ₃)	75
IIĮa	$C_{18}H_{22}N_4O_3$	64,22 63,14	6.54 6,48	16,46 16,37	194195	10,93	8,8	7,28,0	4,23 к (СН ₂), 2,13 с (СН ₃), 1,2 т (СН ₃)	81
шб	$C_{18}H_{22}N_4O_3$	63,25 63,14	6,33 6,48	16,44 16,37	215217	11,0	8,8	7,28,0	4,2 к (CH ₂), 2,2 с (CH ₃), 1,2 т (CH ₃)	78
Шв	$C_{23}H_{24}N_4O_3$	68,20 68,30	5.85 5,98	13.77 13,86	187188	10,17	8,2	6,87,8	4,27 к (СН ₂), 2,3 с (СН ₃), 1,2 т (СН ₃)	84
IIIr	$C_{23}H_{24}N_4O_3$	68,21 68,30	6.13 5,98	13,70 13,86	221222	10,33	8,2	6,97,9	4,27 к (СН ₂), 2,1 с (СН ₃), 1,27 т (СН ₃)	87
IVa	$C_{20}H_{19}FN_4O$	68,64 68,55	4,58 4,47	16,12 15,99	263265	11,73	8,8	7,08,1	8,4 c (=CH-)	82

1	2	3	4	5	.6	7	8	9	10	11
IVб	C ₂₀ H ₁₉ ClN ₄ O	65.35 65,48	5,10 5,22	15,16 15,27	260262	11,67	8,8	7,17,9	8,2 c (=CH-)	80
IVв	C ₂₀ H ₂₀ N ₄ O	72.77 72,87	6.13 6,07	16,73 16,86	288290	11,50	8,8	7,27,9	8,27 c (=CH-)	86
IVr	C ₂₄ H ₂₀ N ₄ O	75.61 75,77	5,38 5,30	14.81 14,73	268270	10,47	8,3	6,97,8	8,1 c (=CH)	90
V ,a	C ₁₄ H ₁₇ N ₄ O	65,46 65,35	6.78 6,66	21.85 21,78	232233	.*	8,7	7,78,2	10,1 c (1H, 3-H)	89
Vб	C ₁₄ H ₁₇ N ₄ O	65,27 65,35	6,51 6,66	21.62 21,78	260262		8,8	7,58,5	10,1 c (1H, 3-H)	93
Vв	$C_{20}H_{19}N_4O$	72.55 72,48	<u>5.86</u> 5,78	16.80 16,91	242243	7*	8,6	7,68,2		70
Vr	C ₂₄ H ₁₈ N ₄ O	76.03 76,17	4.68 4,80	14.70 14.81	230232		8,2	7,38,0		75
Vļa	C ₂₂ H ₂₄ N ₄ O	73,22 73,30	3,85 3,94	15,40 15,55	149150		10,2	7,68,1	7,1 (1H, 3-H)	67
VIG	C ₂₂ H ₂₄ N ₄ O	73.18 73,30	3.80 3,94	15,43 15,55	140142	·	10,1	7,78,1	7,3 (1H, 3-H)	72
VIB	C ₂₇ H ₂₆ N ₄ O	76.03 76,15	6,10 6,20	13.38 13,26	160161		10,3	7,18,2	6,77 (1H, 3-H)	65

^{*2} В таблице не приводятся сигналы протонов заместителей при амидной группе. Сигналы протонов ArH, NH для соединений Ie—3.

Установлено, что при нагревании соединений Іа,б с пировиноградной кислотой образуются амиды 3-метил-4-оксо-1,2,4-триазино [4,3-a]хинолин-10-карбоновой кислоты (IIa,6, таблица).

При использовании в реакции с амидами I вместо пировиноградной кислоты ее этилового эфира получаются амиды 2-(1-этокси-карбонилэтилиденгидразино) цинхониновой кислоты (IIIа—г), которые в отличие от их аналогов со свободной карбоксильной группой в этих условиях не циклизуются в производные триазинохинолина, возможно, из-за каталитического влияния протонов, образующихся при диссоциации свободного карбоксила. При термолизе соединений IIIа,б они подвергаются внутримолекулярной циклизации в соответствующие производные 1,2,4-триазино [4,3-а]хинолина (IIa,6).

Соединения Іб,в, содержащие свободную гидразиногруппу, реагируют с ароматическими альдегидами, давая соответствующие гидразоны IVа—г, которые при окислении хлорным железом превращаются в амиды 3-фенил-1,2,4-триазоло [4,3-а]хинолин-9-карбоновых кислот (Vв,г). Подобные соединения Va,б без заместителей в положении 3 получены также при нагревании амидов Ia,б с муравьиной кислотой или триэтилортоформиатом. Вероятно, циклизация амидов 2-гидразиноцинхониновой кислоты с использованием муравьиной кислоты протекает через стадию образования промежуточного ацил-, а в случае с ортоэфиром через этоксиметиленгидразинопроизводное.

2-(β -Этилгидразино) производные Ie—з при взаимодействии с бензальдегидом превращаются в 3-замещенные амидов 2-этил-2,3-дигидро-1,2,4-триазоло [4,3-a]хинолин-9-карбоновой кислоты VIa—в, т. е. стабилизация промежуточных 0,N-полуацеталей достигается путем циклизации.

Строение полученных соединений подтверждено данными ИК и ПМР спектров (см. таблицу и экспериментальную часть).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры сняты на приборе UR-20 в вазелиновом масле. Спектры ПМР получены на приборе PЯ-2310 (60 МГц), внутренний стандарт ГМДС, растворитель ДМСО- D_6 . Характеристики соединений представлены в таблице. Соединение 1в описано в работе [1], соединения 1a,6,r,q — в работе [4].

Замещенные амиды 2-этилгидразиноцинхониновой кислоты (Ie—ж). Раствор 0,01 моль соответствующего амида 2-хлорцинхониновой кислоты [3] и 0,6 г (0,01 моль) этилгидразина (или гидразина) в 10 мл диоксана кипятят 2 ч, охлаждают, выпавший осадок отделяют и перекристаллизовывают из диоксана.

Замещенные амиды 2-(1-этоксикарбонилэтилиденгидразино) цинхониновой кислоты (Ша—г). Раствор 0,01 моль соответствующего амида I и 1,16 г (0,01 моль) этилового эфира пировиноградной кислоты в 10 мл диоксана кипятят 2 ч, охлаждают, разбавляют водой. Осадок отфильтровывают и перекристаллизовывают из диоксана.

Замещенные амиды 3-метил-4-оксо-1,2,4-триазино [4,3-a]хинолин-10-карбоновой кислоты (Па,б). А. Смесь 0,01 моль амида Іа,б и 0,88 г (0,01 моль) пировиноградной кислоты в 10 мл диоксана кипятят 1 ч, охлаждают, выливают в воду. Осадок отфильтровывают и перекристаллизовывают из ДМФА. ИК спектры соединений Па,6: 1640...1660 (СО), 3200...3300 см $^{-1}$ (NH).

Б. Раствор 0,01 моль амида НІа,б в 10 мл этиленгликоля нагревают 5 ч при 160 °С, охлаждают, разбавляют водой. Осадок отфильтровывают и перекристаллизовывают из ДМФА. Получают соединения На,б. Смешанная проба плавления с образцами На,б, полученными в условиях опыта А, показала их идентичность.

Замещенные амиды 2- $(\beta$ -арилиденгидразино) цинхониновой кислоты (IVа—г). К раствору 0,01 моль амида I6,в в 10 мл диоксана и 5 мл 50% уксусной кислоты добавляют 1,06 г (0,01 моль) бензальдегида и кипятят 1 ч, охлаждают, разбавляют водой. Осадок отфильтровывают и перекристаллизовывают из диоксана.

Замещенные амиды 1,2,4-триазоло [4,3-a]хинолин-9-карбоновой кислоты (Vа—г). А. Раствор 0,01 моль амида Ia,6, 1,5 г (0,01 моль) этилового эфира ортомуравьиной кислоты в 10 мл диоксана кипятят 1 ч, охлаждают, разбавляют водой. Осадок перекристаллизовывают из ДМФА. ИК спектры соединений Va,6: 1625...1630 (СО амид), 3200...3300 см $^{-1}$ (NH).

Б. Смесь 0,01 моль амида IVв,г и 2,4г (0,015 моль) хлорида железа (III) в 10 мл ДМФА кипятят 2ч, охлаждают, выливают в воду. Осадок отфильтровывают и перекристаллизовывают из ДМФА. Получают соединения Vв,г.

Изопропиламид 1,2,4-триазоло [4,3-a] хинолин-9-карбоновой кислоты (Vб). Раствор 2,44 г (0,01 моль) изопропиламида 2-гидразиноцинхониновой кислоты в 10 мл муравьиной кислоты кипятят 1 ч, охлаждают, разбавляют водой, нейтрализуют раствором карбоната натрия. Осадок отфильтровывают и перекристаллизовывают из ДМФА. Получают 1,8 г (70%) соединения Vб. $T_{\Pi \Pi}$ 259...260 °C. Смешанная проба плавления с образцом Vб, полученным в условиях предыдущего опыта, депрессии температуры плавления не дает.

Замещенные амиды 3-фенил-2-этил-2,3-дигидро-1,2,4-триазоло[4,3-a]хинолин-9-карбоновой кислоты (VIa—в). К смеси 0,01 моль амида Ie—з в 10 мл диоксана и 5 мл 50% уксусной кислоты добавляют 1,06 г (0,01 моль) бензальдегида и кипятят 1 ч, охлаждают, выливают в воду, нейтрализуют раствором карбоната натрия. Осадок отфильтровывают и перекристаллизовывают из диоксана. ИК спектры соединений VIa—в: 1625...1640 (CO амид), 3200...3300 см⁻¹ (NH).

СПИСОК ЛИТЕРАТУРЫ

- 1. Янборисова О. А., Колла В. Э., Вихарева С. А., Коньшин М. Е. // Хим.-фарм. журн. 1991. Т. 25. № 2. С. 24.
- 2. Янборисова О. А., Коньшин М. Е., Колла В. Э. // Хим.-фарм. журн. 1991. Т. 25 № 3. С. 23.
- Янборисова О. А., Колла В. Э., Вихарева С. А., Коньшин М. Е. / Деп. в ВИНИТИ, 1990. № 3118-В.
- 4. Михалев А. И., Коньшин М. Е., Вахрин М. И. // ХГС. 1997. —№ 5. С.697.

Пермская фармацевтическая академия, Пермь 614600 Поступило в редакцию 19.12.96