А. И. Михалев, М. Е. Коньшин, М. И. Вахрин

СИНТЕЗ И ПРЕВРАЩЕНИЯ АМИДОВ 2-ЗАМЕЩЕННЫХ ЦИНХОНИНОВЫХ КИСЛОТ

Взаимодействием замещенных амидов 2-хлорцинхониновой кислоты с ацетатом натрия или сульфидом натрия получены амиды 2-оксо- и 2-тиоцинхониновых кислот. Реакция амидов 2-тиоцинхониновой кислоты с гидразингидратом или этиловым эфиром циануксусной кислоты ведет к производным 2-гидразиноцинхониновой кислоты или (4-карбамоилхинолил-2) циануксусного эфира соответственно, которые могут быть получены также из амидов 2-хлорцинхониновой кислоты.

В ранее опубликованных работах нами было показано, что замещенные амиды 2-хлорцинхониновой кислоты могут быть использованы в качестве исходных соединений для получения биологически активных амидов 2-гидразино- и 2-ариламиноцинхониновых кислот [1, 2].

Данная работа предпринята с целью найти условия превращения амидов 2-хлорцинхониновой кислоты в амиды 2-оксо- и 2-тиоцинхониновых кислот и изучения некоторых реакций нуклеофильного замещения серы в последних.

I—V а $R = C_3H_7NH$; б $R = i-C_3H_7NH$; в R = морфолино; $r R = 2-ClC_6H_4NH$; д $R = 2-CH_3C_6H_4NH$

Исследования показали, что замещенные амиды 2-оксоцинхониновой кислоты Па—г (таблица) образуются с хорошими выходами из амидов І при использовании в качестве сильного нуклеофила ацетат-аниона. Реакция, по-видимому, катализируется уксусной кислотой за счет протонирования хинолинового цикла.

При нагревании амидов I с сульфидом натрия в ДМФА или тиомочевиной образуются замещенные амиды 2-тиоцинхониновой кислоты IIIа—г. В последнем случае, вероятно, после нуклеофильного замещения хлора на остаток тиомочевины промежуточное соединение разлагается с образованием 2-тиопроизводного.

На основании литературных данных [3] об оксо- и тионной структуре производных хинолина типа II и III сигналы в спектрах ПМР этих соединений при 12,20...12,83 м. д. нами были отнесены к протонам группы NH хинолинового ядра.

Характеристики синтезированных соединений

Соеди- нение	Брутто- формула	<u>Найдено, %</u> Вычислено, %			<i>T</i> •C	Спектры ПМР, δ , м. д.				Выход, %, ме-
		C	н	N	<i>Т</i> пл, °С	NH, с хинолина	NH амид	ArH, NH, M	NH ₂ уш. с	Выход, %, метод A (Б)
1.	2	3	4	5	6	7	8	9	10	11
Iļa	$C_{13}H_{14}N_2O_2$	67.81 67,92	6.13 6,25	$\frac{12.17}{12,22}$	291292	11,20	8,77	6,437,83		76
Пб	C ₁₃ H ₁₄ N ₂ O ₂	67.81 67,90	6,13 6,08	12.17 12,04	222223	11,93	8,60	6,457,80		80
IIв	C ₁₄ H ₁₄ N ₂ O ₃	65.10 65,17	<u>5,46</u> 5,53	10.85 10,77	206207	11,95		6,407,73		78
IIr	$\mathbf{C}_{16}\mathbf{H}_{11}\mathbf{Cl_2N_2O_2}$	61.06 61,14	3,52 3,42	8.90 8,73	318320	11,90	8,70	6,507,80		72
IIĮa	C ₁₃ H ₁₄ N ₂ O	63,39 63,30	5,73 5,65	11.37 11,43	278280	12,83	8,78	7,108,20		71
шб	C ₁₄ H ₁₄ N ₂ O	65,09 65,15	5,46 5,52	10,85 10,90	120121	12,80		7,208,35		67
Шв	$C_{16}H_{11}CIN_2O$	61.06 61,11	3.52 3,60	8,90 8,96	188190	12,80	8,80	7,238,00		- 78
IIIr	C ₁₇ H ₁₄ N ₂ O	69,36 69,27	4.79 4.72	9,52 9,47	268270	12,82	8,75	7,278,00	••• •	83
IVa	C ₁₃ H ₁₅ N ₄ O	64.18 64,28	6,22 6,31	23.03 23,12	180181		8,60	7,257,80	6,77	(81)

1 :	2	3 .	4	5	6	7	8	9	10	11
IV6	C ₁₃ H ₁₅ N ₄ O	64.18 64,23	6.22 6,15	23.03 23,15	184185	7 7	8,60	7,277,83	6,83	70 (85)
IVв	C ₁₆ H ₁₃ ClN ₄ O	61,44 61,37	4.19 4,10	17.92 17,86	187188		8,50	7,238,00	7,17	63 (78)
IVr	C ₁₈ H ₁₈ N ₄ O	70,56 70,44	5.92 5,85	18.29 18,21	174175		8,27	7,288,00	7,10	65 (83)
Vд	C ₁₈ H ₁₈ N ₄ O	70.56 70,46	<u>5,92</u> 6,06	18.29 18,23	189190		8,30	7,307,80	7,15	(87)
Va ^{*2}	C ₂₁ H ₁₆ ClN ₃ O	69.71 69,64	<u>4.46</u> 4,38	11,62 11,57	228230	13,27	10,77	7,338,10	,	58 (80)
/б ^{*2}	C ₂₂ H ₁₉ N ₃ O ₃	70.76 70,82	5.13 5,20	11.25 11,33	236237	13,23	10,60	7,278,10		63 (82)
/в ^{*2}	C ₂₃ H ₂₁ N ₃ O ₃	71,30 71,21	<u>5,46</u> 5,38	10.85 10,93	238240	13,33	10,50	7,208,10	-	(84)

В таблице не приводятся сигналы протонов заместителей при амидной группе.
Сигналы протонов группы СООС2Н5 :Va 4,31 к (СН2), 1,23 т (СН3); V6 4,27 к (СН2), 1,27 т (СН3); Vв 4,23 к (СН2), 1,2 т (СН3).

Амиды 2-тиопинхониновой кислоты при кипячении с гидразингидратом превращаются в амиды 2-гидразиноцинхониновой кислоты IV6—г, а при взаимодействии с циануксусным эфиром — в производные (4-карбамоилхинолил-2) пиануксусного эфира Va,6. Для доказательства структуры, а также для сравнения альтернативных способов синтеза оединения IV и V были синтезированы также на основе амидов I. Полученные результаты свидетельствуют, что оба приведенных способа с успехом могут быть использованы в препаративных целях.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры зарегистрированы на приборе UR-20 в вазелиновом масле. Спектры ПМР получены на приборе РЯ-2310 (60 МГц), внутренний стандарт ГМДС, растворитель ДМСО-D₆. Характеристики полученных соединений представлены в таблице.

Замещенные амиды 2-оксоцинхониновой кислоты Ha—г. Смесь 0.01моль соответствующего амида 2-хлорцинхониновой кислоты [4], 1.2 г (0.015 моль) ацетата натрия в 10 мл конц. АсОН кипятят 1 ч, охлаждают, разбавляют водой, осадок отфильтровывают и перекристаллизовывают из ДМФА. ИК спектры соединений Ha—г: 1640...1660 (CO амид); 3200...3285 см $^{-1}$ (NH).

Замещенные амиды 2-тиоцинхониновой кислоты Πa —г. Смесь 0,01 моль соответствующего амида 2-хлорцинхониновой кислоты, 2,5 г (0,015 ммоль) водного сульфида натрия в 10 мл ДМФА нагревают 2 ч при температуре 150 °C, охлаждают, разбавляют водой. Отфильтровывают примеси и к фильтрату добавляют соляную кислоту, выпавший осадок перекристаллизовывают из диоксана. ИК спектры соединений Πa —д: 1640...1670 (CO амид); 3200...3290 см $^{-1}$ (NH).

o-Толуиламид 2-тиоцинхониновой кислоты (IIIr). Смесь 2,97 г (0,01 моль) o-толуидида 2-хлорцинхониновой кислоты, 0,76 г (0,01 моль) тиомочевины в 10 мл ДМФА нагревают 5 ч, охлаждают, разбавляют 10% водным раствором гидроксида натрия, отфильтровывают от примесей и продукт реакции осаждают разбавленной соляной кислотой. Кристаллизуют из диоксана. Выход 1,8 г (60%). $T_{\rm III}$ 268...269 °C.

Замещенные амиды 2-гидразиноцинхониновой кислоты IV6—г. А. Раствор 0,01 моль соответствующего амида 2-тиоцинхониновой кислоты в 10 мл 60% водного раствора гидразингидрата и 10 мл диоксана кипятят 1 ч, охлаждают, разбавляют водой, выпавший осадок перекристаллизовывают из диоксана.

Б. Раствор 0,01 моль соответствующего амида 2-тиоцинхониновой кислоты в 10 мл 60% водного раствора гидразингидрата и 10 мл диоксана кипятят 2 ч, охлаждают, выпавший осадок отфильтровывают и перекристаллизовывают из диоксана. Получают соединения IVа—д. Смешанные пробы плавления с образцами, полученными в условиях предыдущего опыта, депрессии температуры плавления не дают.

Производные (4-карбамоилхинолил-2) циануксусного эфира Va,б. А. Смесь 0,01 моль соответствующего амида IIIв,г, 1,1 г (0,01 моль) этилового эфира циануксусной кислоты и 1,4 г (0,01 моль) безводного карбоната калия в 10 мл ДМФА нагревают при 120 °C в течение 2 ч, охлаждают, разбавляют водой, нейтрализуют уксусной кислотой, осадок перекристаллизовывают из диоксана. ИК спектры соединений Va,6: 1640...1670 (CO амид); 2204...2208 (C N); 3200...3285 см $^{-1}$ (NH).

Б. Смесь 0,01 моль соответствующего амида Ir—e, 1,1 г (0,01 моль) этилового эфира циануксусной кислоты и 1,4 г (0,01 моль) безводного карбоната калия в 10 мл ДМФА нагревают при $150\,^{\circ}$ С в течение 6 ч, охлаждают, разбавляют водой, нейтрализуют уксусной кислотой. Выпавший осадок отфильтровывают и кристаллизуют из диоксана. Получают соединения Va—в. Смешанные пробы плавления с образцами Va, б, полученными в условиях предыдущего опыта, показали их идентичность.

СПИСОК ЛИТЕРАТУРЫ

- 1. Янборисова О. А., Коньшин М. Е. // ХГС. 1991. №4. С. 493.
- 2. Янборисова О. А., Колла В. Э., Вихарева С. А., Коньшин М. Е. // Хим.-фарм. журн. 1991. Т. 25. С. 24.
- 3. Алберт А. // Физические методы в химии гетероциклических соединений. М.: Химия, 1966. С. 47.
- 4. *Янборисова О. А., Колла В. Э., Вихарева С. А., Коньшин М. Е.* // Деп. в ВИНИТИ, 1990. № 3118-В.