С. Г. Кривоколыско, В. Д. Дяченко, В. П. Литвинов

СИНТЕЗ И СВОЙСТВА 6-МЕТИЛ-4-(4-ПИРИДИЛ)-5-ФЕНИЛКАРБАМОИЛ-3-ЦИАНО-1,4-ДИГИДРОПИРИДИН-2-ТИОЛАТА N-МЕТИЛМОРФОЛИНИЯ

Конденсацией анилида ацетоуксусной кислоты, 4-пиридилальдегида, цианотиоацетамида и N-метилморфолина синтезирован N-метил-4-(4-пиридил)-5-фенилкарбамоил-3-циано-1,4-дигидропиридин-2-тиолат N-метилморфолиния, на основе которого получены соответствующие замещенные пиридинтион, 2-алкилтио-1,4-дигидропиридины и 3-амино-2-бензоил-6-метил-4- (4-пиридил)-5-фенилкарбамоилтиено [2,3-b] пиридин.

Производные 3-циано-2(1H)-пиридинхалькогенонов, содержащих 4-пиридильный заместитель, известны в качестве кардиотонических средств [1—5]. Методы их синтеза включают взаимодействие 4-пиридилметиленцианотиоацетамида с ацетилацетоном [6] или ацетоуксусным эфиром [7], реакцию 5-(4-пиридил) замещенных 2-хлор-3-цианопиридинов с алкоголятом натрия [8] и взаимодействие α,β -енаминокетонов с цианотиоацетамидом [9].

В настоящем исследовании разработан метод синтеза ранее неизвестного 6-метил-4-(4-пиридил)-5-фенилкарбамоил-3-циано-1,4-дигидропиридин-2-тиолата N-метилморфолиния (I), заключающийся в трехкомпонентной конденсации анилида ацетоуксусной кислоты (II), 4-пиридилальдегида (III) и цианотиоацетамида (IV) в спирте при 20 °C в присутствии N-метилморфолина. Строение соли I подтверждено спектральными методами. Так, ее

VI, VII a Hal = Cl, Z = Ph; б Hal = Cl, Z = CONH2; в Hal = I, Z = (CH2) 4CH3; г Hal = Cl, Z = PhNHCO; д Hal = I, Z = H; е Hal = Cl, Z = 4-BrC6H4NHCO; ж Hal = I, Z = CH3; з Hal = Br, Z = Et; и Hal = Br, Z = 4-ClC6H4

Таблица 1

Данные ПМР и ИК спектров соединений VIIa-и

Соедине-	ИК спектр, $ u$, см $^{-1}$			Спектр ПМР, δ , м. д.								
		си соин		CONH, c	NH, c	Пиридил		Р h, м	4-H, c	SCH ₂	6-СН3, с	Z
	NH		CONH			αиα'-н, д	βиβ'-н, д	P n, M	4-m, c	SCH ₂		
VIļa	3300	2190	1670	9,65	9,28	8,46	7,51	7,32	4,71	4,30 c	2,10	6,98 м (Ph)
VIIG	3264, 3380	2192	1670	10,11	9,74	8,53	7,60	7,27	4,83	3,74 с	2,12	7,92 и 7,75 два уш. с (NH ₂)
VIIB	3284	2190	1665	9,71	9,27	8,54	7,55	7,20	4,80	3,01 м	2,13	1,26 м ((CH ₂) ₄), 0,87 т (CH ₃)
VIIr	3315	2188	1674	9,74	9,61	8,47	7,60	7,20*	4,84	3,99 с	2,12	10,39 c (CONH), 7,20 (Ph)
VIIд	3300	2194	1650	9,73	9,19	8,68	7,49	7,20	4,72	2,63 ^{*2} c	2,09	·
VIIe	3348	2200	1662	9,72	9,53	8,48	7,56*	7,25	4,83	3,97 с	2,11	10,50 c (CONH), 7,56 (C ₆ H ₄)
νиж	3330	2188	1675	9,71	9,28	8,53	7,49	7,24	4,79	3,02 м	2,10	1,21 т (СН ₃)
VII3	3305	2190	1660	9,72	9,28	8,51	7,53	7,20	4,77	2,97 м	2,10	0,95 т (CH ₃), 1,54 м (CH ₂)
VIIи	3330	2192	1673	9,67	9,31	8,49	7,45	7,35	4,75	4,30 c	2,11	7,01 м (C ₆ H ₄)

^{•2} Сигналы перекрываются, Сигнал SCH3,

ИК спектр содержит полосу поглощения валентных колебаний сопряженной цианогруппы, а также полосу поглощения фрагмента NHCO в области 2188 и 1655 см⁻¹ соответственно. В спектре ПМР тиолата I кроме сигналов ароматических протонов, N-метилморфолинового катиона и группы 6-СН3 (см. экспериментальную часть) присутствуют сигналы протонов дигидропиридинового ядра при 9,28 (с, NH) и 4,57 м. д. (с, 4-H).

Обработка соли I разбавленным водным раствором соляной кислоты приводит к образованию тиона (V), а в результате ее взаимодействия с галогенидами (VIa—и) в растворе ДМФА получаются замещенные 2-алкилтио-1,4-дигидропиридины (VIIa—и). Интересно, что при использовании в качестве алкилирующего агента фенацилбромида был получен только бициклический продукт —замещенный тиено [2,3-b]пиридин (VIII) (метод A), синтезированный также реакцией тиона V с фенацилбромидом в присутствии КОН (метод Б).

Строение синтезированных соединений V, VII, VIII согласуется с данными ПМР и ИК спектров (см. экспериментальную часть, табл. 1).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ПМР получены на приборе Bruker WP-100 SU (100 МГц) в растворах ДМСО-D₆, внутренний стандарт ТМС. ИК спектры снимали на спектрометре ИКС-29 в вазелиновом масле. ТСХ проводили на пластинках Silufol UV-254 в системе ацетон—гептан (3:5), проявление в парах йола.

6-Метил-4-(4-пиридил)-5-фенилкарбамоил-3-циано-1,4-дигидропиридин-2-тиолат N-метилморфолиния (I). Смесь 10 ммоль анилида II, 10 ммоль альдегида III, 10 ммоль цианотио-ацетамида IV и 15 ммоль N-метилморфолина перемешивают 6 ч при 20 °C. Осадок продукта I отфильтровывают, промывают этанолом и ацетоном. Выход 4,0 г (89%). $T_{\rm III}$ 246...248 °C. ИК спектр: 3150 (NH), 2188 (CN), 1655 см⁻¹ (NHCO). Спектр ПМР: 10,36 (1H, c, NHCO); 9,28 (1H, c, NH); 8,47 (2H, д, α - и α' -Hp y); 7,48 (2H, д, β - и β' -Hp y); 7,20 (5H, м, Hp h); 4,57 (1H, c, 4-H); 3,75 (4H, м, CH₂OCH₂); 3,09 (4H, м, CH₂NCH₂); 2,72 (3H, c, NCH₃); 2,09 м. д. (3H, c, 6-CH₃). Найдено, %: C 64,00; H 5,90; N 15,64; S 7,22. C₂₄H₂₇N₅O₂S. Вычислено, %: C 64,12; H 6,05; N 15,58; S 7,13.

Таблица 2 Характеристики синтезированных соединений VIIа—и

Соеди-	Брутто-формула		Найде Вычисл	тпл., °С (растворитель для	Выход,		
нение	<i>Б</i> ру 110 формула	С	н	N	s	кристаллизации)	%
VIIa	C ₂₆ H ₂₂ N ₄ OS	71.10 71,21	4.95 5,06	12.84 12,78	7.50 7,31	150152 (<i>i</i> -PrOH)	79
VIIб	C ₂₁ H ₁₉ N ₅ O ₂ S	62,30 62,21	4.68 4,72	17.35 17,27	7.80 7,91	242244 (<i>i</i> -PrOH)	86
VIIB	C25H28N4OS	69,50 69,41	6,48 6,52	12.80 12,95	7.60 7,41	168170 (этанол)	65
VIIr	C27H23N5O2S	67,28 67,34	4,75 4,81	14,60 14,54	6,79 6,66	210212 (AcOH)	67
VIIд	C ₂₀ H ₁₈ N ₄ OS	66,30 66,28	4,90 5,01	15,32 15,46	8,9 <u>1</u> 8,85	119121 (этанол)	86
VIIe	C27H22BrN5O2S	<u>57.92</u> 57,86	3.80 3,96	12,66 12,50	5.65 5,72	239241 (<i>n</i> -бутанол)	75
ЖIIV	C ₂₁ H ₂₀ N ₄ OS	66.88 67,00	5.20 5,35	14.97 14,88	8,64 8,52	105107 (этанол)	81
VII3	C22H22N4OS	67.57 67,67	5,70 5,68	14.39 14,35	8.10 8,21	139141 (этанол)	78
VIIи	C ₂₆ H ₂₁ ClN ₄ OS	65,93 66,02	4.30 4,48	11,90 11,85	6,82 6,78	218220 (п-бутанол)	69

6-Метил-4-(4-пиридил)-5-фенилкарбамоил-3-цианопиридин-2(1H)-тион (V). Суспензию 10 ммоль соли I в 15 мл этанола при перемешивании разбавляют водным раствором соляной кислоты до рН 3 и фильтруют. Образовавшийся в течение 24 ч осадок продукта V отделяют, промывают этанолом, гексаном. Выход 2,46 г (71%). $T_{\rm III}$ 301...303 °C. ИК спектр: 3360 (NH), 2230 (CN), 1648 см⁻¹ (NHCO). Спектр ПМР: 10,36 (1H, c, NHCO); 8,67 (2H, д, α - и α '-HPy); 7,45 (2H, д, β - и β '-HPy); 7,26 (5H, м, HPh); 2,48 м. д. (3H, c, CH₃). Найдено, %: C 65,81; H 3,98; N 16,24; S 9,16. С19H₁4N4OS. Вычислено, %: C 65,88; H 4,07; N 16,17; S 9,26.

6-Метил-2-(Z-метилию)-4-(4-пиридил)-5-фенилкарбамоил-3-циано-1,4-дигидропиридины (VIIа—и). К суспензии 10 ммоль соли I в 10 мл ДМФА добавляют 10 ммоль галогенида VI и полученную массу перемешивают 4 ч. Реакционную смесь разбавляют 10 мл воды, образовавшийся осадок отфильтровывают, промывают водой, этанолом, гексаном. Получают соединения VIIа—и, карактеристики которых представлены в табл. 1, 2.

3-Амино-2-бензоил-6-метил-4-(4-пиридил)-5-фенилкарбамоилтиено[2,3-b] пиридин (VIII). А. По описанной выше методике синтеза соединений VII из соли I и фенацилбромида получают продукт VIII. Выход 3,5 г (75%). $T_{\rm III}$ 152...154 °C (1-бутанол). ИК спектр: 3150...3300 (NH₂), 1665 см⁻¹ (NHCO). Спектр ПМР: 10,47 (1H, c, NHCO); 8,74 (2H, д, α - и α' -H_{P y}); 7,80 (2H, д, β - и β' -H_{P y}); 7,10...7,65 (10H, м, H_{P b}); 6,75 м. д. (2H, уш. c, NH₂). Найдено, %: С 69,98; H 4,22; N 11,88; S 7,02. С₂₇H₂₀N₄O₂S. Вычислено, %: С 69,81; H 4,34; N 12,06; S 6,90.

Б. К суспензии 10 ммоль тиона V в 10 мл ДМФА при перемешивании добавляют 5,6 мл (10 ммоль) 10% водного раствора КОН, а через 1 мин 10 ммоль фенацилбромида и полученную массу перемешивают 4 ч. Реакционную смесь разбавляют далее 10 мл воды, образовавшийся осадок отфильтровывают, промывают водой, этанолом, гексаном. Получают соединение VIII аналогично образцу, полученному по методу А (проба смешения депрессии температуры плавления не дает).

СПИСОК ЛИТЕРАТУРЫ

- 1. Landmann H., Lowe H. // Pharmazie. 1986. Bd 41. S. 169.
- 2. Hanfeld V., Leistner S., Wagner G., Lohmann D., Poppe H., Heer S. // Pharmazie. 1989. Bd 44. S. 12.
- 3. Заявка 58-15914 Япония / Х. Окусима, А. Наримацу, Н. Симокота //РЖХ. 1984. 120117П.
- 4. Rumler A., Hagen V., Hagen A. // Pharmazie. 1990. Bd 45. S. 657.
- 5. Klauschenz E., Hagen V., Hagen A., Heer S. // Pharmazie. 1990. Bd 45. S. 628.
- 6. Krauze A., Duburs G. // Latv. kim. ž. 1994. N 1. P. 928.
- 7. Краузе А. А., Лиепиньш Э. Э., Пелчер Ю. Э., Калме З. А., Дубур Г. Я. // ХГС. 1986. № 5. С. 630.
- 8. Hagen V., Klauschenz E., Rumler A., Hagen A., Heer S., Mitzner R., Niedrich H., Lohmann D. // Pharmazie. 1990. Bd 45. S. 189.
- Hagen V., Rumler A., Reck G., Hagen A., Labes D., Heer S. // Pharmazie. 1989. Bd 44. S. 809.

Луганский государственный педагогический институт им. Т. Г. Шевченко, Луганск 348011

Поступило в редакцию 24.09.96

Институт органической химии им. Н. Д. Зелинского РАН, Москва 117913