В. Д. Дяченко, С. Г. Кривоколыско, В. П. Литвинов

СИНТЕЗ

6-МЕТИЛ-4-(2-ТИЕНИЛ)-5-ФЕНИЛКАРБАМОИЛ-3-ЦИАНО-1,4-ДИГИДРОПИРИДИН-2-ТИОЛАТА N-МЕТИЛМОРФОЛИНИЯ И ЕГО ВЗАИМОДЕЙСТВИЕ С РАЗЛИЧНЫМИ ФУНКЦИОНАЛЬНО ЗАМЕЩЕННЫМИ МЕТИЛГАЛОГЕНИДАМИ

Конденсацией анилида ацетоуксусной кислоты, тиофенового альдегида, цианотиоацетамида и N-метилморфолина получен 6-метил-4-(2-тиенил)-5-фенил-карбамоил-3-циано-1,4-дигидропиридин-2-тиолат N-метилморфолиния, при вза-имодействии которого с различными галогенидами ZCH₂Hal или NH₂COCH(Ph) Cl синтезированы замещенные 2-ZCH₂Tио- и 2-NH₂COCH(Ph)тио-1,4-дигидропиридины.

Известна фармакологическая активность тиенилзамещенных 1,4-дигидропиридинов [1]. С целью поиска новых биологически активных соединений в этом ряду нами разработан метод синтеза 6-метил-4-(2-тиенил)-5-фенилкарбамоил-3-циано-1,4-дигидропиридин-2-тиолата N-метилморфолиния (I), заключающийся в трехкомпонентной конденсации анилида ацетоуксусной кислоты (II), тиофенового альдегида (III) и цианотиоацетамида (IV) в спирте при 20 °С в присутствии N-метилморфолина. При использовании вместо соединения IV цианоселеноацетамида (V) получен не соответствующий селенолат, а селенон (VI).

Взаимодействие соли I с галогенидами ZCH₂Hal (VIIa—ф) и NH₂COCH(Ph)Cl (VIII) приводит к соответствующим замещенным по атому серы 2-тио-1,4-дигидропиридинам (IXa—ф и X). Из продуктов IXa,6 в условиях реакции Торпа—Циглера получены 4,7-дигидротиено [2,3-b]-пиридины (XIa,6).

При обработке разбавленным раствором соляной кислоты соль I превращается в тион (XII), реагирующий в основной среде с 3-бромацетилкумарином (VIIx) и 1-йодгексаном (VIIц) с образованием соответствующих сульфидов (XIIIa,б).

VII, IX, XI a Hal = Br, Z = p-ClC₆H₄CO; 6 Hal = Br, Z = p-BrC₆H₄NHCO; 8 Hal = Br, $Z = CH_2 = CH$; r Hal = Br, Z = p-ClC₆H₄; π Hal = Cl, Z = COOH; e Hal = Cl, Z = Ph; π Hal = I, $Z = CH_3(CH_2)_4$; 3 Hal = I, Z = Me; π Hal = Br, Z = Et; π Hal = I, π Hal = Cl, π Hal = Cl, π Hal = Br, π Hal = Cl, π Hal = Cl, π Hal = Cl, π Hal = Cl, π Hal = Br, π Hal = Br, π Hal = Cl, π Hal = Cl,

Спектральные характеристики соединений I, VI, IXа—ф, X, XIа,6, XII, XIIIа,6 подтверждают их строение (см. табл. 1 и экспериментальную часть). В ИК спектрах присутствуют полосы поглощения валентных колебаний сопряженной группы CN в области 2190...2220 и группы NH в области 3200...3350 см⁻¹. В спектрах ПМР имеются синглетные сигналы протонов дигидропиридинового ядра в области 5,05...5,20 (СН) и 9,23...9,70 м. д. (NH), а также сигналы протонов заместителей.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры сняты на приборе ИКС-29 в вазелиновом масле. Спектры ПМР записаны на приборе Bruker WP-100 SY (100 МГц) в ДМСО-D₆, внутренний стандарт ТМС.

Характеристики синтезированных соединений VIII, IX, XI—XIII приведены в табл. 2.

6-Метил-4-(2-тиенил)-5-фенилкарбамоил-3-циано-1,4-дигидропиридин-2-тиолат N-метилморфолиния (I). Смесь 1,77 г (10 ммоль) анилида II, 1,12 г (10 ммоль) альдегида III, 1,00 г (10 ммоль) цианотиоацетамида IV и 1,51 г (15 ммоль) N-метилморфолина в 20 мл этанола перемешивают при 20 °C 6 ч. Выделившийся осадок продукта I отфильтровывают, промывают спиртом и ацетоном. Выход 3,54 г (78%). $T_{\Pi \Pi}$ 142...144 °C. ИК спектр: 3255 (NH), 2190 (CN), 1650 см $^{-1}$ (CONH). Спектр ПМР: 9,24 (1H, c, CONH); 8,09 (1H, уш. c, NH); 6,70...7,58 (8H, м, H_{аром}); 4,89 (1H, c, 4-H); 3,76 (4H, м, CH₂OCH₂); 3,09 (4H, м, CH₂NCH₂); 2,72 (3H, c, NCH₃); 2,07 м. д. (3H, c, 6-CH₃). Найдено, %: C 60,88; H 5,59; N 12,41; S 14,24. С18H₁₅N₃OS₂ · C₅H₁₁NO. Вычислено, %: C 60,77; H 5,76; N 12,32; S 14,11.

Данные ПМР и ИК спектров соединений IXa-ф, X, XIIIa,б

Соеди-	ик спектр, $ u$, см $^{-1}$					12					
нение	NH	CN	CONH	6-CH3, c	NH, c	CONH, c	4-Н, с	SCH ₂	Н _{аром} , м	Другие протоны	
1	. 2	3	4	5	6	7	8	9	10	11	
			5.								
Xa	3300	2200	1674	2,09	9,26	9,67	5,10	4,76 c	6,808,01		
Хб	3272	2205	1654	2,10	9,57	10,50	5,12	3,96 с	6,867,57	9,70 c (NH)	
Хв	3330	2200	1670	2,10	9,28	9,67	5,09	3,69 м	6,807,57	5,20 м (CH ₂ =); 5,80 м (CH=	
Xr	3210	2190	1662	2,13	9,39	9,67	5,06	4,30 c	6,667,70	·-	
Хд	3300	2218	1650	2,06	9,69	10,60	5,09	4,01 c	6,757,52		
Xe	3330	2190	1650	2,11	9,36	9,64	5,04	4,30 д	6,677,56		
Хж	3335	2218	1675	2,09	9,30	9,66	5,09	3,02 м	6,807,57	0,86 т (CH ₃); 1,26 м ((CH ₂) ₄)	
Хз	3378	2220	1650	2,09	9,31	9,69	5,10	3,03 т	6,757,58	1,22 т (СН ₃)	
Хи	3264	2204	1677	2,09	9,30	9,68	5,10	2,99 м	6,807,57	0,97 т (CH ₃); 1,57 м (CH ₂)	
Xκ	3328	2195	1644	2,10	9,23	9,68	5,05	2,52 c	6,807,70	· ·	
Хл	3330	2218	1655	2,11	9,65	9,70	5,14	3,98 c	6,877,59	10,39 c (CONH)	
Хм	3295	2204	1660	2,07	9,30	9,69	5,10	4,65 c	8,07 т; 6,807,56		
Хн	3315	2210	1688	2,08	9,27	9,67	5,09	4,75 c	6,807,92	·	
Xo	3300	2220	1650	2,06	9,29	9,67	5,09	3,96 с	6,807,55	3,63 c (OCH ₃)	
Хп	3300	2200	1650	2,10	9,33	9,68	5,12	4,04 m*	6,917,54	4,04 м (ОСН ₂)*; 1,18 т (СН ₃)	
:											

1	2	3	4	5	6	7	8	9	10	11 .
IXp	3270	2190	1660	2,10	9,25	9,67	5,11	4,82 c	6,808,02	-
IXc	3375	2190	1684	2,11	9,67	10,12	5,12	3,72 д	6,807,57	7,91 уш. с (NH ₂)
IXT	3280	2205	1650	2,08	9,26	9,68	5,08	4,77	6,859,70	2,37 c (CH ₃)
IXy	3314	2222, 2260	1682	2,11	9,49	9,76	5,20	4,27 c	6,917,58	
ІХф	3284	2192	1648	2,16	9,50	9,66	5,17	4,39 т*	6,858,10	4,39 т (CH ₂ N) [*] ; 1,47 с ((CH ₃) ₃)
х	3300	2190	1670	2,04	9,59	10,55	5,03	5,34 c	6,477,70	7,95 ym. c (NH ₂)
XIIĮa	· -	2222	1675	2,36	·	10,53	· -	4,89 c	8,77 c; 7,008,10	<u>-</u>
ХИИб	· · · · · · · · · · · · · · · · · · ·	2217	1650	2,58	-	10,54		3,31 т	7,007,60; 7,79 д	0,87 т (CH ₃), 1,341,71 м ((CH ₂) ₄)

[•] Сигналы перекрываются.

6-Метил-4-(2-тиенил)-5-фенилкарбамоил-3-цианопиридин-2(1H)-селенон (VI). Суспензию 1,77 г (10 ммоль) анилида II, 1,12 г (10 ммоль) альдегида III, 1,47 г (10 ммоль) цианоселеноацетамида V и 1,51 г (15 ммоль) N-метилморфолина в 20 мл абсолютного этанола перемешивают 6 ч при 20 °С в атмосфере аргона, после чего добавляют 10% водный раствор соляной кислоты до рН 3. Выделившийся осадок продукта VI отфильтровывают, промывают этанолом и гексаном. Выход 2,83 г (71%). $T_{\rm III}$ 284...286 °C. ИК спектр: 3210 (NH), 2220 (CN), 1650 см $^{-1}$ (CONH).

Таблица 2 Характеристики синтезированных соединений IXа—ф, X, XIIIа,б

Соеди-	Брутто-формула		Най <u>пе</u> Вычисл	т _{пл,} °С (растворитель для	Выход,		
нение		С	Н	N	s	кристаллизации)	70
IXa	C ₂₆ H ₂₀ ClN ₃ O ₂ S ₂	61.60 61,71	4.15 3,98	8,41 8,30	12.54 12,67	200202 (AcOH)	74
ІХб	C ₂₆ H ₂₁ BrN ₄ O ₂ S ₂	55,15 55,22	3,80 3,74	10,01 9,91	11.19 11,34	248250 (1-бутанол)	68
ІХв	C ₂₁ H ₁₃ N ₃ OS ₂	63,88 64,09	4,90 4,87	10,55 10,68	16,41 16,30	110112 (этанол)	69
IXr	C ₂₅ H ₂₀ CIN ₃ OS ₂	62,73 62,81	4,11 4,22	8,88 8,79	13,50 13,41	164166 (1-бутанол)	78
ІХд	$C_{20}H_{17}N_3O_3S_2$	58,42 58,38	4,20 4,16	10,01 10,21	15.69 15,58	178180 (AcOH)	72
IXe	C ₂₅ H ₂₁ N ₃ OS ₂	67,80 67,69	<u>4.59</u> 4,77	9.30 9,47	14.54 14,46	177179 (этанол)	78
ІХж	C24H27N3OS2	65,92 65,87	6.33 6,22	9,54 9,60	14,51 14,65	112114 (этанол)	71
IX3	C ₂₀ H ₁₉ N ₃ OS ₂	63,11 62,96	4.90 5,02	10,88 11,01	16,92 16,81	124126 (этанол)	86
ІХи	C ₂₁ H ₂₁ N ₃ OS ₂	63,59 63,77	5,42 5,35	10,70 10,62	16.12 16,21	160162 (этанол)	83
IXκ	C ₁₉ H ₁₇ N ₃ OS ₂	61,95 62,10	4.70 4,66	11,29 11,43	17,50 17,45	174176 (метанол)	72
ІХл	C26H22N4O2S2	64,02 64,18	4,62 4,56	11.43 11.51	13,07 13,18	250252 (1-бутанол)	73
ІХм	C24H19N3O2S3	60,11 60,35	3,92 4,01	8.94 8,80	20,20 20,14	186188 (1-бутанол)	80
· IXн	C ₂₆ H ₂₀ BrN ₃ O ₂ S ₂	56,60 56,73	3,58 3,66	7.72 7,63	11,59 11,65	182184 (1-бутанол)	86
IXo	C ₂₁ H ₁₉ N ₃ O ₃ S ₂	59,33 59,27	4.41 4,50	10,00 9,88	14.86 15,07	182184 (этанол)	69
ІХп	C ₂₂ H ₂₁ N ₃ O ₃ S ₂	59,98 60,12	4,76 4,82	9,65 9,56	14,70 14,59	126128 (этанол)	78
IXp	C ₂₆ H ₂₁ N ₃ O ₂ S ₂	66,11 66,22	<u>4,60</u> 4,49	9.03 8,91	13,54 13,60	185187 (AcOH)	77
IXc	C ₂₀ H ₁₈ N ₄ O ₂ S ₂	58,40 58,52	4,31 4,42	13.78 13,65	15.80 15,62	250252 (1-бутанол)	76
IXт	C27H23N3O2S2	66,66 66,78	4,84 4,77	8,72 8,65	13.15 13,21	189191 (этанол)	73
IXy	C ₂₀ H ₁₆ N ₄ OS ₂	61,11 61,20	4.20 4,11	14.33 14,27	16,28 16,34	190192 (этанол)	82
ІХф	C32H31N5O2S2	66,20 66,07	5,42 5,37	11,95 12,04	10,88 11,02	216218 (1-бутанол)	77
X	C ₂₆ H ₂₂ N ₄ O ₂ S ₂	64,04 64,18	4.39 4,56	11,68 11,51	13,30 13,18	189191 (1-бутанол)	70
XIIIa	C29H19N3O4S2	64.85 64,79	3,49 3,56	7,77 7,82	12,05 11,93	224226 (ДМФА)	78
хшб	C ₂₄ H ₂₅ N ₃ OS ₂	66,29 66,17	5,60 5,78	9,54 9,65	14.89 14,72	118120 (этанол)	74

Спектр ПМР: 10,63 (1H, c, CONH); 7,00...7,85 (8H, м, Наром); 2,60 м. д. (3H, с, СНз). Найдено, %: C54,11; H3,08; N10,64; S 8,16. С₁₈Н₁₃N₃OSSe. Вычислено, %: C54,27; H3,29; N10,55; S 8,05.

6-Метил-2-Z-метилтио-4-(2-тиенил)-5-фенилкарбамоил-3-циано-1,4-дигидропиридины (IXа—ф, X). К суспензии 4,55 г (10 ммоль) соли I в 20 мл этанола при перемешивании добавляют 10 ммоль галогенида VII или VIII, реакционную смесь перемешивают 4 ч, после чего разбавляют 10 мл воды. Осадок продукта отфильтровывают, промывают водой, этанолом, гексаном.

3-Амино-6-метил-4-(2-тиенил)-5-фенилкарбамоил-2-(4-хлорбензоил)-4,7-дигидротиено-[2,3-*b*] пиридин (ХІа). К раствору 5 г (10 ммоль) соединения ІХа в 15 мл ДМФА при перемешивании добавляют 5,6 мл (10 ммоль) 10% водного раствора КОН, реакционную массу перемешивают 6 ч, после чего разбавляют 10 мл воды. Образовавшийся осадок продукта отфильтровывают, промывают водой, этанолом, гексаном. Выход 3,64 г (72%). *Т*пл 134...136 °С. ИК спектр: 3190...3385 (NH, NH₂), 1665 см⁻¹ (СОNН). Спектр ПМР: 10,44 (1H, уш. с, СОNН); 9,60 (1H, уш. с, NH); 6,80 (2H, уш. с, NH₂); 7,10...7,92 (12H, м, H_{аром}); 5,55 (1H, с, 4-H); 2,10 м. д. (3H, с, CH₃). Найдено, %: С 61,80; Н 4,12; N 8,19; S 12,70. С₂₆H₂₀CIN₃O₂S₂. Вычислено, %: С 61,71; Н 3,98; N 8,30; S 12,67.

3-Амино-2-(4-бромфенилкарбамоил)-6-метил-4-(2-тиенил)-5-фенилкарбамоил-4,7-дигидротиено[2,3-b]пиридин (XIб). Из соединения IX6 по приведенной выше методике синтеза дигидротиенопиридина XIа получают продукт XIб. Выход 3,83 г (68%). $T_{\rm III}$ 248...250 °C (1-бутанол). ИК спектр: 3210...3450 (NH, NH2), 1680 см $^{-1}$ (CONH). Спектр ПМР: 10,46 (1H, c, 5-CONH); 9,58 (1H, c, 2-CONH); 9,00 (1H, c, NH); 6,54...7,75 (12H, м, Hapom); 6,04 (2H, уш. c, NH2); 5,54 (1H, c, 4-H); 2,15 м. д. (3H, c, CH3). Найдено,%: C 55,49; H 3,33; N 10,02; S 11,19. $C_{26}H_{21}BrN_4O_2S_2$. Вычислено, %: C 55,22; H 3,74; N 9,91; S 11,34.

6-Метил-4-(2-тиенил)-5-фенилкарбамоил-3-цианопиридин-2(1H)-тион (XII). К суспензии 4,55 г (10 ммоль) соли I в 15 мл этанола при перемешивании добавляют 10% водный раствор соляной кислоты до рН 3 и раствор фильтруют. Через 24 ч образовавшийся осадок продукта XII отделяют, промывают этанолом и гексаном. Выход 2,53 г (72%). $T_{\rm III}$ 301...303 °C. ИК спектр: 3305 (NH), 2220 (CN), 1650 см $^{-1}$ (CONH). Спектр IMP: 14,36 (1H, c, NH); 10,42 (1H, c, CONH); 7,00...7,83 (8H, м, $H_{\rm apom}$); 2,45 м. д. (3H, c, CH₃). Найдено, %: С 61,66; H 3,81; N 11,85; S 18,10. С18 $H_{\rm 13}N_{\rm 3}OS_{\rm 2}$. Вычислено, %: С 61,52; H 3,73; N 11,96; S 18,25.

2-ZCH₂-6-метил-4-(2-тиенил)-5-фенилкарбамоил-3-цианопиридины (XIIIа,б). К суспензии 3,51 г (10 ммоль) тиона XII в 10 мл ДМФА при перемешивании добавляют 5,6 мл (10 ммоль) 10% водного раствора КОН, далее через 1 мин — 10 ммоль соответствующего галогенида VII. Далее реакционную смесь перемешивают 4 ч и разбавляют 10 мл воды. Образовавшийся осадок продукта отфильтровывают, промывают водой, этанолом, гексаном.

Работа выполнена при финансовой поддержке РФФИ (проект № 96-03-32012a).

СПИСОК ЛИТЕРАТУРЫ

1. Кастрон В. В., Витолиня Р. О., Дубур Г. Я. // Хим. - фарм. журн. — 1990. — № 6. — С. 14.

Луганский государственный педагогический институт им. Т. Г. Шевченко, Луганск 348011

Поступило в редакцию 09.09.96

Институт органической химии им. Н. Д. Зелинского РАН, Москва 117913