А. Т. Солдатенков, И. А. Бекро, Ж. А. Мамырбекова, С. А. Солдатова, Э. Гловер, Н. Д. Сергеева, Л. Н. Кулешова, В. Н. Хрусталев

ОКИСЛИТЕЛЬНЫЕ РЕАКЦИИ АЗИНОВ

4*. СОЧЕТАНИЕ 4-АРИЛ-1,2,5,6-ТЕТРАГИДРОПИРИДИНОВ С СОЕДИНЕНИЯМИ, СОДЕРЖАЩИМИ АКТИВИРОВАННУЮ МЕТИЛЬНУЮ ГРУППУ. СИНТЕЗ И СТРОЕНИЕ 2-АЦИЛМЕТИЛЕН-И 2-НИТРОМЕТИЛЕН-1,2,5,6-ТЕТРАГИДРОПИРИДИНОВ

На примере 1-алкил-4-арил-1,2,5,6-тетрагидропиридинов открыта новая реакция окислительного $C_{(sp3)}$ — $C_{(sp3)}$ сочетания с соединениями, содержащими активную метильную группу. Установлено, что при взаимодействии указанных Δ^3 -пиперидеинов с метилкетонами или нитрометаном в присутствии КМпО4 образуются их 2-ацилметилен- или 2-нитрометиленпроизводные соответственно.

Ранее нами было установлено, что окисление 1-алкил-4-арил-1,2,5,6тетрагидропиридинов в среде вода-ацетонитрил в присутствии КМпО4 приводит к соответствующим $\beta_{,\gamma}$ -дигидрокси- α -пиперидонам [2] или 1,2,5,6-тетрагидро- α -пиридонам [1]. Замена ацетонитрила на ацетон (при сохранении других условий реакции) приводит к изменению направления реакции: вместо окислительного кетогидроксилирования основным становитокислительное сочетание (формально $C_{(sp3)}$ — $C_{(sp3)}$) аллиламинным фрагментом исходного пиперидеина, что приводит к образованию 2-ацетилметилентетрагидропиридиновой системы (об этом мы кратко сообщали в работе [3]). Некоторую аналогию с указанным превращением имеет лишь окислительное сочетание индоксила с образованием индиго, ускоряющееся в щелочной среде [4]. Еще один известный нам пример сочетания 4а,9-диаза-1,2,4а,9а-тетрагидрофлуорена с нитрометаном и рядом метиленактивных соединений в присутствии MnO2 [5] имеет, однако, в своей основе окисление анилинового фрагмента до пара-хинониминного, который затем нуклеофильно сочетается с СН-кислотами (формально $C_{(sp2)}$ — $C_{(sp3)}$ сочетание).

В настоящей работе изучалась возможность расширения границ окислительного сочетания в присутствии КМпО4 ряда СН-активных соединений (ацетона, ацетофенона, 2-ацетилтиофена и нитрометана) с 4-арилзамещенными 1,2,5,6-тетрагидропиридинами (Іа—г). Последние имеют при атоме азота метильную или этильную группу, так как их N-незамещенные аналоги в этой реакции полностью осмоляются. В результате взаимодействия указанных реагентов получены 4-ацилметилен-(Па—д) и 2-нитрометилен-4-арил-1,2,5,6-тетрагидропиридины (Пе,ж), характеристики и спектры ЯМР ¹Н и ¹³С которых представлены в табл. 1 и 2.

В случае окислительного сочетания пиперидеинов Іа,б с ацетоном показано, что увеличение алкильной цепи при атоме азота не оказывает существенного влияния на направление реакции. В обоих случаях с высоким выходом образуются 2-ацетилметилен-1-метил- (Па) и 2-ацетилметилени 1-этил-4-([2.2] парациклофан-4-ил)-1,2,5,6-тетрагидропиридин (Пб) соответственно. Введение ацетонилиденового заместителя в одно из α -положений гетероцикла легко подтверждается химическим путем —

^{*} Сообщение 3 см. [1].

Характеристики синтезированных соединений *

Соеди-	Брутто- формула	<u>Найдено. %</u> Вычислено, %			$T_{\stackrel{oldsymbol{\Pi}}{\sim} oldsymbol{\Gamma}},$	<i>R_f</i> (эфир)	ик спектр, λ, см-1	Масс-спектр, <i>m/z (I, %</i>)		
		С	н	N		(, on			
3									-	
Пб .	C ₂₆ H ₂₉ NO	83.83 84,10	7.92 7,82	4.13 3,77	Масло	0,42	1690	[M] $^+$ 371 отсутствует, [M $^-$ C ₃ H ₄] $^+$ 331 (10), [M $^-$ C ₄ H ₅] $^+$ 319(3), [M $^-$ CH ₂ COCH ₃] $^+$ 315 (100), 104 (70)	70	
(<i>E</i>) -IIB	C ₁₅ H ₁₇ NO	80.10 79,29	7, <u>3</u> 0 7,48	6,00 6,16	Масло	0,38	1680	$[M]^{+}$ 227(68), $[M - CH_3]^{+}$ 219(100), 210(16), $[M - COCH_3]^{+}$ 184(42), $[M-Ph]^{+}$ 150(21), $M^{+}/2$ 113, 59(47), 105(53), 77(63), 57(79)	30	
(Z)-IIB	C ₁₅ H ₁₇ NO	80,05 79,29	7.18 7,48	5,91 6,16	Масло	0,19	1685	M ⁺ 227	12	
IIr	C ₂₀ H ₁₉ NO	83,45 83,04	6.41 6,57	4.49 4,87	112115	0,6	1679	$[M]^{+}$ 289(91), $[M - CH_3]^{+}$ 272(100)	7	
Щ	C ₁₈ H ₁₇ NOS	73.57 73,22	5,57 5,78	4,80 4,74	131134	0,6	1682	$[M]^{+}$ 295(100), $[M - CH_3]^{+}$ 280(71), $[M - CS]^{+}$ 251(188), $[M - Ph]^{+}$ 218(19), $[M - C_4H_3S]^{+}$ 212(19), $[M - O = C - C_4H_3S)^{+}$ 184(96), 77(83)	6	
IIe	C ₁₃ H ₁₄ N ₂ O ₂	67.82 67,44	6,07 6,21	12,17 12,09	Масло	0,6*2	1352, 1537, 1620, 1640	M ⁺ 230	40	
Пж	C ₁₄ H ₁₆ N ₂ O ₂	68,78 68,37	6,55 6,94	11.47 11,73	Масло.	0,76*2	1371, 1556, 1636	M+ 244	16	
III	C ₂₄ H ₂₃ NO	83.99 84,45	6,50 6,74	4.31 4,10	4749	0,41	1700	M ⁺ 341	30	

 $^{^{*}}$ Характеристики соединения (*E*)-Па приведены ранее в кратком сообщении [3]. В системе бензол—эфир, 2 : 1.

Ia, IIa R=Me; I6, II6 R=Et

ароматизацией соединений IIа,б нагреванием с серой. В спектре ПМР получаемого при этом пиридина (III) появляются три сигнала, мультиплетность и химические сдвиги которых однозначно свидетельствуют об ароматизации гетероцикла и замещении при атомах $C_{(4)}$ и $C_{(2)}$. Сигнал при 2,7 м. д. (3H, с) подтверждает наличие группы CH3 ацетильного фрагмента в молекуле III. Данные PCA ацилметиленпроизводного IIa* [6] показывают, что гетероцикл находится в конформации искаженного полукресла. Расположение заместителей относительно экзоциклической двойной связи свидетельствует о большой (E)-конфигурационной устойчивости молекулы (соединение (E)-IIa получено с выходом 75%). Система парациклофана развернута на угол $29,5^\circ$ относительно плоскости пиперидеина.

Рассмотрение спектров ПМР соединений IIa, б позволяет сделать (с учетом данных РСА) надежное отнесение двух синглетных сигналов, регистрируемых при 5,13...5,26 и 8,21...8,26 м. д. Первый из них соответствует ожидаемой области резонанса винильного протона, который находится при атоме $C_{(3)}$ гетероцикла. По сравнению с сигналом соответствующего протона в исходных пиперидеинах Іа,б [1] он претерпел сильнопольный сдвиг на $\Delta \delta = 0.69...0.49$ м. д. благодаря влиянию магнитной анизотропии атома кислорода ацетильной группы. Второй сигнал наблюдается в рекордно слабой для винильных протонов области и относится к экзоциклическому метиновому протону. Столь значительное его смещение связано с влиянием двух электроотрицательных гетероатомов, входящих в систему ацилдиенамина. Указанные два синглета могут служить реперными сигналами при подтверждении строения других аналогичных производных. Действительно, при конденсации 4-фенил- Δ^3 -пиперидеина (Ів) с ацетоном, ацетофеноном и 2-ацетилтиофеном были получены 2-ацилметиленпроизводные (IIв-д), в спектрах ПМР которых также регистрируются «характеристические» пары синглетных сигналов в области 5,08...5,78 м. д. (3-Н) и 8,33...8,54 м. д. (СН=СО).

В одном случае удалось хроматографически выделить два конфигурационно изомерных по экзоциклической олефиновой связи продукта (E)- Пв и (Z)- Пв, которые получены с выходом соответственно 30 и 12%. Проблемы отнесения веществ Пв к (E- или Z-) ряду решалась на основании сравнения спектров ЯМР 1 Н и 13 С со спектрами контрольного соединения Па, (E)-строение которого установлено методом РСА.

Данные спектров ЯМР синтезированных соединений

Соеди- нение	Спектр ПМР, химический сдвиг, δ , м. д., КССВ (J , Гц)										
		Гетероцикл		Заместители							
	3-(1H)	5-H	6-H	=CH(c)	cor ¹	N-R	C ₍₄₎ -Ar				
(E)*-IĮa	5,13(c)	2,45 (1H, M), 2,79 (1H, M)	3,40 (2Н, м)	8,21	2,21 (3H, c)	2,91 (3H, c)	6,466,54 (4H, м); 6,57 (1H), 6,68 (1H) и 6,83 (1H) (три д. д, J = 7,9 и 1,8)				
П б*	5,26 (c)	2,602,90 (2Н, м)	3,32 (2Н, м)	8,26	2,25 (3H, c)	1,26 (3H, т, CH ₃); 3,4 (2H, к, CH ₂)	6,366,95 (7Н, м)				
(E)-IIB	5,08 (c)	2,68 (2H, T, J = 7,0)	$3,35 \ (\mathrm{T},J=7,0)$	8,38	2,12 (3H, c)	2,91 (3H, c)	7,33 (3H, м); 7,55 (2H, д, $J = 8,2$)				
(Z)-IIB	5,09 (c)	3,353,60	(4Н, уш. м)	8,33	2,15 (3H, c)	3,0 (3H, c)	7,33 (3Н, м), 7,6 (2Н, м)				
IIr	5,78 (c)	2,77 (2H, T, J = 7,0)	3,47 (T, J=7,0)	8,54	7,407,90 (5Н, м)	3,07 (3H, c)	7,257,7 (5Н, м)				
Пд	5,08 (c)	2,68 (2Н, т)	3,35 (r, J=7,0)	8,55	7,07,40 (3Н, м)	3,07 (3H, c)	7,37,6 (5Н, м)				
IIe	6,78 (c)	2,83 (2H, T, J = 9,0)	3,55 (T, J = 9,0)	8,28		3,03 (3H, c)	7,37,65 (5Н, м)				
IIж	6,67 (c)	2,72 (2Н, т)	3,60 (T, J = 9,0)	8,35		1,303,55 (5Н, м)	7,27,6 (5Н, м)				
III*	7,26 (μ , $J = 1.8$)	7,24 (1H, д. д, $J = 5,0$ и 1,8)	8,60 (1H, μ , $J = 5,0$)		2,7 (3H, c)		6,456,75 (7Н, м)				

Соеди- нение	Спектр ЯМР 13 С, химический сдвиг, δ , м. д.										
	Гетероцикл					Заместители					
	C(2)	C(3)	C ₍₄₎	C ₍₅₎	C ₍₆₎	=CH	C=O	N—CH3	С—СН3	Ar	
(E)-IĮa (E)-IIB (Z)-IIB IIe	140,4 142,8 143,5 146,9	94,4 95,0 94,9 112,4	137,0 138,3 137,1 137,8	29,1 26,1 50,3 26,1	49,4 49,2 60,4 49,9	121,5 118,4 119,7 115,9	194,4 194,7 195,3	39,1 39,2 38,7 40,1	31,6 31,7 31,7	129,5135,8 (CH); 138,8154,3 (C _{четв}) 125,5128,5 (CH); 154,5 (C _{четв}) 126,2129,1 (CH); 154,4(C _{четв}) 126,1129,9 (CH); 153 (C _{четв})	

^{*} Протоны четырех метиленовых групп парациклофановой части соединений IIа,6 и III резонируют в области 2,8...3,3 м. д. в виде сложных мультиплетов, которые в случае соединения III перекрывают сигналы двух метиленовых протонов группы -CH2COCH3 при C(2) пиридинового ядра.

IB, IIr R = Me,
$$R^1$$
 = COPh; II_H R = Me, R^1 = CO $\frac{1}{S}$; IIe R = Me, R^1 = NO2;

На первый взгляд казалось, что метиновые протоны группировки $C_{(4)} = C_{(3)}H - C_{(2)} = C_{(1')}H - Ac$ должны быть чувствительны к различному для (E)- или (Z)-изомера химическому окружению. Однако, как показывает анализ спектров ПМР соединений Па,в (см. табл. 2), значения химических сдвигов сигналов указанных протонов для обоих изомеров существенно не отличаются ($\Delta \delta = 0.01...0.05$ м. д.). В то же время геометрическая изомерия отразилась на параметрах спектра метиленовых протонов при С(5) и С(6), т. е. той части пиперидеинового кольца, которая значительно удалена от места структурных изменений. Для одного из изомеров Пв химические сдвиги сигналов этих протонов регистрируются при 2,68 и 3,35 м. д., совпадая с таковыми одноименных протонов реперного соединения IIa ($\Delta \delta = 0.03...0.07$ м. д.), поэтому ему приписана (E)-конфигурация. У другого изомера IIв, который имеет (Z)-конфигурацию, сигналы аналогичных протонов регистрируются в более слабых полях (при 3,35...3,60 м. д.) в виде уширенных частично перекрывающихся мультиплетов. Аналогичные эффекты наблюдаются и в спектрах ЯМР ¹³С этих трех веществ: 1) незначительные различия в химических сдвигах сигналов $(\Delta \delta = 0,1...3,1$ м. д.) всех углеродных атомов в ацетилметиленииперидиновых фрагментах соединений (E)-IIa и (E)-IIB; 2) практическое совпадение химических сдвигов сигналов тринадцати (из 15) атомов углерода ($\Delta \delta = 0,0...1,3$ м. д.) у изомерных соединений (E)- и (Z)-IIв при значительном слабопольном сдвиге сигналов атомов $C_{(5)}$ и $C_{(6)}$ (Z)-изомера IIв ($\Delta \delta = 23.9$ и 11,2 м. д. соответственно). Отмеченное влияние (Z,E)-изомерии на параметры спектров ЯМР групп 5-СН2 и 6-СН2 может оказаться характеристичным для подобных 2-метиленпиперидеинов.

В отличие от ацетона такие ароматические кетоны, как ацетофенон и 2-ацетилтиофен, с трудом вступали в реакцию сочетания с пиперидеином Ів, образуя 2-ацилметиленпроизводные ІІг,ж с низкими выходами. Спектры ПМР этих соединений свидетельствуют о том, что они выделены в виде (Е)-изомеров.

Кроме метилкетонов в качестве соединений, содержащих активированную метильную группу, в реакции окислительного сочетания были изучены также ацетонитрил и нитрометан. Первый из них в сочетании не участвует, ускоряя главным образом окислительное гидроксилирование [1, 2]. В случае нитрометана были получены продукты его сочетания с пиперидеинами 18,r-2-нитрометилентетрагидропиридины 16,x-2 выходом 40 и 16% соответственно. В спектре 100 продукта 100 протонов диенового фрагмента. При этом протон нитрометиленовой части резонирует в обычной для ацилметиленовой группировки области (при 100, в то время как, в отличие от соединений 100, сигнал протона при 100, регистрируется не в более сильном, а в более слабом поле по сравнению с его сигналом в спектре исходного 100 (100) в спектре 1000, 1000, в спектре 1000, 1000, в спектре 1000, 1000, по сравнению 1000, по сравнению

с соответствующими сигналами ацетилироизводных Иа,в. Эти факты объяснение, если принять во внимание следующие обстоятельства. Во-первых, выделенный продукт Ие имеет (Е)-конфигурацию, что следует из сопоставления параметров части спектра ЯМР, относящейся к метиленовым группам в положениях 5 и 6 у пары соединений (E)-IIa и IIe (ср. их спектры ЯМР 1 Н и 13 С в табл. 2). Во-вторых. нитрогруппа, по-видимому, не полностью копланарна плоскости диенового фрагмента. Это подтверждается тем, что в спектрах ЯМР ¹Н и ¹³С соединения IIe сигналы протона и углерода нитрометиленовой группы смещены в более сильные поля по сравнению с аналогичными сигналами менее электроноакцепторной ацилметиленовой группы в производном (E)-IIв. Из этого следует, что группа $C_{(3)}$ —Н гетеропикла в (E)-изомере соединения IIе должна испытывать влияние магнитной анизотропии нитрогруппы.

Наиболее вероятный путь окислительных превращений I — II включает, по-видимому, стадии радикального сочетания и гидроксилирования, так как этот вывод подтверждается следующими фактами: добавление щелочи не оказывает влияния на выходы конечных продуктов (что можно было ожидать в случае нуклеофильного характера конденсации); проведение реакции сочетания в присутствии серы заметно ее ингибирует; наконец, в предыдущих наших работах [1, 2] показано, что те же пиперидеины в аналогичных условиях, но в отсутствие метилкетонов, образуют продукт радикального окисления — пиперидин-2-оны. Таким образом, открыта новая реакция конденсации метилкетонов и нитрометана с 4-арилтетрагидропиридинами. Это окислительное взаимодействие происходит региоселективно (по метиленовой группе аллиламинного фрагмента гетероцикла) и стереоселективно с преимущественным образованием (Е)-изомеров 2-ацил- или нитрометилентетрагидропиридинов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры снимали на приборе UR-20 в таблетках КВг. Масс-спектры получены на приборе MX-1303. Спектры ЯМР записаны на приборе Bruker W-80 с рабочей частотой 80 МГц для соединений IIб,д и WM-400 (400 МГц) для остальных соединений в растворе CDCI3, внутренний эталон ТМС. Контроль за ходом реакций и индивидуальностью соединений осуществляли методом ТСХ на пластинках Silufol UV-254, элюент эфир. Разделение и очистку веществ проводили с помощью колоночной хроматографии на силикагеле марки L-60 (40/100). Характеристики и спектры синтезированных соединений приведены в табл. 1 и 2.

Окислительное сочетание тетрагидропиридинов Іа—в с метилкетонами. К раствору 1,7 ммоль тетрагидропиридина Іа—г в 30 мл ацетона при комнатной температуре и интенсивном перемешивании добавляют за 40 мин раствор 1,16 ммоль КМпО4 в 10 мл воды. Смесь перемешивают еще 30 мин, затем осадок МпО2 отделяют и промывают ацетоном (50 мл). Ацетоновые фильтраты объединяют, растворитель отгоняют под вакуумом, остаток экстрагируют хлороформом. Из экстракта колоночной хроматографией (элюент эфир) выделяют продукт (Е)—Па — 2-ацетилметилен-1,2,5,6-тетрагидро-1-метил-4-([2.2] парациклофан-4-ил) пиридин, Пб —2-ацетилметилен-1,2,5,6-тетрагидро-1-этил-4-([2.2] парациклофан-4-ил) пиридин или (Е)- и (Z)-изомеры продукта Пв — 2-ацетилметилен-1,2,5,6-тетрагидро-1-метил-4-фенилпиридина соответственно.

Аналогично из 3,2 ммоль тетрагидропиридина Ів в 30 мл этанола и 3,2 ммоль ацетофенона или 2-ацетилтиофена, используя 4,8 ммоль твердого тонкоизмельченного КМпО4 и перемешивая реакционную массу 1,5 ч, синтезируют продукт ІІг — 2-бензоилметилен-1,2,5,6-тетрагидро-1-фенил-4-фенилпиридин или ІІд — 2-(2-тиенилкарбонил) метилен-1,2,5,6-тетрагидро-4-фенилпиридин соответственно. Хроматографически сначала выделяют непрореагировавшие исходные вещества (63...71% от взятого количества), затем продукт ІІг или ІІд.

2-Метиленпроизводные На,г получены в виде желтых кристаллов; соединение Пд — желтокоричневый порошок; соединения Пб,в — желтые густые масла. Сочетание пиперидеинов Ів,г с нитрометаном. К раствору 4,5 г (26 ммоль) пиперидеина Ів в смеси 20 мл хлороформа и 6,3 г (0,1 моль) нитрометана добавляют небольшими порциями за 0,5 ч при комнатной температуре 16 г (0,104 моль) тонкоизмельченного КМпО4. Смесь перемешивают 2 ч (до исчезновения пятна исходного вещества Ів при ТСХ), затем обрабатывают как при получении соединений Па—д. Выделяют 2,36 г продукта Пе—1,2,5,6-тетрагидро-1-метил-2-нитрометилен-4-фенилпиридина в виде желтого густого масла. Аналогично из 2,5 г (10 ммоль) 4-фенил-1-этилтетрагидропиридина Іг получают 0,36 г продукта Пж— 2-нитрометилен-4-фенил-2-этилтетрагидропиридина в виде желтого масла.

Ароматизация соединения IIa. Смесь $150 \,\mathrm{mr}$ (0,45 ммоль) 2-ацетилметилентетрагидропиридина Ia и 33 мг (2,5 г-атом) серы выдерживают в течение 0,5 ч при $140 \,\mathrm{^{\circ}C}$, далее охлаждают и экстрагируют эфиром. Экстракт очищают на колонке с SiO_2 , элюируя эфиром. Получают 42,9мг продукта III — 2-ацетилметил-4-([2.2] парациклофан-4-ил) пиридина в виде желтых кристаллов.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (проект № 96-03-33432a).

СПИСОК ЛИТЕРАТУРЫ

- Солдатенков А. Т., Бекро И. А., Мамырбекова Ж. А., Солдатова С. А., Чернышев А. И. // XГС. — 1997. —№ 5. — С. 653.
- Солдатенков А. Т., Бекро И. А., Мамырбекова Ж. А., Солдатова С. А., Темесген А., Сергеева Н. Д., Кулешова Л. Н., Хрусталев В. Н. // ХГС. — 1996. — № 2. — С. 222.
- Солдатенков А. Т., Мамырбекова Ж. А., Бекро И. А., Солдатова С. А. // ХГС. 1996. № 4. — С. 566.
- Гетероциклические соединения / Под ред. Р. Эльдерфилда. М.: ИЛ, 1954. Т. 3. С. 146.
- 5. Слабко О. Ю., Меженная Л. В., Каминский В. А., Тиличенко М. Н. // XГС. 1990. № 6. С. 779.
- 6. Кулешова Л. Н., Хрусталев В. Н., Стручков Ю. Т., Солдатенков А. Т., Мамырбекова Ж. А., Бекро И. А., Солдатова С. А., Гурышев В. Н. // Ж. структур. химии. — 1996. — Т. 37. — С. 957.

Российский университет дружбы народов, Москва 117198 Поступило в редакцию 26.07.96 После переработки 06.11.96