В. Н. Нестеров, Л. А. Родиновская, А. М. Шестопалов, Ю. Т. Стручков

ИССЛЕДОВАНИЕ СТЕРЕОХИМИИ [3.3]-СИГМАТРОПНОЙ ПЕРЕГРУППИРОВКИ *sp*-ИЗОМЕРА 2-АЛЛИЛТИО-5-АЦЕТИЛ-6-МЕТИЛ-4-(2-НИТРОФЕНИЛ)-3-ЦИАНО-1,4-ДИГИДРОПИРИДИНА

Реакция син-перипланарного конформера (sp-изомер) 5-ацетил-6-метил-4-(2-нитрофенил)-3-циано-1,4-дигидропиридин-2-тиолата морфолиния с бромистым аллилом протекает регио- и стереоселективно с образованием sp-изомера, замещенного 2-аллилтио-1,4-дигидропиридина. [3.3]-Сигматропная перегруппировка последнего приводит к sp-изомеру 3,4-mpahc-3-аллил-5-ацетил-6-метил-4-(2-нитрофенил)-3-циано-1,2,3,4-тетрагидропиридин-2(1H)-тиона.

Ранее была установлена региоселективность [3.3]-сигматропной перегруппировки замещенных 2-аллилтио(селено)-4-арил-3-циано-1,4-дигидропиридинов [1—4]. При нагревании в этаноле или без растворителя замещенные 2-аллилтио(селено)-4-арил-3-циано-1,4-дигидропиридины перегруппировывались в 3-аллил-4-арил-3-циано-1,2,3,4-тетрагидропиридин-2(1H)-тионы [1, 2]. Физико-химическими методами установлено, что [3.3]-сигматропная перегруппировка протекает стереоселективно с образованием *мранс*-3-аллил-4-арил-3-циано-1,2,3,4-тетрагидропиридин-2(1H)-тионов [3, 4].

В настоящем сообщении мы исследовали атропоизомерию исходных соединений и конечного продукта [3.3]-сигматропной перегруппировки 2-аллилтио-5-ацетил-6-метил-4-(2-нитрофенил)-3-циано-1,4-дигидропиридина.

Взаимодействием пиридин-2-тиолата морфолиния (I) с бромистым аллилом (II) в этаноле при 20 °C с выходом 87% получен 2-аллилтио-пиридин (III). Как было показано ранее, региоселективность реакций алкилирования солей 1,4-дигидропиридин-2-тиолатов определяется формально отрицательно заряженной серой [5, 6], что способствует протеканию реакции по механизму S_{N2} и образованию алкилтиопиридинов.

Соединение III при непродолжительном кипячении в этаноле претерпевает [3.3]-сигматропную перегруппировку, приводящую к замещенному 3-аллилтетрагидропиридин-2(1H)-тиолату (IV).

Молекулы исходной соли I находятся в син-перипланарной конформации (sp-изомер), устойчивость которой обусловлена внутримолекулярными стерическими взаимодействиями объемных заместителей, а также внутримолекулярным невалентным контактом C(4)—H(4)... $O(NO_2)$, который был обнаружен при рентгеноструктурном исследовании этого соединения [5] и изучен другими физико-химическими методами [7]. При реакции алкилирования атропоизомерия не изменяется: замещенный 2-аллилтиопиридин III остается в sp-изомерной форме. Не изменяется атропоизомерия и в результате [3.3]-сигматропной перегруппировки, так как соединение IV также является sp-изомером.

Данные физико-химического анализа подтверждают строение полученных продуктов III и IV. В ИК спектрах этих соединений присутствуют полосы поглощения группы NO₂ (1352...1358 и 1526...1530 см⁻¹), а также валентных и деформационных колебаний группы NH (см. экспериментальную часть). Вследствие понижения электронного сопряжения полоса поглощения группы CN тетрагидропиридинтиона IV малоинтенсивна (2250cm⁻¹) по сравнению с частотой группы CN дигидропиридина III (2206 см^{-1}) . В этом состоит характерная особенность ИК спектров продуктов [3.3]-сигматронной перегруппировки замещенных 3-цианопиридинов [1, 2, 7]. В спектрах ЯМР ¹Н сигнал протона 4-Н претерпевает парамагнитный сдвиг на 0,4...1,0 м. д. по сравнению с тетрагидропиридинами, содержащими в положении 4 заместитель C₆H₅, n-ClC₆H₄ или n-NO₂C₆H₄, не образующий внутримолекулярной водородной связи [8]. Протоны заместителя 2 - NO₂C₆H₄ проявляются в виде характерного набора сигналов (см. экспериментальную часть). Однако по данным спектроскопии соединений III и IV трудно однозначно установить их атропоизомерию и решить вопрос о стереоселективности [3.3]-сигматропной перегруппировки. В связи с этим для более глубокого изучения строения продуктов III и IV был привлечен метод РСА.

На рис. 1 показан общий вид молекулы соединения III с длинами связей, валентные углы приведены в табл. 1. В этой молекуле 1,4-дигидропиридиновый гетероцикл имеет конформацию ванны, атомы $N_{(1)}$ и $C_{(4)}$ выходят из плоскости остальных атомов («дна ванны», плоского в пределах \pm 0,012 Å) на 0,097 и 0,305 Å соответственно, что отвечает перегибу цикла по линиям $C_{(2)}...C_{(6)}$ на 8,5°, $C_{(3)}...C_{(5)}$ на 20,3°, $N_{(1)}...C_{(4)}$ на 18,3°, а сумма торсионных углов в цикле (84,8°) несколько превышает соответствующее значение в нифедипине [9]. Аналогичная конформация гетероцикла установлена нами ранее [5] для молекулы соединения I, а также 2-аллилтио-6-метил-4-фенил-3-циано-5-этоксикарбонил-1,4-дигидропиридина (V) [3, 4].

Псевдоаксиальный о-нитрофенильный заместитель повернут относительно «дна ванны» гетероцикла на 91.1° (в соединении I — на 75.6°), что вызвано вынужденными укороченными невалентными внутримолекулярными контактами $N_{(3)}...C_{(4)}$ 3,088(6), $C_{(3)}...C_{(15)}$ 2,969(6), $C_{(5)}...C_{(15)}$ $3,132(6), C_{(8)}...C_{(10)}$ $3,210(6), C_{(10)}...C_{(16)}$ 3,163(6) Å (сумма ван-дер-ваальсовых радиусов N и C 3,25 Å, удвоенный ван-дер-ваальсовый радиус атома углерода 3,40 Å [10]), а разворот группы NO2 относительно бензольного цикла равен 40.7° (в соединении I — 31.6°). Как и в молекуле I, в молекуле III о-нитрофенильный заместитель ориентирован син-перипланарно относи-(торсионные углы тельно атома $H_{(4)}$ $H_{(4)}C_{(4)}C_{(10)}C_{(11)}$ $C_{(4)}C_{(10)}C_{(11)}N_{(3)}$ -3,0°, $C_{(10)}C_{(11)}N_{(3)}O_{(1)}$ -40,8°), что приводит к укороченному невалентному контакту О(1)...С(4) 2,967(5) Å (сумма ван-дер-ваальсовых радиусов 3,22 Å [10]), который может указывать на существование водородной связи С-Н...О [11, 12] с параметрами

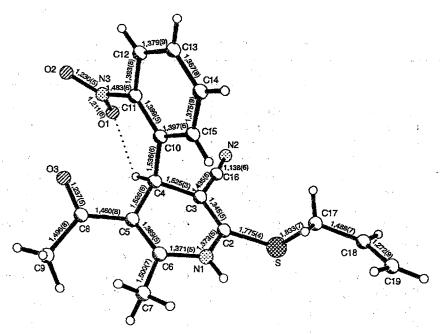
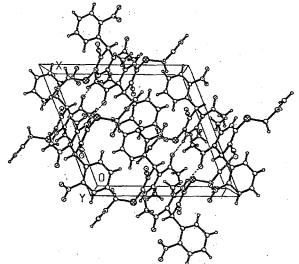



Рис. 1. Общий вид молекулы и длины связей соединения Ш

 $[C_{(4)}-H_{(4)}\ 0,97(6),\ H_{(4)}...O_{(1)}\ 2,27(3)$ Å, угол $C_{(4)}-H_{(4)}...O_{(1)}\ 128(2)^\circ]$, совпадающими с установленными в молекуле І. Водородная связь препятствует вращению арильного заместителя вокруг связи $C_{(4)}-C_{(10)}$ и способствует сохранению конформации молекулы в целом в химических реакциях (например, при получении соединения III из I).

В приблизительно плоском фрагменте $C_{(6)} = C_{(5)} - C_{(8)} = O_{(3)}$ можно предположить сопряжение, которое приводит к некоторому перераспределению длин связей (удлинению двойных и укорочению одинарных) по сравнению со стандартными значениями [13] и сопоставимыми с установленными в структурах I и V.

 $Puc.\ 2.\ Проекция\ ac$ кристаллической структуры соединения III (пунктирными линиями показаны межмолекулярные водородные связи N—H...O)

 $\label{eq:Tadinupal} {\tt Tadinupal}$ Валентные углы ω (град.) в молекуле III

Угол	ω	Угол	ω
C(2)—S—C(17)	100,3(2)	N(1)—C(6)—C(7)	112,6(3)
$C_{(2)}-D-C_{(1)}$ $C_{(2)}-N_{(1)}-C_{(6)}$	122,6(3)	C(5)—C(6)—C(7)	127,2(4)
$O_{(1)}$ — $N_{(3)}$ — $O_{(2)}$	124,2(4)	O(3)—C(8)—C(5)	117,5(4)
$O_{(1)}$ — $N_{(3)}$ — $C_{(11)}$	118,7(3)	O(3)—C(8)—C(9)	118,1(4)
O(2)—N(3)—C(11)	117,1(4)	$C_{(5)}-C_{(8)}-C_{(9)}$	124,2(4)
S—C ₍₂₎ —N ₍₁₎	115,8(2)	$C_{(4)}-C_{(10)}-C_{(11)}$	126,2(4)
$S-C_{(2)}-C_{(3)}$	124,0(3)	C(4)—C(10)—C(15)	118,3(3)
$N_{(1)}-C_{(2)}-C_{(3)}$	120,1(3)	$C(11)-C_{(10)}-C_{(15)}$	115,5(4)
$C_{(2)}-C_{(3)}-C_{(4)}$	121,5(3)	N(3)—C(11)—C(10)	121,8(4)
$C_{(2)}$ — $C_{(3)}$ — $C_{(16)}$	121,9(3)	$N_{(3)}-C_{(11)}-C_{(12)}$	115,4(4)
$C_{(4)}-C_{(3)}-C_{(16)}$	116,4(3)	$C_{(10)}-C_{(11)}-C_{(12)}$	122,8(4)
C ₍₃₎ —C ₍₄₎ —C ₍₅₎	109,8(3)	$C(11)-C_{(12)}-C_{(13)}$	119,1(5)
$C_{(3)}$ — $C_{(4)}$ — $C_{(10)}$	109,6(3)	$C_{(12)}-C_{(13)}-C_{(14)}$	120,0(7)
$C_{(5)}-C_{(4)}-C_{(10)}$	111,3(3)	C ₍₁₃₎ —C ₍₁₄₎ —C ₍₁₅₎	120,3(5)
$C_{(4)}$ — $C_{(5)}$ — $C_{(6)}$	120,1(3)	C(10)—C(15)—C(14)	122,3(4)
$C_{(4)}-C_{(5)}-C_{(8)}$	113,8(3)	$N_{(2)}-C_{(16)}-C_{(3)}$	175,0(4)
C ₍₆₎ —C ₍₅₎ —C ₍₈₎	126,0(4)	S—C(17)—C(18)	109,4(5)
N ₍₁₎ —C ₍₆₎ —C ₍₅₎	120,2(4)	C(17)—C(18)—C(19)	126,4(7)

 ${\tt Таблица~2}$ Валентные углы ω (град.) в молекуле IV

Угол	ω	Угол	ω
$C_{(2)}-N_{(1)}-C_{(6)}$	127,1(5)	N(1)—C(6)—C(7)	112,6(5)
$O_{(1)}$ — $N_{(3)}$ — $O_{(2)}$	124,1(6)	$C_{(5)}-C_{(6)}-C_{(7)}$	127,7(5)
$O_{(1)}$ — $N_{(3)}$ — $C_{(11)}$	118,5(7)	O(3)—C(8)—C(5)	117,8(5)
$O_{(2)}$ — $N_{(3)}$ — $C_{(11)}$	117,4(5)	O(3)—C(8)—C(9)	119,9(6)
S—C ₍₂₎ —N ₍₁₎	122,3(4)	$C_{(5)}-C_{(8)}-C_{(9)}$	122,2(6)
$S-C_{(2)}-C_{(3)}$	122,9(3)	$C_{(4)}-C_{(10)}-C_{(11)}$	124,8(4)
$N_{(1)}$ — $C_{(2)}$ — $C_{(3)}$	114,6(4)	$C(4)-C_{(10)}-C_{(15)}$	120,2(5)
$C_{(2)}-C_{(3)}-C_{(4)}$	112,7(3)	$C_{(11)}-C_{(10)}-C_{(15)}$	114,9(4)
$C_{(2)}$ — $C_{(3)}$ — $C_{(16)}$	110,4(4)	N(3)—C(11)—C(10)	121,7(5)
$C_{(4)}$ — $C_{(3)}$ — $C_{(16)}$	108,9(4)	N(3)—C(11)—C(12)	115,1(6)
$C_{(2)}$ — $C_{(3)}$ — $C_{(17)}$	105,8(4)	$C_{(10)}-C_{(11)}-C_{(12)}$	123,1(5)
$C_{(4)}$ — $C_{(3)}$ — $C_{(17)}$	109,4(4)	$C_{(11)}-C_{(12)}-C_{(13)}$	119,7(7)
$C_{(16)}$ — $C_{(3)}$ — $C_{(17)}$	109,6(4)	$C_{(12)}$ — $C_{(13)}$ — $C_{(14)}$	119,7(6)
$C_{(3)}-C_{(4)}-C_{(5)}$	110,2(4)	$C_{(13)}$ — $C_{(14)}$ — $C_{(15)}$	120,7(6)
$C_{(3)}$ — $C_{(4)}$ — $C_{(10)}$	113,9(4)	$C(10)-C_{(15)}-C_{(14)}$	121,8(6)
$C_{(5)}$ — $C_{(4)}$ — $C_{(10)}$	111,8(3)	$N_{(2)}-C_{(16)}-C_{(3)}$	174,6(6)
C ₍₄₎ —C ₍₅₎ —C ₍₆₎	119,3(4)	$C_{(3)}-C_{(17)}-C_{(18)}$	116,3(7)
$C_{(4)}$ — $C_{(5)}$ — $C_{(8)}$	114,0(5)	$C_{(3)}-C_{(17)}-C_{(18a)}$	121,6(8)
$C_{(6)}$ — $C_{(5)}$ — $C_{(8)}$	126,6(4)	C(17)—C(18)—C(19)	133,3(14)
N ₍₁₎ —C ₍₆₎ —C ₍₅₎	119,6(4)	$C_{(17)}-C_{(18a)}-C_{(19a)}$	125,7(23)

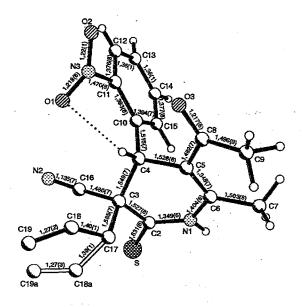
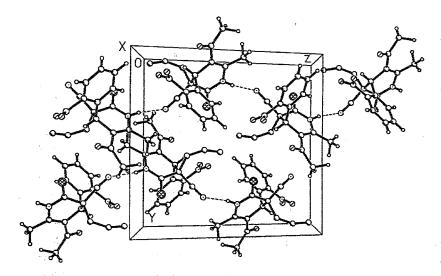



Рис. 3. Общий вид молекулы и длины связей соединения IV

Следует отметить, что в молекуле III карбонильная группа $C_{(8)} = O_{(3)}$ имеет *транс*-ориентацию относительно двойной связи $C_{(5)} = C_{(6)}$ (торсионный угол $C_{(6)}C_{(5)}C_{(8)}O_{(3)}$ 164,1°), в то время как в молекуле I она *цис*-ориентирована, что приводит к контакту с соседней группой CH₃ с образованием водородной связи $C_{(7)}$ — $H_{...}O_{(3)}$.

В соединении III конформация аллильного заместителя (торсионные углы $C_{(2)}SC(_{(17)}C_{(18)}$ $169,2^{\circ}$ и $SC_{(17)}C_{(18)}C_{(19)}$ $-121,6^{\circ}$) исключает возможность существования в кристалле контактов (как внутри-, так и межмолекулярных) между атомами $C_{(19)}$ и $C_{(3)}$ на расстоянии 4,0 Å (внутримолекулярное расстояние $C_{(3)}...C_{(19)}$ 6,111(7) Å, межмолекулярное -5,708(7) Å), а следовательно, и возможность протекания твердофазной аллильной перегруппировки, которую мы наблюдали для соединения V.

 $\it Puc.~4.~$ Проекция $\it bc$ кристаллической структуры соединения IV (пунктирными линиями показаны межмолекулярные водородные связи N—H...N)

В кристалле межмолекулярные водородные связи $N_{(1)}$ — $H_{(1)}$... $O_{(3)}$ (0.5+x, -0.5-y, 0.5+z), $[N_{(1)}$... $O_{(3)}$ 2.813(5), $N_{(1)}$ — $H_{(1)}$ 0.85(4), $H_{(1)}$... $O_{(3)}$ 1.99(4) Å, угол $N_{(1)}$ — $H_{(1)}$ $O_{(3)}$ 163(2)°] объединяют молекулы III в цепочки вдоль направления (101) (рис. 2).

Атом	x	у	z
		. *	
S	5921(1)	402(1)	2483(1)
O ₍₁₎	825(3)	-132(3)	-1653(3)
O ₍₂₎	-423(3)	1486(4)	-2053(3)
O ₍₃₎	2137(3)	-2452(3)	-1727(2)
N ₍₁₎	5354(3)	-1568(3)	1467(3)
N(2)	3072(4)	1800(3)	580(4)
N(3)	406(3)	-955(4)	-1407(3)
C ₍₂₎	4960(3)	-497(3)	1470(3)
C ₍₃₎	3914(3)	-180(3)	721 (3)
C ₍₄₎	3083(3)	-1015(3)	-69(3)
C ₍₅₎	3779(3)	-2026(3)	-194(3)
C ₍₆₎	4826(3)	-2297(3)	623(3)
C ₍₇₎	5508(5)	-3360(4).	740(5)
C ₍₈₎	3186(4)	-2663(3)	-1197(3)
C ₍₉₎	3783(5)	-3503(5)	-1656(5)
C(10)	2117(3)	-1353(3)	353(3)
C(11)	904(4)	-1351(4)	-254(3)
C ₍₁₂₎	88(5)	-1718(5)	171 (5)
C ₍₁₃₎	477 (5)	-2084(5)	1243(5)
C(14)	1656(6)	-2096(5)	1866(4)
C(15)	2458(5)	-1750(4)	1427(4)
C(16)	3483(4)	937(4)	678(3)
C(17)	5689(6)	-106(6)	3705(4)
C(18)	6590(5)	392(6)	4705(4)
C(19)	7329(8)	-138(8)	5506(6)
H ₍₁₎	599(4)	-176(3)	199(3)
H(4)	273(3)	-68(3)	-79(3)
H _(7a)	600(5)	-350(5)	148(5)
H _(7b)	505(5)	-401 (5)	51 (4)
H(7c)	599(5)	-337(5)	. 35(5)
H(9a)	331 (5)	-357(5)	-242(5)
H(9b)	463(5)	-334(4)	-149(4)
H(9c)	376(4)	-416(4)	-129(4)
H ₍₁₂₎	-68(4)	-168(4)	-29(4)
H ₍₁₃₎	-9(5)	-231(5)	151 (4)
H ₍₁₄₎	192(4)	-234(4)	259(4)
H ₍₁₅₎	324(4)	-183(3)	184(3)
H _(17a)	573(5)	-91 (5)	374(4)
H(17b)	491 (5)	8(4)	363(4)
H ₍₁₈₎	663(6)	131(7)	480(6)
H _(19a)	720(7)	-95(7)	534(6)
H _(19b)	792(6)	17(6)	616(6)

Таблица 4 $\mbox{Координаты атомов ($\times 10^4$, для H $--- \times 10^3$) в молекуле IV }$

Атом	. x	у	, z
	2007(2)	21.46(2)	8677(1)
S	3997 (2) 7719 (6)	2146(2) 3658(5)	6254(3)
O(1)		3716(4)	6771 (4)
O ₍₂₎	9949(6)		
O(3)	9026(4)	5204(3)	8396(3)
N ₍₁₎	5852(4)	3541(3)	9582(3)
N(2)	5122(5)	1906(4)	6483(3)
N(3)	8857(7)	3431(4)	6846(4)
C(2)	5175(5)	3015(4)	8735(4)
C ₍₃₎	5505(5)	3369(4)	7819(3)
C(4)	7019(5)	3750(4)	8088(3)
C(5)	7397(5)	4482(4)	8985(3)
C(6)	6860(5)	4313(4)	9711(3)
C ₍₇₎	7234(8)	4849(6)	10707(5)
C(8)	8386(5)	5310(4)	8965(4)
C(9)	8555(9)	6279(5)	9574(6)
C(10)	8067(5)	2883(3)	8245(3)
C(11)	8936(5)	2749(4)	7691 (4)
C(12)	9902(7)	1967(5)	7873(5)
C ₍₁₃₎	10018(7)	1274(5)	8609(5)
C(14)	9200(7)	1370(5)	9179(5)
C(15)	8252(6)	2164(4).	9011(4)
C(16)	5256(5)	2516(4)	7083(4)
C(17)	4475(7)	4297(5)	7350(4)
C(18)	4407(12)	4631 (8)	6402(8)
C(18a)	3128(12)	4123(13)	6707(15)
C ₍₁₉₎	3509(20)	4524(19)	5535(11)
C(19a)	2701 (39)	4211 (29)	5758(12)
H ₍₁₎	567(4)	334(3)	1010(3)
H ₍₄₎	703(4)	415(3)	756(3)
H _(7a)	827(7)	509(5)	1103(4)
H(7b)	686(9)	561 (7)	1064(6)
H(7c)	697(5)	452(4)	1106(4)
H _(9a)	900(7)	677(6)	937(5)
H(9b)	776(8)	649(6)	972(5)
H(9c)	913(6)	613(5)	1041 (5)
H ₍₁₂₎	1038(5)	196(4)	750(4)
H ₍₁₃₎	1059(5)	74(4)	869(4)
H ₍₁₄₎	926(4)	88(4)	974(3)
H(15)	768(5)	223(4)	943(3)

Рентгеноструктурным исследованием изучено также строение соединения IV. На рис. 3 показан общий вид его молекулы с длинами связей, валентные углы приведены в табл. 2.

Тетрагидропиридиновый гетероцикл в молекуле IV имеет конформацию искаженного полукресла: атомы C(3) и C(4) отклоняются в разные стороны

на 0,294 и -0,326 Å соответственно от плоскости, проведенной через остальные атомы цикла $C_{(2)}$, $N_{(1)}$, $C_{(6)}$, $C_{(5)}$ (отклонение этих атомов от средней плоскости $\pm 0,030$ Å). Аналогичная конформация цикла установлена нами ранее [3, 4] в 3-аллил-6-метил-4-фенил-3-циано-5-этоксикарбонил-1,2,3,4-тетрагидропиридин-2-тионе (VI).

о-Нитрофенильный заместитель в молекуле IV повернут относительно плоской части гетероцикла на 95.2° (торсионный угол $C_{(5)}C_{(4)}C_{(10)}C_{(15)}$ равен 63,5°), что связано с наличием вынужденных укороченных внутримолекулярных контактов $N_{(3)}...C_{(4)}$ $C_{(2)}...C_{(10)}$ 3,287(8), $C_{(2)}...C_{(15)}$ 3,241(8), $C_{(3)}...C_{(15)}$ 3,155(8), $C_{(5)}...C_{(15)}$ $3,112(8), C_{(6)}...C_{(10)}$ $3,332(8), C_{(8)}...C_{(10)}$ 3,274(8) Å (сумма ван-дер-ваальсовых радиусов N и C 3,25 Å, удвоенный ван-дер-ваальсовый радиус атома углерода 3,40 Å [10]). Разворот группы NO2 относительно бензольного цикла равен 44,1°. Как и в рассмотренных выше молекулах, в IV сохраняется, с одной стороны, син-перипланарная ориентация о-нитрофенильного заместителя относительно атома $H_{(4)}$ (торсионные углы $H_{(4)}C_{(4)}C_{(10)}C_{(11)}$ 1,9°, $C_{(4)}C_{(10)}C_{(11)}N_{(3)}$ –3,2°, $C_{(10)}C_{(11)}N_{(3)}O_{(1)}$ –43,8°), а с другой — водородная связь с параметрами $C_{(4)}...O_{(1)}$ 2,943(8), $C_{(4)}$ — $H_{(4)}$ 0,92(4), $H_{(4)}...O_{(1)}$ 2,30(4) Å, yron $C_{(4)}$ — $H_{(4)}...O_{(1)}$ 127(3)°.

Аллильный заместитель находится в *транс*-положении относительно арильного заместителя (торсионный угол $C_{(17)}C_{(3)}C_{(4)}C_{(10)}$ равен $-162,5^{\circ}$). Таким образом, при перегруппировке соединения III атака атома $C_{(3)}$ терминальным атомом $C_{(19)}$ происходит только с противоположной стороны с образованием одного изомера продукта IV.

Следует отметить, что в результате превращения III — IV не изменяется и ориентация фрагмента $C_{(6)}=C_{(5)}-C_{(8)}=O_{(3)}$ (торсионный угол $C_{(6)}C_{(5)}C_{(8)}O_{(3)}$ равен $162,1^{\circ}$).

В молекуле IV длина связи $C_{(2)} = S$ 1,636(6) Å существенно меньше значений сопряженной кратной связи C=S 1,660(4) и 1,666(5) Å, установленных нами в замещенных пиридин-2(1H)-тионах [14, 15], и совпадает с установленной в тионе VI (1,626(3) Å).

В кристалле соединения IV межмолекулярные водородные связи $N_{(1)}$ — $H_{(1)}$... $N_{(2)}$ (x, 0,5 – y, 0,5 + z) [$N_{(1)}$... $N_{(2)}$ 3,105(7), $N_{(1)}$ — $H_{(1)}$ 0,87(5), $H_{(1)}$... $N_{(2)}$ 2,25(5) Å, угол $N_{(1)}$ — $H_{(1)}$... $N_{(2)}$ 170,(3)°] объединяют его молекулы в цепочки, параллельные плоскости bc (рис. 4).

На основании полученных результатов отметим, что [3.3]-сигматропная перегруппировка протекает только со стороны «дна ванны» 1,4-дигидропиридинового цикла, например как экзопроцесс через интермедиат (VII).

Вероятно, в переходном состоянии VII сохраняется син-перипланарное расположение псевдоаксиального заместителя 2-NO₂C₆H₄, что способствует образованию *транс*-изомера. Таким образом, регио- и стереоселективность этой реакции определяются конформацией 1,4-дигидропиридинового цикла и стерическими эффектами заместителей, связанных с ним.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Рентгеноструктурное исследование соединений III и IV. Кристаллы соединения III (М 355,41) моноклинные, при 20 °C: a=12,235(2), b=12,004(3), c=13,123(4) Å, $\beta=111,86(2)$ °, V=1789(2) Å, $\beta=111,86(2)$ °, $\beta=111,86(2)$

Кристаллы соединения IV (М 355,14) моноклинные, при 20 °C: a = 10,285(2), b = 12,896(3), c = 14,249(4) Å, β = 110,27(2)°, V = 1773(2) ų, d_{выч} = 1,332 г/см³, Z = 4, пространственная группа P2(1)/с.

Параметры ячеек и интенсивности 3652 (2955 для соединения IV) независимых отражений измерены на четырехкружном автоматическом дифрактометре Siemens P3/PC (ℓ MoK α , графитовый монохроматор, ℓ 0/2 ℓ 0-сканирование до ℓ 0 для = 28°). Структуры расшифрованы прямым методом, выявившим все неводородные атомы, и уточнены полноматричным МНК в анизотропном приближении для неводородных атомов по 2407 (2093) отражениям с ℓ 1 3 σ (ℓ 1). В соединении IV атомы C(18) и C(19) разупорядочены по двум положениям, что связано с поворотом вокруг связи C(3)—C(17). Соотношение заселенностей положения C(18), C(19) и C(18a), C(19a), согласно уточнению МНК, равно 0,60 и 0,40 соответственно. Все атомы водорода (кроме связанных с атомами C(18), C(18a), C(19), C(19a) в молекуле IV) объективно выявлены разностным Фурье-синтезом и уточнены изотропно. Окончательные значения факторов расходимости: в соединении III ℓ 1 = 0,058 и ℓ 2 = 0,058; в соединении IV ℓ 3 = 0,074 и ℓ 3 = 0,074. Все расчеты проведены по программе SHELXTL PLUS [16] (версия PC). Координаты атомов даны в табл. 3 и 4 (тепловые параметры атомов можно получить у авторов).

ИК спектры синтезированных соединений записаны на приборе Perkin-Elmer 457 в таблетках КВг. Спектры ПМР получены на спектрометре Bruker WM-250, растворитель ДМСО-D₆. Исходный пиридинтиолат морфолиния I синтезирован по методике работы [5].

2-Аллилтио-5-ацетил-6-метил-4-(o-нитрофенил)-3-циано-1,4-дигидропиридин (III). Перемешивают при 20 °C в течение 8 ч 4,02 г (10 ммоль) соли I и 1,21 г (10 ммоль) бромистого аллила II в 40 мл этанола. После разбавления реакционной смеси 10 мл воды осадок отфильтровывают, промывают водой, этанолом и гексаном. Получают 2,56 г (72%) соединения III. Желтые кристаллы, $T_{\rm IL}$ 170...173 °C (из бензола). ИК спектр: 1358, 1530 (NO2), 1616 (С=O, NH), 2206 (С=N), 3240, 3330, 3448 (NH) см $^{-1}$. Спектр ПМР: 2,12 (1H, c, CH3); 2,37 (1H, c, CH3); 3,65...3,72 (2H, м, CH2S); 5,25 (1H, c, 4-Hhet); 5,06 (1H, д, 3 J = 9,5 Гц, 3 μис-H в CH2); 5,09 (1H, д, 3 J = 18,5 Гц, 3 μранс-H в CH2); 5,3 (1H, м, CH=CH2); 7,41 (1H, 3 μ = 8,2 Γц, 4-Hhr); 7,46 (1H, д, 3 μ = 8,0 Гц, 6-Hhr); 7,66 (1H, 3 μ = 8,0 Гц, 5-Hhr); 7,81 (1H, д, 3 μ = 8,0 Гц, 3-Hhr); 9,57 м. д. (1H, c, NH). Найдено, %: C 60,83, H 4,82, N 11,83, S 9,02. C₁₈H₁₇N₃O₃S. Вычислено, %: C 60,72, H 4,70, N 11,71, S 8,96.

3-Аллил-5-ацетил-6-метил-4-(o-нитрофенил)-3-циано-1,2,3,4- тетрагидропиридин-2(1H)-тион (IV). Кипятят 4 ч 1,78 г (5 ммоль) соединения III в 20 мл этанола. Реакционную смесь выдерживают далее при 20 °C в течение 24 ч. Осадок отфильтровывают, промывают этанолом и гексаном. Получают 1,51 г (85%) продукта IV. Желтые кристаллы, $T_{\rm III}$ 210...213 °C (из этанола). ИК спектр: 1352, 1526 (NO₂), 1636 (δ NH), 2250 (C=N), 3324, 3340 (NH) см⁻¹. Спектр ПМР: 2,19 (3H, c, CH₃); 2,42 (3H, c, CH₃); 2,68 (2H, д, CH₂); 5,20 (1H, c, 4-H_{He}t); 5,23 (1H, д, 3 *J* = 17,0 Гц, 3 *J* = 7,5 Гц, 6-H₂; 5,34 (1H, д, 3 *J* = 9,5 Гц, 3 *J* = 9,5 Гц, 3 *J* = 8,5 Гц, 5-H₂; 8,03 (1H, д, 3 *J* = 8,5 Гц, 5-H₃; 7,56 (1H, т, 3 *J* = 7,2 Гц, 4-H₃г); 7,69 (1H, т, 3 *J* = 8,5 Гц, 5-H₃г); 8,03 (1H, д, 3 *J* = 8,5 Гц, 3-H₃г); 12,5 (1H, c, NH). Найдено, %: C 60,82, H 4,81, N 11, 82, S 9,01. C₁₈H₁₇N₃O₃S. Вычислено, %: C 60,73, H 4,76, N 11,77, S 8,98.

Рентгеноструктурное исследование выполнено при финансовой поддержке Российского фонда фундаментальных исследований (проект N = 94-03-08338).

СПИСОК ЛИТЕРАТУРЫ

- 1. Шестопалов А. М., Гончаренко М. П., Литвинов В. П., Шаранин Ю. А. // ДАН. 1990. Т. 314. С. 1427.
- 2. Литвинов В. П., Шаранин Ю. А., Гончаренко М. П., Дяченко В. Д., Шестопалов А. М. // Изв. АН СССР. Сер. хим. 1991. № 8. С. 1888.
- 3. Нестеров В. Н., Шкловер В. Е., Стручков Ю. Т., Шаранин Ю. А., Гончаренко М. П., Дяченко В. Д. // Изв. АН СССР. Сер. хим. — 1991. — № 2. — С. 521.

- 4. T. P. E. auf der Heyde, Burgi H.-B., Shklover V. E. // Acta crystallogr. 1991. Vol. C47. P. 566.
- Nesterov V. N., Shklover V. E., Struchkov Yu. T., Sharanin Yu. A., Shestopalov A. M., Rodinovskaya L. A. // Acta crystallogr. — 1985. — Vol. C41. — P. 1191.
- Shestopalov A. M., Bogomolova O. P., Rodinovskaya L. A., Litvinov V. P., Bujnicki B., Mikolajczyk M., Nesterov V. N., Struchkov Yu. T. // Heteroatom Chem. — 1993. — Vol. 4. — P. 593.
- 7. Родиновская Л. А., Шестопалов А. М., Литвинов В. П. // ДАН. 1993. Т. 330. № 5. С. 597.
- 8. *Родиновская Л. А.* Дис....д-ра хим. наук. М., 1994.
- 9. Mehdi S., Ravikumar K. // Acta crystallogr.1992. Vol. C48. 1627.
- 10. Bondi A. // J. Phys. Chem. 1966. Vol. 70. P. 3006.
- 11. Berkovitch-Yellin L., Leiserowitz L. // Acta crystallogr. 1984. Vol. B40. P. 159.
- 12. Desiraju G. R. // Accounts Chem. Res. 1991. Vol. 29. P. 290.
- 13. Allen F. H., Kennard O., Watson D. G., Brammer L., Orpen A. G., Taylor R. // J. Chem. Soc. Perkin Trans. II. 1987. P. 1.
- Шаранин Ю. А., Шестопалов А. М., Родиновская Л. А., Нестеров В. Н., Шкловер В. Е., Стручков Ю. Т., Промоненков В. К., Литвинов В. П. // ЖОрХ. — 1986. — Т. 22. — С. 2600.
- 15. Шаранин Ю. А., Промоненков В. К., Шестопалов А. М., Нестеров В. Н., Меленчук С. Н., Шкловер В. Е., Стручков Ю. Т. // ЖОрХ. 1989. Т. 25. С. 622.
- Robinson W., Sheldrick G. M. // Crystallographic computing. Techniques and new technologies. — Oxford: Oxford Univ. Press, 1988. — P. 366.

Поступило в редакцию 22.07.96

Институт элементоорганических соединений им. А. Н. Несмеянова РАН, Москва 117813

Институт органической химии им. Н. Д. Зелинского РАН, Москва 117913