В. Мицкявичюс, З. Береснявичюс

НЕКОТОРЫЕ ПРОИЗВОДНЫЕ 4-(4-АМИНОФЕНИЛАМИНО)-2,2,6,6-ТЕТРАМЕТИЛПИПЕРИДИНА

Алкилированием 4-аминотриацетонамина 4-хлорнитробензолом с последующим гидрированием нитропроизводного синтезирован 4-(4-аминофениламино)-2,2,6,6-тетраметилпиперидин. Осуществлены его реакции с акриловой, метакриловой, итаконовой кислотами. Исследованы превращения N-замещенных аминокислот в производные 2-пирролидинона, дигидропиримидиндиона.

Исследования в области пространственно-затрудненных аминов обусловлены поиском новых светостабилизаторов для полимеров. Отличительными особенностями светостабилизаторов этого класса являются высокая эффективность, отсутствие окраски композиций, а также сочетание светотермостабилизирующих свойств [1—3].

В настоящей работе нами синтезированы некоторые производные 2,2,6,6-тетраметилиперидина, имеющие в молекуле ароматические и гетероциклические фрагменты. Алкилированием 4-амино-2,2,6,6-тетраметилиперидина (I) 4-хлорнитробензолом в диметилсульфоксиде синтезирован 4-(4-нитрофениламино)-2,2,6,6-тетраметилпиперидин (II), который каталитически восстановлен до соответствующего амина III гидразином в этаноле. Реакцией нуклеофильного присоединения 4-(4-аминофениламино)-2,2,6,6-тетраметилпиперидина (III) к акриловой и метакриловой кислотам получены соответствующие N-замещенные β -аминокислоты IV, V, причем N-[4-(2,2,6,6-тетраметил-4-пиперидинил) аминофенил]- α -метил- β -аланин (V) выделен в виде дигидрохлорида.

V, $IX R = CH_3$, для остальных R = H; VII X = S, для остальных X = O

При взаимодействии амина III с итаконовой кислотой наряду с реакцией присоединения происходит циклизация промежуточной 4-замещенной-3-карбоксибутановой кислоты в 1-[4-(2,2,6,6-тетраметил-4-пиперидинил)]-4-

Соеди- нение	Найдено, %			Брутго-формула	Вычислено, %		
	С	Н	N	Бругю-формула	С	Н	N
п	64,73	8,73	15,24	C ₁₅ H ₂₃ N ₃ O ₂	64,91	8,35	15,21
m	72,48	10,41	17,16	C ₁₅ H ₂₅ N ₃	72,78	10,17	17,05
īV	67,51	9,43	12,95	C ₁₈ H ₂₉ N ₃ O ₂	67,64	9,14	13,20
V*	56,16	7,89	10,15	C ₁₉ H ₃₁ N ₃ O ₂ • 2HCl	56,41	8,22	10,43
VI	66,38	8,44	11,53	C20H29N3O3	66,79	8,13	11,74
VII	61,52	7,43	15,35	C ₁₉ H ₂₈ N ₄ OS	61,76	7,82	15,60
vm	66,48	7,94	16,52	C19H28N4O2	66,20	8,19	16,33
IX	66,45	8,03	15,38	C20H30N4O2	66,97	8,43	15,69

^{*} Вычислено, %: Cl 17,53. Найдено, %: Cl 17,31.

карбокси-2-пирролидинон (VI). В спектре ПМР данного соединения кроме сигналов протонов тетраметилпиперидина и ароматического кольца наблюдаются сигналы протонов 4-карбокси-2-пирролидинового цикла при 2,86, 3,0...3,5 и 3,7...4,3 м. д.

Действием тиоцианата калия в уксусной кислоте на N-[4-(2,2,6,6-тетраметил-4-пиперидинил)]- β -аланин (IV) и последующим добавлением разбавленной (1 : 1) соляной кислоты получен гидрохлорид 1-[4-(2,2,6,6-тетраметил-4-пиперидинил) аминофенил)]дигидро-4(1H,3H)-пиримидинон-2-тиона, который ацетатом натрия переведен в основание VII. Таким же способом из β -аланинов IV, V, используя вместо тиоцианата мочевину, получены соответствующие 1-замещенные дигидро-2,4(1H,3H)-пиримидиндионы VIII—IX. Производные 1-замещенного дигидропиримидиндиона образуются в ходе конденсации N-замещенных β -аланинов с тиоцианатами щелочных металлов или мочевиной в кислой среде через промежуточные N-арил-N-карбамоил(тиокарбамоил)- β -аланины, которые в сильнокислой среде, а также под влиянием температуры циклизуются в производные дигидропиримидиндиона [4]. Строение синтезированных соединений подтверждают данные элементного анализа, ПМР и масс-спектров.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ПМР записаны на спектрометре Hitachi R-22 (90 МГц), внутренний стандарт ГМДС, масс-спектры — на спектрометре MCLKB 2091 (70 ЭВ). Контроль за ходом реакций и чистотой полученных соединений осуществлен с помощью ТСХ на пластинках Silufol UV-254, проявление в УФ свете или йодом.

Данные элементного анализа соответствуют рассчитанным.

4-(4-Нитрофениламино)-2,2,6,6-тетраметилпиперидин (II). Нагревают 125 г (0,8 моль) 4-амино-2,2,6,6-тетраметилпиперидина (I), 49 г (0,5 моль) карбоната калия, 78,8 г (0,5 моль) 4-нитрохлорбензола, 3 г CuO и 125 мл диметилсульфоксида 4 ч при 180 °C. Содержимое колбы осторожно разбавляют 250 мл воды, маслообразную массу трижды промывают водой, растворяют в 200 мл горячего этанола и фильтруют. При охлаждении выделившиеся кристаллы отфильтровывают, промывают 100 мл холодного этанола. Выход 91 г (65%). T_{III} 108...109 °C (из этанола). Спектр ПМР (CF3COOH): 1,25 (12H, c, (CH3)4), 1,5...2,5 (5H, м, (CH2)2+CH), 3,8...4,6 (1H, м, CH), 6,3...7,2 (1H, уш. c, NH), 7,45 и 8,08 (4H, 2д, Наром).

4-(4-Аминофениламино)-2,2,6,6-тетраметиллиперидин (III). В трехгорлой колбе с обратным холодильником подогревают 55,5 г (0,2 моль) 4-(4-нитрофениламино)-2,2,6,6-тетраметилпиперидина (II) и 300 мл этанола до кипения, добавляют каталитическое количество никеля Ренея и по каплям 50% гидразин с такой скоростью, чтобы не прекращалось кипение раствора. Восстановление продолжают до исчезновения желтой окраски раствора. Горячий раствор фильтруют, растворитель отгоняют в вакууме, продукт кристаллизуют из этанола. Выход 630

38 г (76,8%). $T_{\rm III}$ 140...141 °C (из этанола). Спектр ПМР (СF₃COOH): 1,20 (12H, c, (CH₃)₄), 1,8...2,3 (4H, м, (CH₂)₂), 3,7...4,3 (1H, м, CH), 6,4...7,0 (1H, уш. c, NH), 7,47 (4H, c, H_{2POM}).

N-[4-(2,2,6,6-Тетраметил-4-пиперидинил) аминофенил]- β -аланин (IV). Кипятят 24,7 г (0,1 моль) 4-(4-аминофениламино)-2,2,6,6-тетраметилпиперидина (III), 7,2 г (0,1 моль) акриловой кислоты и 70 мл воды 2 ч, охлаждают, выделившиеся кристаллы фильтруют, промывают водой. Получают 27,1 г (84,8%) продукта. $T_{\Pi \Pi}$ 287 °C (разл.). Масс-спектр (m/z, %): 320 (M^+ + 1, 12), 319 (M^+ , 100).

Дигидрохлорид N-[4-(2,2,6,6-тетраметил-4-пиперидинил) аминофенил]- α -метил- β -алании (V). Кипятат 24,7 г (0,1 моль) 4-(4-аминофениламино)-2,2,6,6-тетраметилпиперидина (III), 25,8 г (0,3 моль) метакриловой кислоты, 1 г гидрохинона в 50 мл толуола 14 ч, добавляют 150 мл 10% раствора гидроксида натрия, охлаждают, непрореагировавший амин экстрагируют хлороформом (4 × 100 мл). Водный слой подкисляют уксусной кислотой до рН 7 и экстрагируют СНС!3 (4 × 50 мл), экстракт сушат и через него пропускают газообразный НСI до насыщения. Выделившиеся кристаллы промывают хлороформом, ацетоном, эфиром. Выход 8 г (21%). $T_{\rm ПЛ}$ 200 °C (разл.). Спектр ПМР (CF3COOH): 1,02 (3H, д, CH3), 1,22 (12H, с, (CH3)4), 1,7...2,4 (4H, м, (CH2)2), 2,7...3,1 (1H, м, CHCO), 3,3...3,6 (2H, м, NHCH2), 3,8...4,4 (1H, м, CH-пиперидиновое кольцо), 6,5...7,2 (1H, ш. с, NH), 7,2...7,9 (4H, м, Hapom).

1-[4-(2,2,6,6-Тетраметил-4-пиперидинил)]-4-карбокси-2-пирролидинон (VI). Кипятят 2,47 г (0,01 моль) амина Π , 1,43 г (0,11 моль) итаконовой кислоты и 10 мл воды 2 ч, воду отгоняют в вакууме, а остаток заливают ацетоном. При стоянии масса выкристаллизовывается. Получают 3,1 г (86%). $T_{\text{пл}}$ 320 °C (разл.) (из 80% этанола). Спектр ПМР (CF₃COOH):1,27 (12H, c, (CH₃)4), 1,6...2,2 (4H, м, (CH₂)₂-пиперидиновое кольцо), 3,7...4,3 (3H, м, CH-пиперидиновое кольцо + CH₂-пирролидиновое кольцо), 6,3...6,8 (1H, ш. c, NH), 7,31 и 7,53 (4H, 2д, $H_{\text{аром}}$).

1-[4-(2,2,6,6-Тетраметил-4-пиперидинил) аминофенил] дигидро-4(1H,3H)-пиримидинон-2-тион (VII). Кипятят 9,6 г (0,03 моль) N-[4-(2,2,6,6-тетраметил-4-пиперидинил) аминофенил]- β - аланина (IV), 10 г тиоцианата калия и 20 мл уксусной кислоты 8 ч, добавляют 17% соляной кислоты до рН 1 и еще кипятят 10 мин. Содержимое колбы разбавляют 50 мл воды, нейтрализуют ацетатом натрия до рН 7, выделившиеся кристаллы фильтруют, промывают 15 мл колодной воды, сушат. Выход 2,3 г (21,3%). $T_{\rm III}$ 322 °C (разл., из смеси CH₃COOH—H₂O). Спектр ПМР (CF₃COOH): 1,20 (12H, c, (CH₃)₄), 1,7...2,1 (4H, м, (CH₂)₂-пиперидиновое кольцо), 2,73 (2H, т, 5CH₂), 3,2...4,2 (3H, м, 6CH₂-дигидропиримидиновое кольцо и CH-пиперидиновое кольцо), 6,2...6,8 (1H, III. c, NH), 6,8...7,8 (4H, м, H_{addo}).

1-[4-(2,2,6,6-Тетраметил-4-пиперидинил) аминофенил] дигидро-2,4-пиримидиндион (VIII) получают из 9,6 г β -аланина IV аналогично соединению VII, вместо тиоцианата калия применяя 9 г (0,03 моль) мочевины. Выход 2,1 г (20,3%). $T_{\Pi\Pi} > 350$ °C (из уксусной кислоты).

5-Метил-1-[4-(2,2,6,6-тетраметил-4-пиперидинил) аминофенил] дигидро-2,4-(1H,3H) -пиримидиндион (IX). Кипятят 3,7 г (0,01 моль) дигидрохлорида N-[4-(2,2,6,6-тетраметил-4-пиперидинил) аминофенил]- α -метил- β -аланина (V), 1,8 г (0,03 моль) мочевины и 20 мл уксусной кислоты в течение 10 ч, добавляют 17% раствор соляной кислоты до рН 1 и кипятят еще 10 мин. Растворители отгоняют на вакуумном ротационном испарителе, остаток растворяют в минимальном количестве воды, нейтрализуют до рН 7. Выделившийся осадок продукта фильтруют, промывают холодной водой (10 мл), этанолом. Выход 2,5 г (69,8%). $T_{\rm пл} > 350$ °C (из уксусной кислоты). Спектр ПМР (CF₃COOH): 1,07 (3H, д, CH₃), 1,7...2,3 (4H, м, (CH₂)₂), 2,7...3,0 (1H, м, 5-CH), 3,5...3,8 (2H, м, 6-CH₂), 3,8...4,1 (1H, м, CH-пиперидиновое кольцо), 6,4...6,8 (1H, п. с, NH), 7,3...7,6 (4H, м, H_{apom}). Масс-спектр (m/z, %): 359 (M^+ , 20,5), 358 (M^+ -1,84).

СПИСОК ЛИТЕРАТУРЫ

- 1. Pat. 2642446 Ger. / Oertel H., Uhrhan P. // C. A. 1978. Vol. 89. 431252.
- 2. Pat. 3408948 Ger. /Avar L. // C. A. 1985. Vol. 102. 113303.
- 3. Pat. 58120646 Japan / Sumitomo chemical Co, Ltd. // C. A. 1984. Vol. 100. 52565.
- 4. Мицкявичюс В. Ю., Балтрушис Р. С. // ХГС. 1992. № 10. С. 1391.