И. И. Грандберг, Н. Л. Нам, В. И. Сорокин

НОВЫЙ МЕТОД СУЛЬФИРОВАНИЯ ПИРАЗОЛОВ

Найдено, что пиразолы легко сульфируются концентрированной серной кислотой в уксусном ангидриде в положение 4.

Ранее в работе [1] нами было показано, что пиразолы со свободным положением 4 ядра можно ацилировать в положение 4 при кипячении с ангидридами или хлорангидридами кислот и каталитическом действии концентрированной серной кислоты (0,2 моля на моль пиразола). Воспроизведя эту реакцию с 1-фенил-3,5-диметилпиразолом (Ів) и уксусным ангидридом, мы случайно задержали фазу нагревания на час и заметили выпадение осадка, который сначала приняли за сульфат пиразола. Однако поскольку, растворяясь в воде, он не выделяет пиразола при подщелачивании, очевидно, что осадок является сульфокислотой, а вопрос о месте вхождения сульфогруппы легко был решен анализом спектра ПМР. В нем отсутствовал сигнал протона в положении 4 пиразольного ядра около 6 м. д. [2] (табл. 2). Мультиплет ароматических протонов интенсивностью в 5 протонов был характерен для монозамещенного фенила, а не 1,4-дизамещенного (см. табл. 2). Кроме того, растворимость и константы полученной 1-фенил-3,5-диметилпиразолсульфокислоты Пв не совпадали с таковыми для известного 1-(4-сульфофенил)-3,5-диметилпиразола [3]. Косвенным подтверждением вступления сульфогруппы именно в пиразольное ядро являлось и легкое вхождение сульфогруппы в молекулу 1-п-нитрофенил-3,5диметилпиразола (Iж), так как в этом случае сульфирование в фенильное ядро происходить не могло.

Реакция легко проходила для любых пиразолов, кроме 1,3,5-трифенилпиразола и 3-метил-5-этоксипиразола. В этих случаях осадок сульфокислоты не выпадал. Однако, с нашей точки зрения, это связано просто с хорошей растворимостью соответствующих сульфокислот в реакционной смеси. В случае 3,5-дифенилпиразола выпавший осадок оказался сульфатом 3,5-дифенилпиразола с $T_{\rm пл}$ 225 °C, регенерирующим 3,5-дифенилпиразол после обработки аммиаком. Даже длительное (6 ч) нагревание при 140 °C не приводило к сульфированию. Роль уксусного ангидрида в этой реакции, очевидно, сводится к удалению выделяющейся при сульфировании воды. Для уверенности в протекании реакции нами рекомендовано в общей методике кратковременное нагревание, однако при необходимости им можно пренебречь.

Найденный метод имеет заметные преимущества перед хорошо известными методиками, предлагающими многочасовое нагревание пиразолов в олеуме при температуре выше 100 °C [4, 5, 6] с последующим сложным выделением свободной сульфокислоты.

Табличца 1

Выходы и константы сульфокислот пиразольного ряда

Соеди- нение	R ¹	R ³	R ⁵	Брутто- формула	<u>Найнено. %</u> Вычислено, %		<i>Т</i> пл, °С	ИК спектр,	УФ спектр, λ _{max} , нм	Выход, %
нение					С	Н	• • • • • • • • • • • • • • • • • • • •	см ⁻¹	(lg ε)	
I Įa	н	CH ₃	CH ₃	C ₅ H ₉ N ₂ O ₃ S	33.72 34,09	5.09 4,55	342344	1563	214 (4,06)	60,2
Пр	CH ₃	CH ₃	CH ₃	$C_6H_{11}N_2O_3S$	37.24 37,89	5,53 5,26	326328	1565	216 (4,04)	66
IIB	C ₆ H ₅	СН3	CH ₃	C ₁₁ H ₁₃ N ₂ O ₃ S	51.98 52,38	4.97 4,76	346348 (разл.)	1592	247 (4,24)	87
IIr	C ₆ H ₅ CH ₂	CH ₃	CH ₃	C ₁₂ H ₁₅ N ₂ O ₃ S	53.70 54,14	<u>5,55</u> 5,26	240241	1575	202 (4,08)* 215 (3,28) 251 (2,26) 257 (2,32)	62
Пд	C ₆ H ₅	CH ₃	Cl	C ₁₀ H ₁₀ ClN ₂ O ₃ S	44.21 43,96	3.61 3,30	270271	1555	207 (4,30) 241 (4,16)	93
IIe	C ₆ H ₅ * ²	CH ₃	OC ₂ H ₅	C ₁₂ H ₁₅ N ₂ O ₄ S	50,76 51,06	<u>5.13</u> 4,94	156158	1553	242 (4,13)	79
жП	n-NO ₂ C ₆ H ₄	CH ₃	Cl	C ₁₀ H ₉ ClN ₃ O ₅ S	37,29 37,74	2.88 2,52	313315	1560	213 (4,28) 292 (4,19)	96
II3	Н	CH ₃	Cl	C ₄ H ₆ ClN ₂ O ₃ S	23,90 24,36	2,97 2,54	269270	1580	244 (4,08)	39

^{.2 202 —} перегиб. Реакция проведена без нагревания.

Спектры ПМР сульфокислот пиразольного ряда, δ , м. д.

Соеди-	R ¹	R ³ , c	R ⁵ , c
Па		2,28	2,28
Пб	3,78 (c)	2,31	2,26
IIв	7,247,42 м	2,28	2,23
Пг	CH ₂ (c), 5,32 (2H, c), 7,217,47 (M)	2,45	2,31
Πд	7,357,47 (M)	2,27	_
Пе	7,517,71 (M)	2,36	1,26 (t, $J = 6 \Gamma \text{H}$), 4,44 (kb, $J = 6 \Gamma \text{H}$)
IJж	8,37,7,88 (AB-сист., $J=7$ Гц)	2,37	 ;
IIз	_	2,48	ē

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры зарегистрированы на спектрометре Perkin-Elmer 577 в таблетках КСl. УФ спектры сняты в спирте на спектрофотометре Specord M-40. Спектры ПМР зарегистрированы на приборе Bruker WM-250 в ДМСО-D₆.

Общая методика сульфирования пиразолов. К 0,15 моль свежеперегнанного уксусного ангидрида при перемешивании добавляют 0,1 моль 96% H₂SO₄; после охлаждения эту смесь добавляют по каплям при перемешивании к смеси 0,1 моль пиразола и 5 мл ледяной уксусной кислоты. Реакционную массу оставляют на трое суток без доступа влаги, затем кипятят на масляной бане 0,5 ч и оставляют еще на сутки без доступа влаги в холодильнике. Выпавшие кристаллы отфильтровывают, промывают сухим бензолом и сушат в вакуум-эксикаторе над P₂O₅.

Выходы и константы приведены в табл. 1, данные спектров ПМР — в табл. 2.

СПИСОК ЛИТЕРАТУРЫ

- 1. Грандберг И. И., Табак С. В., Боброва Н. И., Кост А. Н., Васина Л. Г. // ХГС. 1965. № 3. С. 407.
- 2. Tensmeyer L., Ainsworth C. // J. Org. Chem. 1966. Vol. 31. P. 1878.
- 3. Claisen L., Roosen P. // Ann. 1893. Bd 278. S. 297.
- 4. Knorr L. // Ann. 1894. Bd 279. S. 237.
- 5. Buchner E., Fritsche M., Papendiecr A., Witter H. // Ann. 1893. Bd 273. S. 214.
- 6. Knorr L. // Ber. 1895. Bd 28. S. 688.

Московская сельскохозяйственная академия им. К. А. Тимирязева, Москва 127550 Поступило в редакцию 20.12.96