В. В. Архипов, М. Н. Смирнов, В. П. Хиля

химия модифицированных флавоноидов

19*. СИНТЕЗ ФЕНОКСИЛЬНЫХ АНАЛОГОВ ИЗОФЛАВОНА

Взаимодействием резорцина с феноксиацетонитрилами в условиях реакции Губена—Геша получены 2,4-дигидроксифеноксиацетофеноны, циклизацией которых в условиях кислотного и щелочного катализа получены новые производные 3-феноксихромона.

Поиск новых высокоэффективных лекарственных средств в ряду модифицированных изофлавоноидов весьма перспективен. Широкий спектр химико-терапевтического действия при низкой токсичности ряда природных представителей изофлавонов, наряду с достаточной изученностью продуктов их метаболизма, создают реальную перспективу всестороннего использования данных веществ в медицинской практике. Кроме препаратов, выделенных из природного сырья [2], все большее значение приобретают синтетические продукты. Среди последних несомненный интерес представляют 3-феноксильные производные хромона, обладающие желчегонной [3], антиоксидантной [3], гепатозащитной [3], гиполипидемической

^{*} Сообщение 18 см. [1].

I—V a $R = CH_3$, $\delta R = C_2H_5$, B $R = C_3H_7$, $\Gamma R = CH(CH_3)_2$

[3, 4], аналентической [3,4], анаболической [5] активностью. Из анализа этих данных становится очевидной необходимость получения и исследования свойств новых, модифицированных аналогов 3-феноксихромона.

Ключевыми соединениями для синтеза 3-арилоксипроизводных хромона послужили α -фенокси-2,4-дигидроксиацетофеноны Ia—г, полученные конденсацией соответствующих арилоксиацетонитрилов с резорцином в условиях реакции Губена—Геша в среде эфир—бензол в присутствии хлористого цинка. Кетоны Ia—г представляют собой высокоплавкие, бесцветные, кристаллические вещества, хорощо растворимые в большинстве органических растворителей. Все они дают со спиртовым раствором хлорного железа интенсивное коричневое или черно-коричневое окрашивание, обусловленное образованием внутримолекулярного комплекса. Строение указанных кетонов установлено на основании данных элементного анализа и спектроскопии ПМР. Так, в спектрах ПМР кетонов Іа—г в дейтероацетоне наблюдаются сигналы протонов гидроксильных групп 2-ОН и 4-ОН. Протон гидроксильной группы 2-ОН, принимающий участие в образовании внутримолекулярной водородной С карбонильной группой, СВЯЗИ проявляется в виде синглета при 12,19...12,23 м. д., а протон 4-ОН резонирует в области 9,5...9,6 м. д. Ароматические фенольные протоны 3-Н, 5-Н, 6-Н резонируют соответственно при 6,31...6,35 м. д., 6,42...6,43, 7,81...7,85 м. д., образуя спиновую систему ABX с КССВ $J_{(H5,H3)} = 2,4 \Gamma_{H}$, $J_{(H6,H5)} = 8,8 \, \Gamma$ ц, $J_{(H3,H6)} < 1 \, \Gamma$ ц (табл. 1).

Таблица 1 Параметры спектров ПМР кетонов Ia—г

Соеди- нение	Химические сдвиги (CD ₃ COCD ₃), δ , м. д.										
		Про	тоны фено	П							
	2-ОН	3-Н	4-OH	5-H	6-H	α-CH ₂	Протоны феноксильного фрагмент				
Ia	12,23	6,35	9,54	6,43	7,85	2,37	7,15 (3'-H, 5'-H), 6,81 (2'-H, 6'-H), 2,20 (4'-CH ₃)				
Іб	12,22	6,34	9,50	6,42	7,83	2,36	7,20 (3'-H, 5'-H), 6,80 (2'-H, 6'-H), 2,43, 1,10 (4'-C ₂ H ₅)				
Ів	12,19	6,31	9,58	6,42	7,82	2,36	7,05 (3'-H, 5'-H), 6,81 (2'-H, 6'-H), 2,44, 1,52, 0,82 (4'-C ₃ H ₇)				
Ir	12,19	6,32	9,56	6,42	7,81	2,36	7,10 (3'-H, 5'-H), 6,82 (2'-H, 6'-H), 2,78, 1,11 (4'-CH(CH ₃) ₂)				

Взаимодействие кетонов Ia—г с уксусным ангидридом и α-фенокси-2,4-дигидроксиацетофенона [6] с пропионовым и масляным ангидридами в триэтиламине при нагревании реакционной смеси до 125...150 °C в течение 4...5 ч приводит к образованию карбаниона по метиленовой группе с последующим замыканием пиронового цикла 2-метил-, 2-этил-, 2-пропил-хромонов IIа—г, VI, VIII соответственно. Снятие ацетильной группы, приводящее к 7-гидроксипроизводным, осуществляли кипячением спиртовых растворов хромонов IIб—г и VI с соляной кислотой. В случае хромона VIII снятие остатка карбоновой кислоты происходило сразу при выливании реакционной смеси в подкисленную воду.

Синтез 3-арилоксихромонов IVa—в осуществляли добавлением эфирата трехфтористого бора к раствору α -арилокси-2,4-дигидроксиацетофенонов Ia—в в диметилформамиде с последующим добавлением пентахлорида фосфора, выдерживанием реакционной смеси при 60...75 °C в течение 30...40 мин с последующей обработкой горячей водой.

Очистку продуктов реакции производили через получение соответствующих 7-ацетоксипроизводных Va—в с дальнейшим их дезацилированием в этаноле с соляной кислотой при нагревании.

Строение полученных 3-арилоксихромонов IV—V устанавливали на основании данных элементного анализа и спектроскопии ПМР (табл. 2, 3).

В спектрах ПМР соединений IVа—в (в ДМСО- D_6) исчезают синглет протона гидроксильной группы 2-OH кетона и двупротонный синглет α -метиленового звена. Появляется четкий синглет протона 2-H при 8,8 м. д., что свидетельствует об образовании хромонового цикла. В области 8,0 м. д. Таблица 2

Параметры спектров ПМР хромонов Шб-г, IVa-в, VII и VIII

Соеди- нение	Протоны гетероцикла								Протоны феноксильного	
	2-H	2-Me	2-Et	2-P r	5-H	6-H	7-OH	8–H	фрагмента	
Шб		2,32		. •	7,87	6,93	10,83	6,89	7,11 (3'-H, 5'-H), 6,83 (2'-H, 6'-H), 2,50, 1,40 (4'-C ₂ H ₅)	
Шв		2,33		Į,	7,86	6,92	10,84	6,89	7,10 (3'-H, 5'-H), 6,85 (2'-H, 6'-H), 2,48, 1,55, 0,88 (4'-C ₃ H ₇)	
IIIr	. — .	2,34	_	_	7,85	6,95	10,84	6,89	7,12 (3'-H, 5'-H), 6,85 (2'-H, 6'-H), 2,85, 1,16 (4'-CH(CH ₃) ₂)	
IVa	8, <i>55</i>		_		7,91	6,95	10,91	6,91	7,09 (3'-H, 5'-H), 6,85 (2'-H, 6'-H), 2,23 (4'-CH ₃)	
IVб	8,55	_ ·	<u></u> -	—	7,92	6,95	10,90	6,91	7,11 (3'-H, 5'-H), 6,87 (2'-H, 6'-H), 2,55, 1,14 (4'-C ₂ H ₅)	
IVв	8,55	_		-	7,91	6,95	10,89	6,90	7,10 (3'-H, 5'-H), 6,87 (2'-H, 6'-H), 2,50, 1,55, 0,87 (4'-C ₃ H ₇)	
VII			2,66, 1,17	_	7,86	6,91	10,83	6,90	7,406,80 (2'-H—6'-H)	
VIII	_		<u>.</u>	2,69, 1,67, 0,89	7,88	6,92	10,80	6,89	7,386,80 (2'-H6'-H)	

Параметры спектров ПМР хромонов На-г, Va-в и VI

Соеди- нение			Протоны феноксильного						
	2-H	2-Me	2-Et	5-H	6-H	7-AcO	7-EtCO	8-H	фрагмента*
Па	_	2,48		8,25	7,16	2,37		7,31	7,08 (3'-H, 5'-H), 6,84 (2'-H, 6'-H), 2,28 (4'-CH ₃)
пе		2,42	<u>-</u>	8,25	7,15	2,36		7,31	7,11 (3'-H, 5'-H), 6,85 (2'-H, 6'-H), 2,58, 1,19 (4'-C ₂ H ₅)
Шв	, 	2,43		8,24	7,15	2,36		7,31	7,09 (3'-H, 5'-H), 6,81 (2'-H, 6'-H), 2,52, 1,60, 0,92 (4'-C ₃ H ₇)
Hr		2,43	—	8,25	7,15	2,36		7,31	7,12 (3'-H, 5'-H), 6,81 (2'-H, 6'-H), 2,85, 1,22 (4'-CH(CH ₃) ₂)
Va	7,9	—		8,30	7,19	2,36	<u> </u>	7,33	7,15 (3'-H, 5'-H), 6,92 (2'-H, 6'-H), 2,30 (4'-CH ₃)
Vб	7,9			8,29	7,17	2,32		7,32	7,15 (3'-H, 5'-H), 6,92 (2'-H, 6'-H), 2,59, 1,20 (4'-C ₂ H ₅)
Vв	7,9			8,30	7,17	2,32		7,32	7,15 (3'-H, 5'-H), 6,92 (2'-H, 6'-H), 2,59, 1,20 (4'-C ₂ H ₅)
VI	-		2,79, 1,30	8,23	7,12	·. —	2,65, 1,28	7,35	7,206,89 (2'-H—6'-H)

Химические сдвиги ароматических протонов фенольной и феноксильной части сходны с соответствующими данными для соединений Ia—г.

находится дублет, относящийся к ароматическому протону 5-H, который испытывает на себе дезэкранирующее влияние соседней карбонильной группы. Слабопольный сдвиг сигналов протонов в положениях 6 и 8 обусловлен перераспределением электронной плотности между атомами кислорода после замыкания цикла. Сигнал протона 5-H наблюдается в той же области спектра, что и сигнал протона 6-H в исходном кетоне. Ароматические протоны 5-, 6-, 8-H образуют спиновую систему с константами взаимодействия орто-протонов 8,9...9,0 Гц, мета2,0...2,5 Гц и пара- — менее 1 Гц. Протон гидроксильной группы в положении 7 проявляется при 10,9 м. д. Сигнал протонов 7-ацетоксигруппы проявляется при 2,46 м. д. (CDCl₃).

При образовании 2-алкилироизводных хромона в спектре имеются трехпротонные синглеты 2-метильной (2,36) и 7-ацетоксигрупп (2,46 м. д.) в CDCl₃. В ДМСО-D₆ протоны 2-этильной и 2-пропильной групп (соединения VII и VIII) поглощают при 2,66 и 1,17 м. д. и 2,69, 1,67, 0,89 м. д. соответственно.

В спектрах ПМР соединений Іб, Па сигналы ароматических протонов 4-алкилфеноксигрупп (дублеты, J=8 Гц) наблюдаются в областях 6,81...6,84 и 7,06...7,12 м. д. Было замечено уширение сигналов в области 7,06....7,12 м. д. и высказано предположение, что оно происходит в

Характеристики кетонов Іа—г, хромонов Па—г, Шб—г, ІVа—в, Vа—в, VI, VII, VIII

Соеди- нение	Найден	но, %	Брутто-	Вычисл	ено, %	T 00	Выход, %
	С	н	формула	С	Н	<i>T</i> _{III} , °C	
Ia	69,46	5,30	C ₁₅ H ₁₄ O ₄	69,76	5,46	171172	95
Іб	70,31	5,60	C ₁₆ H ₁₆ O ₄	70,57	5,92	147148	84,5
Iв	69,93	6,00	C17H18O4	71,31	6,34	167	90
Ir	70,91	6,02	C ₁₇ H ₁₈ O ₄	71,31	6,34	149150	88
Па	70,24	4,72	C19H16O5	70,36	4,97	128129	88
пе	71,25	5,57	C ₂₀ H ₁₈ O ₅	71,00	5,36	109110	- 90
Пв	71,21	5,36	C21H20O5	71,58	5,72	99,5100	96
\mathbf{Hr}	71,30	5,44	C21H20O5	71,58	5,72	121	96
Шб	73,25	5,78	C18H16O4	72,96	5,44	228	95
Шв	73,13	5,68	C19H18O4	73,53	5,85	232	90
\mathbf{IIIr}	73,27	5,47	C19H18O4	73,53	5,85	261	90
IVa	72,00	4,73	C ₁₆ H ₁₂ O ₄	71,64	4,51	220221	94
IVб	73,60	5,23	C17H14O4	71,33	5,00	190191	96
IVв	73,30	5,81	C ₁₈ H ₁₆ O ₄	72,96	5,44	217	92,5
Va	70,16	4,75	C18H14O5	69,67	4,55	128	96
Vб	70,70	5,11	C19H16O5	70,36	4,96	135	97
VB	71,34	5,51	C ₂₀ H ₁₈ O ₅	71,00	5,36	123134	94
VI	71,38	5,72	C ₂₀ H ₁₈ O ₅	71,00	5,36	105106	85
$\mathbf{v}\mathbf{n}$	72,70	5,30	C ₁₇ H ₁₄ O ₄	72,33	5,00	224	95
vIII	72,69	5,13	C ₁₈ H ₁₆ O ₄	72,96	5,44	182183	92,5

результате спин-спинового взаимодействия протонов 3′-Н и 5′-Н с протонами алкильных групп (J < 1 Γ п), на основании чего возможно отнесение сигналов в области 7,06...7,12 м. д. к протонам 3′-Н и 5′-Н, а сигналов в области 6,84...6,91 м. д. — к протонам 2′-Н и 6′-Н. Для подтверждения такого отнесения были измерены спектры соединений Іб и Па в условиях двойного резонанса. Предположение подтвердилось, так как при насыщении на частоте сигнала 4′-метильной группы соединения Па (2,28 м. д.) и сигнала CH_2 -протонов этильной группы соединения CH_2 -протонов отналов при 7,06 м. д. и 7,12 м. д. соответственно.

Таким образом, в результате циклизаций α-арилокси-2,4-дигидроксиацетофенонов в условиях основного и кислотного катализа получены новые производные 3-арилоксихромона, содержащие электронодонорные заместители в положении 2 хромонового цикла и в феноксильном фрагменте. Строение полученных конечных соединений, полупродуктов и их чистота определены при помощи методов ПМР, ТСХ и элементного анализа. Биологическое действие новых соединений изучается.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Чистоту полученных соединений и течение реакций контролировали методом ТСХ на пластинках Silufol UV-254. В качестве элюента применяли смесь хлороформа и метанола (9:1). Спектры ПМР записаны на спектрометре Bruker WP-100SY. Химические сдвиги определены относительно ТМС (внутренний стандарт).

Данные элементного анализа новых соединений на С, Н соответствуют расчетным.

Физико-химические константы и выходы полученных веществ приведены в таблице 4.

2,4-Дигидрокси- α -феноксиацетофеноны (Ia—r). В раствор 0,1 моль соответствующего феноксиацетонитрила в 75 мл абсолютного бензола при 0 °C пропускают в течение 1 ч сухой 602

хлористый водород, затем добавляют раствор 13,2 г (0,12 моль) резорцина и 6,8 г (0,05 моль) свежепрокаленного хлористого цинка в 50 мл сухого эфира. Продолжают пропускать хлористый водород 2 ч и оставляют реакционную смесь на ночь. На следующий день жидкость над осадком декантируют, добавляют к остатку 400 мл горячей воды и кипятят 1 ч. После охлаждения осадок отфильтровывают, промывают на фильтре водой до рН 7, кристаллизуют из изопропанола и получают соединения Ia—г.

2-Метил-3-фенокси-7-ацетоксихромоны (Па—г). Смесь 10 ммоль кетона Іа—г в 4,7 мл (50 ммоль) уксусного ангидрида и 5,6 мл (56 ммоль) триэтиламина выдерживают 4 ч при 125...130 °C. После охлаждения реакционную смесь выливают в 200 мл холодной воды, выпавший осадок отфильтровывают и тщательно промывают на фильтре водой, кристаллизуют из этилового спирта и получают соединения Па—г.

2-Метил-3-фенокси-7-гидроксихромоны (Шб—г). К раствору 10 ммоль хромона Пб—г в минимальном количестве этанола добавляют 1 мл конц. соляной кислоты и кипятят его до исчезновения исходного соединения на ТСХ. Растворитель упаривают в вакууме водоструйного насоса, выпавшие кристаллы отделяют, кристаллизуют из этанола и получают соединения Шб—г.

3-Фенокси-7-гидроксихромоны (IVа—в). К раствору 50 ммоль кетона Iа—в в 75 мл (100 ммоль) ДМФА добавляют 12 мл (100 ммоль) эфирата трехфтористого бора и, не делая паузы, добавляют порциями 60 ммоль пентахлорида фосфора. После смешивания всех реагентов реакционную смесь выдерживают при 50...60 °C, одновременно собирая выделяющийся эфир. Реакционную смесь выливают в 400 мл воды и кипятят 30 мин. После охлаждения осадок отфильтровывают, сущат на воздухе и ацилируют соответствующим количеством уксусного ангидрида с добавлением 1 мл пиридина. Константы и выход 7-ацетоксипроизводных проводят аналогично гидролизу 7-ацетокси-2-метилхромонов.

2-Этил-7-пропионилокси-3-феноксихромон (VI). К раствору 2,44 г (10 ммоль) α-фенокси-2,4-дигидроксиацетофенона [7] в 5,6 мл (56 ммоль) триэтиламина добавляют по каплям 6,5 г (50 ммоль) пропионового ангидрида. Смесь нагревают до 150 °C до исчезновения исходного соединения на ТСХ. Затем охлажденную смесь выливают в 200 мл холодной воды, осадок отфильтровывают, кристаллизуют из изопропилового спирта и получают соединение VI.

2-Этил-7-гидрокси-3-феноксихромон (VII) получают аналогично методике получения 2-метил-3-фенокси-7-гидроксихромонов III6—г.

2-Пропил-7-гидрокси-3-феноксихромон (VIII). К раствору 2,44 г (10 ммоль) α-фенокси-2,4-дигидроксиацетофенона [7] в 5,6 мл (56 ммоль) триэтиламина добавляют по каплям 7,91 г (50 ммоль) масляного ангидрида. Смесь нагревают до 150 °С до исчезновения исходного соединения на ТСХ. Затем охлажденную смесь выливают в 200 мл холодной воды, осадок отфильтровывают, кристаллизуют из толуола, получают соединение VIII.

СПИСОК ЛИТЕРАТУРЫ

- 1. Горбуленко Н. В., Туров А. В., Хиля В. П. // ХГС. 1995. № 4. С. 505.
- 2. Macander P. J. // Plant Flavonoids in Biology and Medicine. N. Y., 1986. P.489.
- 3. Васильев С. А., Лукьянчиков М. С., Молчанов Г. И., Турубаров В. Д., Хиля В. П. // Хим.-фарм. журн. 1991. Т. 25, № 7. С. 34.
- 4. Васильев С. А., Боярчук В. Л., Лукьянчиков М. С. // Хим. -фарм. журн. 1991. Т. 25, № 11. С. 50.
- 5. Хиля В. П., Васильев С. А., Лукьянчиков М. С., Кабачний В. В. // Вісник Київського університету. 1991. Т. 2.
- 6. Органические реакции / Под ред. Адамса. М.: Издатинлит, 1951. С. 301.