В. Д. Дяченко, С. Г. Кривоколыско, В. П. Литвинов

АНИЛИДЫ АЦЕТОУКСУСНОЙ КИСЛОТЫ В СИНТЕЗЕ 4-АРИЛ-5-АРИЛКАРБАМОИЛ-6-МЕТИЛ-3-ЦИАНОПИРИДИН-2(1H)-ТИОНОВ

Взаимодействие анилидов ацетоуксусной кислоты с арилметиленцианотиоацетамидами приводит к 4-арил-5-арилкарбамоил-6-метил-3-цианопиридин-2(1H)-тионам, на основе которых получены замещенные 2-алкилтиопиридины и тиено [2,3-b] пиридины.

3-Цианопиридин-2(1H)-тион и его производные являются важным классом гетероциклических соединений, представляющим значительный интерес вследствие разнообразия химических превращений и возможности практического использования [1]. Это обстоятельство, а также данные о биологической активности карбамоилзамещенных 3-циано-3,4-дигидропиридин-2(1H)-тионов [2, 3] побудили нас разработать методы синтеза 3-цианопиридин-2(1H)-тионов, содержащих арилкарбамоильную группировку.

Показано, что взаимодействие анилидов ацетоуксусной кислоты (Іа,б) с арилметиленцианотиоацетамидами (Па-д) в этаноле при 20 °C в присутствии двухкратного избытка N-метилморфолина приводит к образованию 4-арил-5-арилкарбамоил-6-метил-3-цианопиридин-2(1H)-тионов (IIIа-д). Вероятно, реакция протекает через стадию образования аддуктов Михаэля (IV), претерпевающих циклизацию в замещенные пиперидины (V). Последние в условиях реакции отщепляют молекулу воды и дегидрируются, образуя соответствующие пиридинтионы IIIа-д. Химические превращения, в частности алкилирование галогенидами (VIa—ш), фенилхлорацетамидом или бромацетилкумарином и внутримолекулярная циклизация образующихся 2-алкилтиопиридинов (VIIф—ш) в замещенные тиено [2,3-b]пиридины (VIIIф— \mathfrak{m}), подтверждают строение тионов IIIа-д. Спектральные характеристики синтезированных пиридинов (VII—X) также подтверждают их строение. Так, ИК спектры тионов III и их производных VII, IX, X содержат характерные полосы поглощения валентных колебаний сопряженной нитрильной группы 2218...2232 см⁻¹. Как следствие циклизации по Торпу—Циглеру [4] упомянутые сигналы исчезают в спектрах тиенопиридинов VIII, содержащих полосы поглощения валентных колебаний аминогруппы при 3200...3450 см⁻¹.

Спектры ПМР полученных соединений III, VII—X содержат сигналы протонов ароматических заместителей в виде мультиплетов (см. экспериментальную часть и табл. 2), сигнал протона амидной группы при 10,40 м. д. в виде синглета, сигналы протонов метильной группы в виде синглета в области 2,40...2,60 м. д., а также характерные сигналы протонов алкильных заместителей в соответствующих областях спектра (табл. 2). Из сопоставления спектров ПМР соединений VII и VIII следует, что сигналы протонов группы SCH2 в виде синглета в области 3,75...4,95 м. д. в спектрах 2-алкилтиопиридинов VII исчезают при переходе к тиенопиридинам VIII, спектры ПМР которых содержат уже сигнал протонов аминогруппы в виде уширенного синглета в области 5,62...6,74 м. д., что подтверждает направление циклизации.

I a $Ar^1 = 2$ -CH₃OC₆H₄, 6 $Ar^1 = Ph$; II a $Ar^2 = 3$,4-(CH₃O)₂C₆H₃, 6 $Ar^2 = 4$ -FC₆H₄, в $Ar^2 = 4$ -BrC₆H₄, $r Ar^2 = 4$ -C₂H₅OC₆H₄, $\pi Ar^2 = 4$ -CH₃OC₆H₄; Π а $Ar^1 = 2$ -CH₃OC₆H₄, $Ar^2 = 3,4-(CH_3O)_2C_6H_3$; $6Ar^1 = Ph$, $Ar^2 = 4-FC_6H_4$, $BAr^1 = Ph$, $Ar^2 = 4-BrC_6H_4$, $Ar^1 = Ph$, $Ar^2 = 4 - C_2H_5OC_6H_4$; $\pi Ar^1 = Ph$, $Ar^2 = 4 - CH_3OC_6H_4$; VI, VII, VIII a Hal = I, Z = H, $Ar^1 = Ph$, $Ar^2 = H$ =4-BrC₆H₄, 6 Hal = Br, Z = 2-CH₃C₆H₄, Ar^1 = Ph, Ar^2 = 4-BrC₆H₄; B Hal = I, Z = CH₃, Ar^1 = Ph, $Ar^2 = 4-BrC_6H_4$, r Hal = Br, Z = $4-BrC_6H_4CO$, $Ar^1 = Ph$, $Ar^2 = 4-BrC_6H_4$; π Hal = Cl, $Z = 4 - BrC_6H_4NHCO$, $Ar^1 = Ph$, $Ar^2 = 4 - BrC_6H_4$; e Hal = I, Z = H, $Ar^1 = Ph$, $Ar^2 = 4 - C_2H_5OC_6H_4$, \times Hal = I, Z = CH₃, Ar¹ = Ph, Ar² = 4-C₂H₅OC₆H₄; 3 Hal = Cl, Z = COOCH(CH₃)₂, $Ar^{1} = Ph$, $Ar^{2} = 4 - CH_{3}OC_{6}H_{4}$; μ Hal = Cl, $Ar^{1} = Ph$, $Ar^{2} = Ph$, $4 - CH_{3}OC_{6}H_{4}$; κ Hal = Br, $Z = 2 - \text{CH}_3\text{C}_6\text{H}_4$, $\text{Ar}^1 = \text{Ph}$, $\text{Ar}^2 = 4 - \text{CH}_3\text{OC}_6\text{H}_4$; $\pi \text{Hal} = \text{I}$, $Z = \text{CH}_3$, $\text{Ar}^1 = \text{Ph}$, $\text{Ar}^2 = 4 - \text{CH}_3\text{OC}_6\text{H}_4$, M Hal = Br, $Z = CH = CH_2$, $Ar^1 = Ph$, $Ar^2 = 4 - CH_3OC_6H_4$; H Hal = Br, $Z = C_2H_5$, $Ar^1 = Ph$, $Ar^2 = 4 - CH_3OC_6H_4$, o Hal = Cl, Z = PhNHCO, $Ar^1 = Ph$, $Ar^2 = 4 - CH_3OC_6H_4$, n Hal = I, Z = H, $Ar^1 = Ph$ =Ph, Ar^2 = 4-CH₃OC₆H₄, p Hal = Br, Z = 4-ClC₆H₄CO, Ar^1 = Ph, Ar^2 = 4-CH₃OC₆H₄, c Hal = Cl, Z = CN, $Ar^1 = Ph$, $Ar^2 = 4-CH_3OC_6H_4$; r Hal = Br, Z = PhCO, $Ar^1 = Ph$, $Ar^2 = 4-CH_3OC_6H_4$; y Hal = Cl, $Z = 4-BrC_6H_4NHCO$, $Ar^1 = 2-CH_3OC_6H_4$, $Ar^2 = 3,4-(CH_3O)_2C_6H_3$; ϕ Hal = Br, Z = 4-BrC₆H₄CO, Ar¹ = Ph, Ar² = 4-CH₃OC₆H₄; x Hal = Cl, Z = 4-BrC₆H₄NHC O, $Ar^{1} = Ph$, $Ar^{2} = 4-CH_{3}OC_{6}H_{4}$; u Hal = Cl, $Z = CONH_{2}$, $Ar^{1} = Ph$, $Ar^{2} = 4-CH_{3}OC_{6}H_{4}$; ч Hal = Cl, Z = COOEt, $Ar^1 = Ph$, $Ar^2 = 4 - CH_3OC_6H_4$; ш Hal = Br, Z = PhCO, $Ar^1 = Ph$, $Ar^2 = 4 - FC_6H_4$; m Hal = Br, Z = 2-теноил, $Ar^1 = Ph$, $Ar^2 = 4 - CH_3OC_6H_4$

Выходы, температура плавления и данные элементного анализа замещенных пиридинов VIIа—ш, IX, X и тиено[2,3-b]пиридинов VIIIф—щ

Соеди- нение	$T_{\Pi\Pi}$, °С (растворитель для кристаллизации)		Найден	o, %		Брутго- формула			Выход, %		
		С	Н	N	S		С	н	N	s \	(метод)
1	2	3	4	5	6	. 7	8	9	10	11	12
VIĮa	113115 (этанол)	57,30	3,51	9,64	7,48	C ₂₁ H ₁₆ BrN ₃ OS "	57,54	3,68	9,59	7,31	85
VIIG	192194 (этанол)	63,71	4,111	8,08	5,91	C ₂₈ H ₂₂ BrN ₃ OS	63,64	4,20	7,95	6,07	69
VIIB	228230 (этанол)	58,50	3,87	9,40	6,89	$C_{22}H_{18}BrN_3OS$	58,41	4,01.	9,29	7,09	82
VIIr	231232 (AcOH)	53,99	2,87	6,85	5,33	$\mathrm{C}_{28}\mathrm{H}_{19}\mathrm{Br}_2\mathrm{N}_3\mathrm{O}_2\mathrm{S}$	54,13	3,08	6,76	5,16	91
VIIд	246248 (1-бутанол)	52,97	3,05	8,70	5,22	$C_{28}H_{20}Br_2N_4O_2S$	52,85	3,17	8,80	5,04	88
VIIe	152154 (метанол)	68,52	5,11	10,55	8,02	$C_{23}H_{21}N_3O_2S$	68,46	5,25	10,41	7,95	84
VIIж	138140 (метанол)	68,87	5,41	10,20	7,73	C ₂₄ H ₂₃ N ₃ O ₂ S	69,04	5,55	10,06	7,68	72
VII3	170172 (этанол)	65,78	5,44	8,69	6,65	$C_{26}H_{25}N_3O_4S$	65,67	5,30	8,84	6,74	68
VIIn	172173 (1-пропанол)	72,04	5,13	8,89	7,00	$\mathrm{C_{28}H_{23}N_{3}O_{2}S}$	72,23	4,98	9,03	6,89	77
VIIĸ	153155 (этанол)	72,71	5,39	8,64	6,50	$C_{29}H_{25}N_3O_2S$	72,63	5,25	8,76	6,69	79

. 1	2	3	4	5	6	7	8	9	1.0	11	12
VIIл	168170 (этанол)	68,30	5,14	10,61	7,88	$C_{23}H_{21}N_3O_2S$	68,46	5,25	10,41	7,95	84
VIIM	188189 (бензол)	69,47	4,85	10,25	7,82	$C_{24}H_{21}N_3O_2S$	69,38	5,09	10,11	7,72	71
VIIH	129131 (этанол)	68,91	5,70	9,88	7,77	$C_{24}H_{23}N_3O_2S$	69,04	5,55	10,06	7,68	69
VIIo	222223 (1-бутанол)	68,58	4,85	10,89	6,13	$C_{29}H_{24}N_4O_3S$	68,49	4,76	11,02	6,30	68
VIIn	198200 (этанол)	68,00	5,05	10,69	8,08	$C_{22}H_{19}N_3O_2S$	67,85	4,92	10,79	8,23	80
VIIp	193195 (AcOH)	66,13	4,31	8,01	5,84	$C_{29}H_{22}ClN_3O_3S$	65,97	4,20	7,96	6,07	84
VIIc	192193 (этанол)	66,79	4,22	13,61	7,60	$C_{23}H_{18}N_4O_2S$	66,65	4,38	13,52	7,74	69
VIIT	178180 (AcOH)	70,63	4,81	8,40	6,33	$C_{29}H_{23}N_3O_3S$	70,57	4,70	8,51	6,50	75
VIIy	221223 (1-бутанол)	57,61	4,32	8,50	4,81	$\mathrm{C_{31}H_{27}BrN_4O_5S}$	57,50	4,20	8,65	4,95	60
VІІф	209211 (AcOH)	60,71	3,70	7,42	5,80	$\mathrm{C}_{29}\mathrm{H}_{22}\mathrm{BrN}_3\mathrm{O}_3\mathrm{S}$	60,84	3,87	7,34	5,60	85
VIIx	246248. (AcOH)	59,43	3,81	9,60	5,54	$C_{29}H_{23}BrN_4O_3S$	59,29	3,95	9,54	5,46	89
VIIц	211213 (1-бутанол)	64,00	4,77	12,80	7,33	$C_{23}^{-}H_{20}N_4O_3S$	63,87	4,66	12,95	7,41	67
VПч	140142 (1-пропанол)	65,13	5,15	8,95	6,88	$C_{25}H_{23}N_3O_4S$	65,06	5,02	9,10	6,95	78
VIIm	194196 (этанол)	69,98	4,22	8,66	6,72	$\mathrm{C}_{28}\mathrm{H}_{20}\mathrm{FN}_3\mathrm{O}_2\mathrm{S}$	69,84	4,19	8,73	6,66	76
VIIIф	124126 (AcOH)	60,70	3,69	7,41	5,77	C ₂₉ H ₂₂ BrN ₃ O ₃ S	60,84	3,87	7,34	5,60	72 (A), 68 (Б)

									····		
1.	2	3 -	4	5	6	7	8	9 :	10	11	12
VIIIx	158160* (AcOH)	59,11	3,80	9,65	5,51	C ₂₉ H ₂₃ BrN ₄ O ₃ S	59,29	3,95	9,54	5,46	69 (A), 70 (Б)
VIIIц	276277* (AcOH)	63,99	4,72	12,81	7,33	$C_{23}H_{20}N_4O_3S$	63,87	4,66	12,95	7,41	70 (A), 69 (Б)
VIIIu	247248 (AcOH)	65,91	4,88	9,15	6,88	$C_{25}H_{23}N_3O_4S$	65,06	5,02	9,10	6,95	77 (A), 73 (Б)
VIIIm	137139 (этанол)	69,90	4,31	8,66	6,50	$\mathrm{C}_{28}\mathrm{H}_{20}\mathrm{FN}_{3}\mathrm{O}_{2}\mathrm{S}$	69,84	4,19	8,73	6,66	80 (A), 74 (Б)
VIIIщ	289291 (1-бутанол)	65,05	4,30	8,32	12,78	$C_{27}H_{21}N_3O_3S_2\\$	64,91	4,24	8,41	12,84	68 (Б)
IX	225227 (1-бутанол)	65,58	5,09	9,77	5,48	$C_{31}H_{28}N_4O_5S$	65,48	4,96	9,85	5,64	67
X	228230 (AcOH)	65,50	4,22	6,81	5,28	$C_{34}H_{27}N_3O_7S$	65,69	4,38	6,76	5,16	64

^{*} Вещества сублимируют.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

- ИК спектры соединений снимали на спектрофотометре ИКС-29 в вазелиновом масле. Спектры ПМР регистрировали на приборе Bruker WP-100 SU (100 МГц) в растворах ДМСО-D6 с ТМС в качестве внутреннего стандарта. Контроль за ходом реакции и чистотой полученных соединений осуществляли методом ТСХ на пластинках Silufol UV-254 в системе ацетон—гептан (3:5).
- 4-Арил-5-арилкарбамоил-6-метил-3-цианопиридин-2(1H)-тионы (Ша—д). Смесь 0,01 моль анилида ацетоуксусной кислоты Ia,6,0,01 моль арилметиленцианотиоацетамида Па—д и 2,02 мл (0,02 моль) N-метилморфолина в 20 мл этанола перемешивают 4 ч при 20 °C. Образовавшийся осадок отделяют, промывают этанолом и гексаном.
- 6-Метил-4-(3,4-диметоксифенил)-5-(2-метоксифенилкарбамоил)-3-дианопиридин-2(1H)-тион (IIIа). Выход 83%, $T_{\rm HI}$ 243...245 °C (AcOH). ИК спектр: 2222 (CN), 3290 см $^{-1}$ (NH). Спектр ПМР: 2,51 (3H, c, CH₃); 3,66, 3,74, 3,77 (по 3H, 3c, (CH₃O)₃); 7,05...7,55 (7H, м, аром.); 9,73 (1H, c, NHCO); 14,14 м. д. (1H, уш. c, NH). Найдено, %: С 63,60; H 4,91; N 9,49; S 7,20. С23H₂₁N₃O₄S. Вычислено, %: С 63,43; H 4,86; N 9,65; S 7,36.
- 6-Метил-5-фенидкарбамоил-4-(4-фторфенил)-3-цианопиридин-2(1H)-тион (IIIб). Выход 68%, $T_{\rm ПЛ}$ 158...160 °C (этанол). ИК спектр: 2228 (CN), 3320 см $^{-1}$ (NH). Спектр ПМР: 2,46 (3H, c, CH₃); 7,00...7,75 (9H, м, аром.); 10,21 м. д. (1H, c, NHCO). Найдено, %: C 65,89; H 3,77; N 11,60; S 8,93. C₂₀H₁₄FN₃OS. Вычислено, %: C 66,10; H 3,88; N 11,56; S 8,82.
- 4-(4-Бромфенил)-6-метил-5-фенилкарбамоил-3-цианопиридин-2(1H)-тион (Шв). Выход 70%, $T_{\rm ШЛ}$ 269...271 °C (AcOH). ИК спектр: 2224 (CN), 3330 см⁻¹ (NH). Спектр ПМР: 2,45 (3H, c, CH₃); 7,00...7,25 (5H, м, Ph); 7,35, 7,66 (4H, 2д, 4-BrC₆H₄); 10,30 (1H, c, NHCO); 14,38 м. д. (1H, уш. c, NH). Найдено, %: C 56,54; H 3,22; N 9,81; S 7,64. C₂₀H₁₄BrN₃OS. Вычислено, %: C 56,61; H 3,33; N 9,90; S 7,56.
- 6-Метил-5-фенилкарбамоил-4-(4-этоксифенил)-3-цианопиридин-2(1H)-тион (ПІг). Выход 74%, $T_{\Pi\Pi}$ 242...244 °C (этанол). ИК спектр: 2230 (СN), 3375 см⁻¹ (NH). Спектр ПМР: 1,29 (3H, т, CH₃); 2,45 (3H, с, C₍₆₎—CH₃); 4,01 (2H, кв, CH₂); 7,10...7,25 (5H, м, Ph); 6,97, 7,50 (4H, 2д, C₍₄₎—Ar (аром.)); 10,26 (1H, с, NHCO); 14,30 м. д. (1H, с, NH). Найдено, %: С 67,92; H 4,84; N 10,89; S 8,06. C₂₂H₁9N₃O₂S. Вычислено, %: С 67,85; H 4,92; N 10,79; S 8,23.
- 6-Метил-4-(4-метоксифенил)-5-фенилкарбамоил-3-цианопиридин-2(1H)-тион (ППд). Выход 81%, $T_{\Pi\Pi}$ 263...265 °C (этанол). ИК спектр: 2223 (СN), 3384 см⁻¹ (NH). Спектр ПМР: 2,44 (3H, c, CH₃); 3,74 (3H, c, CH₃O); 7,10...7,25 (5H, м, Ph); 6,98, 7,50 (4H, 2д, C₍₄)—Ar (аром.)); 10,21 (1H, c, NHCO); 14,18 м. д. (1H, уш. c, NH). Найдено, %: С 67,24; H 4,37; N 10,95; S 8,63. С₂₁H₁₇N₃O₂S. Вычислено, %: С 67,18; H 4,56; N 11,19; S 8,54.
- 4-Арил-5-арилкарбамоил-6-метил-2-Z-метилтио-3-цианопиридины (VIIa—ш, IX, X). К суспензии 0,01 моль соответствующего пиридинтиона IIIа—д в 10 мл ДМФА при перемешивании добавляют 5,6 мл (0,01 моль) 10% водного раствора КОН и через 1 мин 0,01 моль алкилгалогенида VIa—ш или фенилхлорацетамида, или бромацетилкумарина соответственно. Реакционную смесь перемешивают 2 ч, разбавляют 10 мл воды. Образовавшийся осадок отделяют, промывают водой, этанолом, гексаном, получают соединения VIIа—ш, IX, X (табл. 1, 2).
- 3-Амино-4-арил-5-арилкарбамоил-6-метил-2-Z-тиено[2,3-b] пиридины (VIIIф—щ). А. К раствору 0,01 моль соответствующего пиридина VIIф—щ в 15 мл ДМФА при перемешивании добавляют 5,6 мл (0,01 моль) 10% водного раствора КОН. Реакционную смесь перемешивают 4 ч, после чего разбавляют 15 мл воды. Образовавшийся осадок отделяют, промывают водой, этанолом, гексаном и получают соединения VIIIф—щ (табл. 1, 2).
- Б. К суспензии 0,01 моль соответствующего тиона IПб,в,д в 15 мл ДМФА при перемешивании добавляют 5,6 мл 10% водного раствора КОН. Через 1 мин к реакционной смеси добавляют 0,01 моль алкилгалогенида VІф—щ. После перемешивания в течение 30 мин при 20 °С к реакционной массе добавляют вновь 5,6 мл 10% водного раствора КОН и перемешивают еще 4 ч. Реакционную смесь разбавляют 15 мл воды, образовавшийся осадок отделяют, промывают водой, этанолом, гексаном, получают соединения VІІІф—щ (табл. 1, 2).

Данные ИК и ПМР спектров соединений VIIа—ш, VIIIф—щ, IX, X

					· · · · · · · · · · · · · · · · · · ·			
Соеди-	ИК спектр, 1		•		Спектр ПМР, δ , м. д.			
нение	CN, NH, NH ₂	co	NH, c	СН3, с	Ar ¹ , M	Аг ² , д	SCH ₂ , с или NH ₂ , уш. с	Z
1	2	3	4	5	6	7	8	9
VIļa	2225, 3220	1740	10,43	2,62	7,20	7,71, 4,40	2,69	* *****
VIIб	2220, 3214	1734	10,41	2,66	7,20*	7,66, 7,42	4,62	*, 2.41 c
VIIB	2222, 3230	1668	10,44	2,61	7,007,25	7,68, 7,48	3,32 кв	- 1,37 т
VIIr	2228, 3240	1695	10,42	2,26	7,007,25	7,72, 7,40	4,93	8,05 д, 7,80 д
VIIд	2225, 3362	1680, 1702	10,44	2,50	7,007,80*	*	4,26	10,54 c, *
VIIe	2224, 3320	1773	10,38	2,61	7,007,50*	*, 4,02 кв, 1,30 т	2,68	
VIIж	2223, 2230	1650	10,36	2,60	7,107,30	7,36, 7,00, 1,30 т, 3,29 кв	4,02 кв	1,32 т
VII3	2229, 3270	1655, 1740	10,41	2,53	7,007,38*	*, 3,75 c	4,15	4,95 м, 1,24 д
VIIи	2225, 3250	1598	10,37	2,61	6,907,60*	*, 3,72 c	4,57	*
VIIĸ	2230, 3222	1664	10,37	2,63	6,857,60*	*, 3,73 c	4,60	*, 2,40 c
VIIл	2220, 3335	1680	10,39	2,60	7,157,35	7,45, 7,00, 3,75 c	3,32 кв	1,38 т
VIIM	2222, 3332	1700	10,40	2,60	7,107,30	7,39, 7,00, 3,76 c	4,03 д	5,92 м, 5,105,50 м
VIIн	2215, 3330	1700	10,41	2,60	7,147,22	7,40, 7,02, 3,76 c	3,31 т	1,75 м, 1,03 т
VIIo	2224, 3270	1665	10,36*	2,48	7,157,44*	7,58, 7,00, 3,73 c	4,24	*
VIIn	2230, 3344	1710	10,39	2,60	7,107,33	7,39, 7,01, 3,76 c	2,68	
VIIp	2234, 3300	1684	10,40	2,27	7,157,33	7,45, 7,04, 3,77 c	4,94	8,15 д, 7,69 д

1	2	3	4	5	6	7		8. ;	9
				-					
VIIc	2218, 2244, 3210	1666	10,48	2,65	7,187,34	7,50, 7,02, 3,76 c		4,45	·—
VII_T	2220, 3272	1678, 1705	10,35	2,22	7,107,33	7,40, 7,00, 3,73 c		4,92	7,638,09 м
VIIy	2219, 3270	1677	10,49	2,51	6,807,22*, 3,78 c	*, 3,71 c, 3,67 c		4,25	7,53 м, 9,80 с
VІІф	2230, 3285	1664, 1703	10,36	2,25	7,157,30	7,45, 7,01, 3,76 c		4,92	8,07 д, 7,81 д
VIIx	2227, 3300	1654, 1670	10,36	2,48	7,107,30	7,50, 7,00, 3,73 c		4,23	10,51 с, 7,55 м
VIIų	2230, 3200, 3422	1650, 1683	10,42	2,57	7,25	7,38, 7,02, 3,74 c	1	4,03	7,69 уш. с
VIIq	2220, 3250	1662, 1720	10,42	2,54	7,22	7,40, 7,01, 3,76 c		4,18 м*	*, 1,25 т
VIIш	2220, 3270	1650, 1680	10,39	2,27	7,008,13*	*		4,96	* '
VIIIф	33003460	1660	10,34	2,65	7,30	7,45, 7,07, 3,78 c	İ	6,74	7,74 м
VIIIx	3255, 3360, 3460	1650	10,35	2,63	7,25	7,40, 7,01, 3,75 c		5,85	9,63 с, 7,65 кв
VIIIц	3255, 3340, 3482	1657	10,35	2,62	7,057,55*	*, 3,74 c		5,70	*
VIIIu	33003420	1650, 1700	10,35	2,62	7,25	7,37, 7,05, 3,76 c	:	5,62	1,27 т, 4,24 кв
VIIIm	3150, 3400	1660	10,41	2,65	7,007,85*	*		6,71	*
УШщ	3222, 3270, 3374	1650, 1740	10,40	2,67	7,087,50*	*		6,80	8,02 м, *
IX	2215, 3225	1665	9,81	2,60	7,097,95*, 3,80 c	*, 3,73 с, 3,65 с		5,81	*
X	2226, 3300	1664, 1740	9,78	2,40	7,07*, 3,79 c	*, 3,71 c, 3,67 c		4,90	8,79 с, 7,518,00 м

^{*} Сигналы перекрываются.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект № 96-03-32012a).

СПИСОК ЛИТЕРАТУРЫ

- Litvinov V. P., Rodinovskaya L. A., Sharanin Yu. A., Shestopalov A. M., Senning A. // Sulfur Reports. — 1992. — Vol. 13. — P. 1.
- 2. Краузе А. А., Одынец А. Г., Веррева А. А., Германе С. К., Кожухов А. Н., Дубур Г. Я. // Хим.-фарм. журн. — 1991. — Т. 25. — С. 40.
- 3. Кастрон В. В., Витолиня Р. О., Дубур Г. Я. // Хим.-фарм. журн. 1990. № 6. С. 14.
- 4. Бабичев Ф. С., Шаранин Ю. А., Литвинов В. П., Промоненков В. К., Воловенко Ю. М. Внутримолекулярное взаимодействие нитрильной и С—Н-, О—Н- и S—Н-групп. Киев: Наукова думка, 1985.-200 с.

Луганский государственный педагогический институт им. Т. Г. Шевченко, Луганск 348011

Поступило в редакцию 16.07.96 После переработки 24.12.96

Институт органической химии им. Н. Д. Зелинского РАН, Москва 117913