В. А. Самсонов, Л. Б. Володарский, Г. Х. Хисамутдинов

ОБРАЗОВАНИЕ

1,1,4,4-ТЕТРАМЕТОКСИ-2,3,5,6-ТЕТРАГИДРОКСИМИНО-ЦИКЛОГЕКСАНА ПРИ ВЗАИМОДЕЙСТВИИ ТРИНИТРОЗОФЛОРОГЛЮЦИНА С СОЛЯНОКИСЛЫМ ГИДРОКСИЛАМИНОМ В МЕТАНОЛЕ

Тринитрозофлороглюцин при обработке солянокислым гидроксиламином в метаноле образует 1,1,4,4-тетраметокси-2,3,5,6-тетрагидроксиминоциклогексан. При окислении последнего железосинеродистым калием в щелочной среде получена смесь изомерных 4,4,8,8-тетраметокси-4H,8H-бензо [1,2-c:4,5-c'] бис [1.2.5] оксадиазол-1,5-диоксида и 4,4,8,8-тетраметокси-4H,8H-бензо [1,2-c:4,5-c'] бис [1.2.5] оксадиазол-1,7-диоксида. Отщепление N-оксидных групп в этих соединениях под действием триэтилфосфита и дальнейший гидролиз дикетальных группровок приводят к 4,8-диоксо-4H,8H-бензо [1,2-c:4,5-c'] бис [1.2.5] оксадиазолу. При его взаимодействии с малонодинитрилом получается 4,8-ди (дицианомети-лен)-4H,8H-бензо [1,2-c:4,5-c'] бис [1.2.5] оксадиазол, являющийся аналогом известных акцепторов электронов.

Поскольку нитрозофенолы в растворах находятся в равновесии со своей таутомерной хиноноксимной формой и реагируют с солянокислым гидроксиламином с образованием хинондиоксимов [1, 2], то можно было ожидать, что из тринитрозофлороглюцина (I) [3] в аналогичных условиях получится гексаоксим трихиноила. Однако в результате выдерживания метанольного раствора соединения I с солянокислым гидроксиламином при комнатной температуре в течение месяца из реакционной смеси выпал бесцветный кристаллический осадок, плохо растворимый в большинстве органических растворителей и воде, но хорошо растворимый в водных растворах щелочей. В спектре ПМР полученного соединения наблюдаются лва синглетных сигнала протонов групп ОМе при 3,15 и 3,40, а также синглет при 11,51 м. д. протонов оксимных групп. В спектре ЯМР ¹³С наблюдаются сигналы при 50,3 и 51,2 атомов углерода групп OMe, при $99,7 - sp^3$ гибридизованных атомов углерода и при 144,6 м. д. — атомов углерода оксимных групп. Соединение кристаллизуется из диметилсульфоксида и брутто-формулу элементного анализа имеет результатам по C₁₀H₁₆N₄O₈ · 4Me₂SO. На основании этих данных полученному продукту

было приписано строение 1,1,4,4-тетраметокси-2,3,5,6-тетрагидрооксиминоциклогексана (II). Высокий выход последнего (70%) можно объяснить тем, что среди многих продуктов, образующихся при взаимодействии соединения I с гидроксиламином и метанолом, оно оказалось наименее растворимым.

Окисление тетраоксима II железосинеропистым калием в щелочной среде привело с количественным выходом к соединению, в спектре ПМР которого наблюдаются три сигнала протонов групп ОМе при 3,41, 3,57 и 3,68 м. д.; соотношение их интегральных интенсивностей составляет 1:2:1. В спектре ЯМР ¹³С имеются сигналы атомов углерода фуроксанового цикла при 153,0 152,6 (C=N), 108,8 и 108,5 (C=N — O) (ср. [4]), три сигнала sp^3 -гибридизованных атомов углерода при 94,4, 93,3 и 92,2, а также сигналы атомов углерода групп ОМе при 52,6, 53,1 и 52,4 м. д. Эти данные можно объяснить тем, что продукт реакции представляет собой смесь (1:1) двух изомерных соединений, отличающихся друг от друга положением N-оксидного атома кислорода: 4,4,8,8-тетраметокси-4H,8H-бензо [1,2-c:4,5-c']бис [1.2.5]оксадиазол-1,5-диоксида 4,4,8,8-тетраметокси-4Н,8Н-бензо [1,2-c:4,5-c'] бис [1.2.5] оксадиазол-1,7диоксида (IIIб). При обработке соединений IIIa, IIIб хлорной кислотой легко происходит гидролиз дикетальных групп и образование продукта, в спектре ЯМР ¹³С которого наблюдается удвоенный набор сигналов, указывающий на то, что полученное соединение также представляет собой смесь двух изомеров: 4,8-диоксо-4H,8H-бензо [1,2-c:4,5-c'] бис [1.2.5] оксадиазол-1,5диоксида (IVa) и 4,8-диоксо-4H,8H-бензо [1,2-c: 4,5-c'] бис [1.2.5] оксадиазол-1,7-диоксида (IVб).

При обработке смеси соединений IIIa и III6 триэтилфосфитом образуется 4,4,8,8-тетраметокси-4H,8H-бензо [1,2-c: 4,5-c']бис [1.2.5] оксадиазол (V). В его спектре ПМР имеется синглетный сигнал протонов групп ОМе при 3,64 м. д. В спектре ЯМР 13 С наблюдаются сигналы атомов углерода групп ОМе при 52,2 sp^3 -гибридизованного атома углерода при 92,6 и атомов углерода группы C=N при 150,0 м. д. Гидролиз хлорной кислотой

Таблица 2

Характеристики синтезированных соединений

		<u> </u>						,	
Соеди- нение	Бругто-формула	<u>Найдено, %</u> Вычислено, %			<i>Т</i> пл, °С*	Найдено.*2 Вычислено	ИК спектр,	уф спектр, λ_{\max} (lg ε)	Вы-
		С	H	N			ν, _{см} -1	I IIIIAA (45 - 7	%
П	C ₁₀ H ₁₆ N ₄ O ₈	37.45 37,50	5,00 5,04	17,40 17,50	238 (разл.)			235 (3,95)	70
IIa*3	C ₁₈ H ₄₀ N ₄ O ₁₂ S ₄	33,95 34,18	6,30 6,33	8.79 8,86	270272	**:			
Ша,б	C ₁₀ H ₁₂ N ₄ O ₈	37,76 37,98	3.80 3,83	17.63 17,72	149151	316,0655 316,0697	2850 (OMe)	275 (4,00)	96
IVa,б	$C_6N_4O_6$	32,10 32,14	_	24,90 25,00	129130	223,9813 223,9818	1720 (C=O)	222(4,00), 278(3,68)	62
. V .	C ₁₀ H ₁₂ N ₄ O ₆	42.15 42,25	4.15 4,26	19,70 19,71	101103		2850 (OMe)	222(4,05)	94
VI	C ₆ N ₄ O ₄	37,28 37,50	_	28,92 29,17	170173		1750 (C=O)	305(3,64)	77,5
VIIa,6	C ₆ H ₂ N ₆ O ₄	32,39 32,43	0.80 0,90	37.89 37,84	290 (разл.)	1		268(4,37)	81
VIII	C ₁₂ N ₈ O ₂	50,15 50,00		38,70 38,89	Более 360	228,0142 228,0145	2210, 2215	310(3,98), 388(4,03),	40
							(C≡N)	490(3,50), 660(2,60)	

[•] Соединения перекристаллизованы из спирта (II, IVa,б и VIIa,б), хлороформа

(Ша,б, V и VI), уксусного ангидрида (VШ).

2 Данные масс-спектра высокого разрешения (мол. масса).

3 S: найдено 20,10%, вычислено 20,25%.

Данные ЯМР ¹³С и масс-спектров синтезированных соединений

Соеди- нение	Спектр ЯМР ¹³ С, м. д.*	Масс-спектр, <i>m/z</i> (<i>I</i> _{ОТН} , %)* ²			
п	50,3 и 51,2 (ОСН ₃); 99,7 [>C(OMe) ₂]; 144,6 (C=NOH)				
Ша,б	52,4, 53,1 и 53,6 (ОСН3); 92,2, 93,3 и 94,4 [>C(OMe)2]; 108,5 и 108,8 (С=N — О), 152,6 и 153,0 (С=N)	316 M ⁺ (30), 285(40), 218(20), 158(60), 128(70), 105(100)			
IVa,б	109,4 и 110,1 (C=N — O), 150,4, 151,0 (C=N), 161,6, 163,7, 165,8 (С=O)	224 M ⁺ (10), 140(40), 88(15)			
v	52,2 (OCH ₃), 92,6 [>C(OMe) ₂], 151,0 (C=N)	284 M ⁺ (10), 253(100), 222(10), 194(10), 100(15), 74(20)			
VI	153,1(C=N), 166,6 (C=O)	192 M ⁺ (40), 96(40), 70(100), 54(50)			
VIIa,6	130,3, 130,6, 144,10, 149,0 (C=N)	222 M [±] (100), 205(10), 175(10), 137(20), 122(20), 70(20)			
VIII	150,0 (C=N), 139,5 (C=C), 111,6 (C=C), 90,9 (C \equiv N)	288 M ⁺ (60), 258(100), 130(30), 114(20)			

^{*} Спектры соединений II, IVa,6, VIIa,6 и VIII записаны в (CD₃)₂SO,

дикетальных групп в соединении V привел к 4,8-диоксо-4H,8H-бензо [1,2-c: 4,5-c'] оксадиазолу (VI), при взаимодействии которого с солянокислым гидроксиламином образуется диоксим (VII). В спектре ЯМР ¹³С последнего наблюдается удвоенный набор сигналов, указывающий на то, что данное соединение представляет собой смесь изомеров VIIa и VII6, отличающихся друг от друга конфигурацией оксимных групп. При обработке соединения VI малонодинитрилом получается 4,8-ди (дицианометилен) –4H,8H-бензо [1,2-c: 4,5-c'] бис [1.2.5] оксадиазол (VIII), строение которого подтверждают данные физико-химических методов анализа (см. табл. 1, 2).

Необходимо отметить, что соединение VIII является аналогом известного акцептора электронов — 4,8-ди (дицианометилен) - 4H,8H-бензо [1,2-c:4,5-c'] бис [1.2.5] тиадиазола [5].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры получены на приборе UR-20 в таблетках KBr, концентрация 0,25%, УФ спектры записаны на приборе Specord VM-vis в этаноле. Спектры ПМР и ЯМР ¹³С регистрировали на приборе Bruker AC-200. Масс-спектры сняты на приборе MS 8200 фирмы Finnigan с ионизирующим напряжением 70 эВ.

Характеристики синтезированных соединений приведены в табл. 1, данные ЯМР 13 С и масс-спектров — в табл. 2.

- 1,1,4,4-Тетраметокси-2,3,5,6-тетрагидроксиминоциклогексан (II). К раствору 100 г (434 ммоль) гидрата тринитрозофлороглюцина I в 800 мл метанола добавляют 30 г (435 ммоль) солянокислого гидроксиламина и смесь выдерживают при комнатной температуре 30 сут. Осадок отфильтровывают, промывают водой, метанолом, сушат. Получают 98 г П. Спектр ПМР (Me₂SO): 3,15 (6H, c, OCH₃); 3,40 (6H, c, OCH₃); 11,51 м. д. (4H, c, NOH). При перекристаллизации соединения II из диметилсульфоксида образуется кристаллосольват C₁0H₁₆N₄O₈ 4Me₂SO (IIa).
- 4,4,8,8-Тетраметокси-4H,8H-бензо[1,2-c: 4,5-c']бис[1,2.5]оксадиазол-1,5-диоксид (Ша) и 4,4,8,8-тетраметокси-4H,8H-бензо[1,2-c: 4,5-c']бис[1,2.5]оксадиазол-1,7-диоксид (Шб). К раствору 1 г (1,58 ммоль) тетраоксима Π в 10 мл 10% водного едкого натра при перемешивании добавляют по каплям раствор 3 г (9,1 ммоль) железосинеродистого калия в 10 мл воды. Смесь выдерживают 30 мин при комнатной температуре. Осадок отфильтровывают, промывают водой, сушат. Получают 0,48 г смеси соединений Π a,6. Спектр Π MP (CDCl3): 3,41 (6H, c, OCH3); 3,56 (12H, c, OCH3); 3,67 м. д. (6H, c, OCH3).
- 4,8-Диоксо-4H,8H-бензо [1,2-c: 4,5-c']бис [1.2.5]-оксадиазол-1,5-диоксид (IVa) и 4,8-диоксо-4H,8H-бензо [1,2-c: 4,5-c']бис [1.2.5]оксадиазол-1,7-диоксид (IVб). К 20 мл хлорной кислоты добавляют 2,0 г (63,2 ммоль) смеси соединений IIIа,6 и перемешивают при температуре 20 °C 30 мин. Реакционную массу охлаждают, добавляют 200 мл воды и экстрагируют этилацетатом (4 \times 50 мл). Экстракт промывают насыщенным раствором хлористого натрия, сушат над сернокислым магнием, упаривают. Остаток суспендируют в хлороформе, осадок отфильтровывают. Получают 0,9 г смеси дикетонов IVa,6.
- 4,4,8,8-Тетраметокси-4H,8H-бензо[1,2-c:4,5-c']бис[1.2.5]оксадиазол (V). К 1,0 г (31,6 ммоль) смеси дифуроксанов IIIа,б добавляют 8 мл триэтилфосфита, смесь осторожно нагревают до кипения и далее кипятят 5 мин. Реакционную массу охлаждают, добавляют 20 мл 10% соляной кислоты. Через 1 ч отфильтровывают осадок, который промывают водой, сушат. Получают 0,82 г соединения V. Спектр ПМР (CDCl3): 3,63 м. д. $(12H, c, OCH_3)$.
- **4,8-Диоксо-4H,8H-бензо**[1,2-c: **4,5-c**]бис[1.2.5]оксадиазол (VI) получают как описано выше для соединений IVa,6.
- 4,8-Дигидроксимино-4H,8H-бензо[1,2-c:4,5-c']бис[1.2.5]оксадиазолы (VIIa,б). К раствору 1,92 г (10 ммоль) дикетона VI в 50 мл метанола добавляют 1,4 г (20 ммоль) солянокислого гидроксиламина в 10 мл воды и смесь выдерживают при комнатной температуре 24 ч. Осадок отфильтровывают, промывают водой, сушат, получают 1,8 г смеси диоксимов VIIa,б.
- 4,8-Ди(дицианометилен)-4H,8H-бензо[1,2-с:4,5-с']бис[1.2.5]оксадиазол (VIII). К раствору 1,92 г (10 ммоль) дикетона VI в 20 мл уксусного ангидрида добавляют 1,4 г (21,2 ммоль) малонодинитрила и смесь кипятят с обратным холодильником 15 мин. Реакционную массу охлаждают, осадок отфильтровывают, промывают уксусным ангидридом, эфиром, сушат. Получают 1,12 г соединения VIII.

СПИСОК ЛИТЕРАТУРЫ

- 1. Общая органическая химия / Под ред. Н. Н. Кочеткова, Л. В. Бакиновского. М.: Химия, 1982. Т. 3. С. 386.
- Беляев Е. Ю., Гидаспов Б. В. // Ароматические нитрозосоединения. Л.: Химия, 1989. С. 173.
- 3. Benedikt R. // Chem. Ber. 1878. Bd 11. S. 1374.
- Хмельницкий Л. И., Новиков С. С., Годовикова Т. И. Химия фуроксанов: Строение и синтез. М.: Наука, 1981. 328 с.
- 5. Yamashita Yoshiro, Suzuki Takonori, Mukai Toshio, Saito Ganzi. // J. Chem. Soc. Chem. Commun. 1985. N 15. P. 1044.

Новосибирский институт органической химии СО РАН, Новосибирск 630090

Поступило в редакцию 05.07.96