Р. П. Литвиновская, С. В. Драч, Н. В. Коваль, В. А. Хрипач

СИНТЕЗ СТЕРОИДОВ, СОДЕРЖАЩИХ ВИЦИНАЛЬНУЮ ДИОЛЬНУЮ ГРУППИРОВКУ В БОКОВОЙ ЦЕПИ, ЧЕРЕЗ ИЗОКСАЗОЛИНОВЫЕ ИНТЕРМЕДИАТЫ*

Последовательность превращений, включающая 1,3-диполярное циклоприсоединение нитрилоксидов к стероидным 22-енам, модификацию полученных изоксазолинов гидроксилированием в положение 4′ и расщепление гетероцикла, приводит к стероидам с полифункциональной открытой цепью — 22,23-дигидрокси-24-кетонам.

Проблема стереоконтролируемого синтеза природных полиоксистероидов определила наш интерес к их новым перспективным синтетическим предшественникам — изоксазолинилстероидам [2]. Нами получен ряд стероидных соединений с гетероциклом в боковой цепи, которые были использованы в синтезе брассиностероидов [3], экдистероидов [4], стеринов морских организмов [5] и др. Стратегия этих синтезов состояла в получении гетероциклических аддуктов взаимодействием стероидных олефинов с нитрилоксидами, раскрытии изоксазолинового ядра и трансформации полученных апиклических соединений.

К расширению синтетического потенциала стероидных изоксазолинов могут привести модификация 20-изоксазолинилстероидов и последующая реализация латентной функциональности гетероцикла. Как известно, изоксазолиновый цикл устойчив к действию многих реагентов — сильных кислот, мягких восстановителей, сильных окислителей. Один из путей модификации 2-изоксазолинов основан на их способности вступать в реакции замещения. При действии сильных оснований происходит отрыв одного из аллильных протонов с образованием стабильного при -60...80 °C аниона, который может взаимодействовать с различными электрофилами [6, 7]. Мы применили этот метод для синтеза стероидных 4'-гидроксиизоксазолинов и последующего их использования для получения стероидов с полифункциональной боковой цепью. Привлекательность подхода состоит еще и в том, что 4'-гидроксиизоксазолины не могут быть получены непосредственно в результате 1,3-диполярного циклоприсоединения нитрилоксидов к стероидным олефинам.

В настоящей работе изучена возможность модификации полученных для этой цели 3'-метилзамещенных 20-изоксазолинилстероидов (IIa, IIIa), а также их 3'-изопропилзамещенных аналогов (II6, III6), описанных нами ранее [8]. Гидроксилирование указанных соединений в положение 4' гетероцикла проводили по методике, использовавшейся в синтезе интермедиатов аминосахаров [6]. Так, депротонирование изоксазолинового цикла соединений II, III диизопропиламидом лития с 3 эквивалентами гексаметапола, последующая обработка полученного аниона триметилборатом и окисление образовавшегося 4'-бората трет-бутилгидропероксидом в присутствии триэтиламина привели к неизвестным ранее 4'-гидроксиизоксазолинилстероидам (IVa,6, Va,6). В ИК спектрах полученных соединений имеются характеристические полосы валентных колебаний группы ОН при 3450 см⁻¹. В спектре ПМР вместо характерного сигнала метиленовых протонов изоксазолинового цикла присутствует однопротонный дублетный

^{*} Предварительное сообщение см. [1].

a R = Me, δ R = i-Pr

сигнал карбинольного протона при 4,92 (R=i-Pr) или 4,80 (R=Me) для 23R-изомеров IV, а в случае 23S-изомеров V — при 4,81 (R=i-Pr) или 4,70 м. д. (R=Me). Сигналы протонов при атоме $C_{(22)}$ упрощаются и смещаются в более сильное поле на 0,3...0,32 м. д. Показательным является смещение сигналов протонов H_{Me} изопропильной группы в более сильное поле.

Образование 4'-гидроксиизоксазолинов подтверждается также превращением их в соответствующие ацетаты (VIa) и (VIIa,б), что в ИК спектрах соединений VI и VII проявляется в виде полосы валентных колебаний сложноэфирной группы при 1750 и 1250 см $^{-1}$, а в спектрах ΠMP — сигналами протонов группы CH_3CO (2,13 м. д.) и смещением сигналов протона при атоме $C_{(4')}$ в более слабое поле.

Характеристики синтезированных соединений*

Соеди- нение	Название	Брутто- формула	<u> Найлено. %</u> Вычислено, %			Выход,
			C ,	Н	N	70
IIa	$(20S,22R)$ - $20(3$ -Метилизоксазолин- 5 -ил $)$ - 3α , 5 -цикло- 6 , 6 - этилендиокси- 5α -прегнан	C ₂₇ H ₄₁ NO ₃	75,41 75,83	9,50 9,66	3.35 3,28	64
IIIa	$(20S,22S)$ - $20(3$ -Метилизоксазолин- 5 -ил $)$ - 3α , 5 -цикло- 6 , 6 - этилендиокси- 5α -прегнан	C ₂₇ H ₄₁ NO ₃	75,54 75,83	<u>9,56</u> 9,66	$\frac{3.22}{3,28}$	20
IVa	$(20S,22S,23S)$ - $20(4$ - Γ идрокси- 3 -метилизоксазолин- 5 -ил $)$ - 3α , 5 -цикло- 6 , 6 -этилендиокси- 5α -прегнан	C ₂₇ H ₄₁ NO ₄	73,00 73,10	9,24 9,32	3.08 3,16	75*2
IVб	$(20S,22S,23S)$ - $20(4$ - Γ идрокси- 3 -изопропилизоксазолин- 5 -ил) - 3α , 5 -цикло- 6 , 6 -этилендиокси- 5α -прегнан	C ₂₉ H ₄₅ NO ₄	73,68 73,84	9,54 9,62	2.87 2,97	56*2
Va	$(20S,22R,23R)$ -20 (4-Гидрокси-3-метилизоксазолин-5-ил) - 3α ,5-цикло-6,6-этилендиокси- 5α -прегнан	C ₂₇ H ₄₁ NO ₄	73,10 72,89	9,32 9,36	3,16 3,11	76*2
Vб	$(20S,22R,23R)$ -20 (4-Гидрокси-3-изопропилизоксазолин-5-ил) - 3α ,5-цикло-6,6-этилендиокси- 5α -прегнан	C ₂₉ H ₄₅ NO ₄	73,70 73,84	9,50 9,62	$\frac{2.88}{2.97}$	78* ²
VIa ,	$(20S,22S,23S)$ - $20(4$ -Ацетокси- 3 -метилизоксазолин- 5 -ил $)$ - 3α , 5 -цикло- 6 , 6 -этилендиокси- 5α -прегнан	C ₂₉ H ₄₅ NO ₅	$\frac{71.35}{71.42}$	9,20 9,30	$\frac{2.69}{2.87}$	95
VIIa	$(20S,22R,23R)$ -20 (4-Ацетокси-3-метилизоксазолин-5-ил) - 3α , δ -цикло-6, δ -этилендиокси- $\delta\alpha$ -прегнан	C ₂₉ H ₄₃ NO ₅	$\frac{71.38}{71.72}$	8,67 8,93	2,74 2,88	97
VIIG	$(20S,22R,23R)$ - $20(4$ -Ацетокси- 3 -изопропилизоксазолин- 5 -ил $)$ - 3α , 5 -цикло- 6 , 6 -этилендиокси- 5α -прегнан	C ₃₁ H ₄₇ NO ₅	72,34 72,48	9,03 9,22	$\frac{2.59}{2.73}$	96
VIIIG	(20 <i>S</i> ,22 <i>S</i> ,23 <i>S</i>)-3α,5-Цикло-6,6-этилен-диокси-5α- холестан-24-он-22,23-диол	C ₂₉ H ₄₆ O ₅	73,20 73,38	9,64 9,77	_	70
ІХб	(20S,22S,23S)-22,23-Циацетокси-3α,5-цикло-6,6- этилендиокси-5α-холестан-24-он	C ₃₃ H ₅₀ O ₇	70.83 70,94	8,95 9,02		80
Хб	(20 S ,22 R ,23 R)-22,23-Диацетокси-3 $lpha$,5-цикло-6,6-этилендиокси-5 $lpha$ -холестан-24-он	C ₃₃ H ₅₀ O ₇	70,85 70,94	8.93 9,02		80* ³ 47* ⁴

^{*2} Все соединения, за исключением IV6, получены в виде масла. Тпл соединения IV6 100...101 °C.

*3 Выход рассчитан на исходный изоксазолинилстероид.

*4 Из соединения VII6.

Из соединения V6.

Спектральные характеристики полученных соединений

Соеди- нение	ИК спектр, см ⁻¹	Масс-спектр, <i>m/z</i>	Спектр ПМР, δ , м. д., КССВ (J), Гн *
IIa	1630	427 [M] ⁺ , 412 [M-Me] ⁺	0,33 (1H, π , π , $J_1 = 4.8$, $J_2 = 7.4$, 4-H); 0,76 (3H, c, 18-Me); 0,88 (3H, π , $J = 7.0$, 21-Me); 1,02 (3H, c, 19-Me); 1,96 (3H, c, 3'-Me); 2,68 (2H, π , $J = 10.0$, 4'-H); 4,64 (1H, π , 22-H)
Ша	1630	427 [M] ⁺ , 412 [M-Me] ⁺	0,33 (1H, π . π , $J_1 = 4.8$, $J_2 = 7.4$, 4-H); 0,72 (3H, c, 18-Me); 0,90 (3H, π , $J = 7.0$, 21-Me); 1,02 (3H, c, 19-Me); 1,96 (3H, c, 3'-Me); 2,70 μ 2,96 (2H, π . π , $J_1 = 10$, $J_2 = 4$, 4'-H); 4,70 (1H, μ , 22-H)
IVa	3450	463 [M] +, 448 [M-Me] +, 421 [M- <i>i</i> -Pr] +	0,34 (1H, π . π , J_1 = 4,8, J_2 = 7,4, 4-H); 0,74 (3H, π , J = 7,0, 21-Me); 0,78 (3H, c, 18-Me); 1,02 (3H, c, 19-Me); 2,04 (3H, c, 3'-Me); 4,32 (1H, π , 22-H); 4,80 (1H, π , J = 5, 4'-H)
IV6	3450	471 [M] ⁺ , 456 [M-Me] ⁺ , 429 [M- <i>i</i> -Pr] ⁺	0,31 (1H, д. д, $J_1 = 4.8$; $J_2 = 7.4$; 0,74 (3H, д, $J = 7.1$, 21-Me); 0,78 (3H, с, 18-Me); 1,02 (3H, с, 19-Me); 1,21 и 1,27 (6H, два д, 26- и 27-Me); 2,82 (1H, м, CHMe ₂); 4,34 (1H, м, 22-H); 4,92 (1H, д, $J = 5$, 4'-H)
Va	.3450	463 [M+I], 448 [M-Me] ⁺ 421 [M-i-Pr] [‡]	$\overline{0,34}$ (1H, д. д, $J_1 = 4,8$, $J_2 = 7,4$, 4-H); 0,75 (3H, д, $J = 7,0$, 21-Me); 0,80 (3H, c, 18-Me); 1,02 (3H, c, 19-Me); 2,04 (3H, c, 3'-Me); 4,34 (1H, м, 22-H); 4,70 (1H, д, $J = 4,5$, 4'-H)
V б	3450	471 [M] ⁺ , 456 [M-Me] ⁺ 429 [M- <i>i</i> -Pr] [‡]	0,31 (1H, д. д, $J = 4.8$, $J = 7.4$, 4-H); 0,71 (3H, с, 18-Me); 0,76 (3H, д, $J = 7.0$, 21-Me); 1,02 (3H, с, 19-Me); 1,22 и 1,28 (6H, два д, $J = 7.0$, 26- и 27-Me); 2,80 (1H, м, <u>CHMe</u> ₂); 4,34 (1H, м, 22-H); 4,81 (1H, д, $J = 4.5$, 4'-H)
VIa	1750, 1240	485 [M] [†] , 470 [M-Me] [†] , 425 [M-AcOH] [†]	0,34 (1 π , π , $J_1 = 4,8$, $J_2 = 7,4$, 4-H); 0,74 (3H, c, 18-Me), 0,82 (3H, π , $J = 7,0$, 21-Me); 1,01 (3H, c, 19-Me); 1,96 (3H, c, 3'-Me); 2,06 (3H, c, Ac); 4,42 (1H, π , 22-H); 6,00 (1H, π , $J = 5,0$, 4'-H)
VIIa	1745, 1240	485 [M] ⁺ , 470 [M-Me] ⁺ , 425 [M-AcOH] ⁺	0,34 (1H, π . π , J_1 = 4,8, J_2 = 7,4); 0,72 (3H, c, 18-Me); 0,84 (3H, π , J = 7,0, 21-Me), 1,00 (3H, c, 19-Me); 1,98 (3H, c, 3'-Me); 2,14 (3H, c, Ac); 4,44 (1H, π , 22-H); 5,68 (1H, π , J = 4,5, 4'-H)
VIIG	1740, 1250	513 [M] ⁺ , 498 [M-Me] ⁺ , 471 [M- <i>i</i> -Pr] ⁺ , 453 [M-AcOH] ⁺	0,33 (1H, д. д, J_1 = 4,8, J_2 = 7,4); 0,72 (3H, с, 18-Ме); 0,80 (3H, д, J = 7,0, 21-Ме); 1,02 (3H, с, 19-Ме); 1,18 и 1,25 (6H, два д, 26- и 27-Ме); 2,12 (3H, с, Ac); 2,71 (1H,м, <u>CH</u> Me ₂); 4,38 (1H, м, 22-H); 5,83 (1H, д, J = 4,5, 4'-H)
VIII6	3430, 1720	474 [M] ⁺ , 459 [M-Me] ⁺ , 456 [M-H ₂ O] ⁺	0,33 (1H, д. д, J_1 = 4,8, J_2 = 7,4, 4-H); 0,74 (3H, c, 18-Me); 0,87 (3H, д, J = 7,0, 21-Me); 1,02 (3H, c, 19-Me); 1,12 и 1,14 (6H, два д, J = 7,0, 26- и 27-Me); 3,06 (1H, м, $\underline{\text{CH}}$ Me ₂); 4,16 (1H, м, 22-H); 4,35 (1H, м, 23-H)
IX6	1750, 1240	558 [M] +, 543 [M-Me] +, 498 [M-AcOH] +, 438 [M-2AcOH] +	0,33 (1H, \upbeta , \upbeta , \upbeta , 1,2 = 7,4; 0,72 (3H, c, 18-Me); 0,87 (3H, \upbeta , \upbeta , 2,1-Me); 1,01 (3H, c, 19-Me); 1,06 \upbeta , 1,18 (6H, \upbeta , \upbeta , \upbeta , 2,2-Me); 2,03 (3H, c, Ac); 2,14 (3H, c, Ac); 2,88 (1H, \upbeta , \upbeta , \upbeta , 2,1-4 (3H, c, Ac); 2,88 (1H, \upbeta , \upbeta , \upbeta , 1,1 = 2,5, \upbeta , 2,2-H); 5,38 (1H, \upbeta , \upbeta , 1,2-7,0, 23-H).
Хб	1750, 1240	558 [M] ⁺ , 543 [M-Me] ⁺ , 498 [M-AcOH] ⁺ 438 [M-2AcOH] ⁺	0,33 (1H, д. д, J_1 = 4,8, J_2 = 7,4, 4-H); 0,73 (3H, c, 18-Me); 1,02 (3H, c, 19-Me); 1,06 (6H, д, J = 7,0, 26- и 27-Me); 1,18 (3H, д, J = 7,0, 21-Me); 2,08 (3H, c, Ac); 2,16 (3H, c, Ac); 2,80 (1H, м, $\underline{CHMe_2}$); 5,32 (2H, м, 22- и 23-H)

В спектрах всех соединений сигнал протона 3-Н имеет вид триплета с центром при 0,62 м. д.; мультиплетный сигнал протонов этилендиоксигруппы находится в области 3,68...4,08 м. д.

Из приведенных данных ясно, что реакция гидроксилирования, как и ожидалось, протекает регио- и стереоизбирательно, приводя только к эндо-продукту с транс-конфигурацией кислородсодержащих заместителей в положениях 4′ и 5′, что согласуется с литературными данными [7] и подтверждается дальнейшими химическими превращениями изоксазолинилстероидов IV—VII.

Переход к соединениям с открытой боковой цепью был осуществлен путем восстановительного расщепления изоксазолина IV6 на никеле Ренея в присутствии борной кислоты. Полученный (22S), (23S)-дигидрокси-24-кетон (VIII6) имеет в ИК спектре широкую полосу валентных колебаний гидроксильной группы (3430 см $^{-1}$) и интенсивную полосу валентных колебаний карбонильной группы (1720 см $^{-1}$). В спектре ПМР присутствуют два однопротонных мультиплета (4,16 и 4,35 м. д.), соответствующие протонам при атомах $C_{(22)}$ и $C_{(23)}$. Показательным является значительное смещение сигнала протонов 21-метильной группы в более слабое поле.

Как и описанные ранее 24-оксо-22,23-цис-диолы [9] полученный 22,23-транс-диол VIII6 неустойчив и легко претерпевает расшепление по связи $C_{(22)}$ — $C_{(23)}$ с образованием 22-альдегида, что значительно уменьшает выход целевого продукта. Предотвратить такой распад можно его превращением в соответствующий диацетат (IX6). В ИК спектре последнего присутствуют полосы поглощения групп CH_3CO (1750 и 1240 см $^{-1}$), которые в спектре ПМР проявляются в виде двух трехпротонных синглетов; смещены (по сравнению с диолом) сигналы протонов при атомах $C_{(22)}$ и $C_{(23)}$ в более слабое поле (5,18 и 5,38 м. д. соответственно). Основными фрагментами в масс-спектре соединения IX6 являются $[M-15]^+$ (отщепление метильной группы), $[M-60]^+$ и $[M-120]^+$ (отщепление элементов уксусной кислоты).

Сравнение спектральных характеристик полученных (22S), (23S)изомеров диола VIIIб и его диацетата IXб с характеристиками известных (22S), (23S)-изомеров [9] позволяет подтвердить конфигурацию образовавшегося в реакции гидроксилирования хирального центра при атоме C (23). Учитывая тот факт, что стереохимия центра при атоме C (22) молекул IV, VIII и IX не изменяется в рассмотреннной цепи превращений, в случае (22R)-изомера Пб параметры продукта его гидроксилирования и раскрытия (если бы гидроксилирование шло в цис-положение) должны были бы совпадать с параметрами известного (22S), (23R)-цис-диола и его диацетата, для которых характерны следующие химические сдвиги в спектре ПМР: 3,98 (22-Н) и 4,35 (23-Н) для диола 5,20 и 5,28 м. д. соответственно для диацетата [9]. Однако, несмотря на то, что форма сигналов похожа, их положение в случае продуктов, синтезированных в настоящей работе, отличается: химические сдвиги составляют 4,16 и 4,35 для диола VIII6, 5,18 и 5,38 м. д. для диацетата IXб. При этом четко разрешенные сигналы в спектрах сравниваемых диацетатов позволяют вычислить КССВ (Л). Так, для диацетата μuc -диола $J_{22,23} = 1$ Γu [8], а для диацетата mpahc-диола IX6 $J_{22,23} = 7 \, \Gamma$ д. Эти данные также свидетельствуют в пользу сделанных структурных отнесенений.

Превращение 4'-гидроксиизоксазолинилстероида V6 в ациклический продукт (X6) было проведено двумя способами. Во-первых, путем расшепления гетероцикла соединения V6 и последующего ацетилирования неочищенного диола (XI6). Выход диацетата X6 при этом составил 47%. Во-вторых, путем раскрытия изоксазолинового цикла 4'-ацетоксипроизводного VII6 с последующим ацетилированием образовавшегося 23-ацетокси-22-гидроксистероида (XII6). Выход диацетата X6 во втором случае составляет 80%, т. е. этот путь является предпочтительным для превращения 4'-гидроксиизоксазолинилстероидов в соединения с открытой цепью. Предложенный метод позволяет формировать 22,23-транс-вицинальную диольную группировку, что трудно осуществить другим путем.

Наличие 24-кетогруппы может быть использовано для синтеза ряда производных, что в частности показано на примере получения боковой цепи (22S), (23S)-долихолида [9].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ПМР сняты на приборах Bruker WM-360 и Bruker A-200 (рабочая частота 360 и 200 МГц), внутренний стандарт ТМС. ИК спектры получены на приборе UR-20 (в пленке и в таблетке КВг). Масс-спектры измерены на приборе Varian MAT-311 при энергии ионизирующего излучения 70 эВ. Температура плавления определена на блоке Кофлера.

Контроль за ходом реакции осуществляли методом ТСХ на пластинках с силикагелем фирмы Мегск. Колоночная хроматография проводилась на силикагеле Silicagel L 5/40, 40/100, 100/160 фирмы Chemapol и Kieselgel 60 фирмы Merck.

Синтез 20-(3-R-изоксазолинил-5) стероидов (Па,б, Па,б). К 10 ммоль N-хлорсукцинимида, суспендированного в 20 мл безводного хлороформа и 0,04 мл пиридина, добавляют 10 ммоль оксима ацетальдегида или изомасляного альдегида и полученную массу перемешивают ~20 мин. К образовавшемуся прозрачному раствору при 20 °С добавляют 2 ммоль стероидного олефина I в 25 мл хлороформа и после непродолжительного перемешивания — 10 ммоль триэтиламина (по каплям), после чего реакционную массу перемешивают 3 ч. Растворитель упаривают, из остатка колоночной хроматографией на силикагеле (элюент гексан—эфир, 7:1) выделяют соответствующие изомерные продукты II и III.

4'-Гидроксилирование 20-изоксазолинилстероидов (Па,б и Па,б). К смеси 2 мл тетрагидрофурана, 3...4 ммоль гексаметапола и 1,1 ммоль диизопропиламина при -65 °С добавляют 0,7 мл 1,6 N н-бутиллития, затем через 10 мин 0,33 ммоль стероида П или ПІ в 10 мл тетрагидрофурана. Реакционную массу перемешивают 30 мин, охлаждают до -78 °С, выдерживают при этой температуре 2 ч, после чего добавляют 2 ммоль триметилбората и перемешивают 2,5 ч. Затем к реакционной смеси добавляют 4,5 ммоль перекиси третобутила в 0,63 мл триэтиламина и выдерживают ее 60 ч при комнатной температуре. Обрабатывают водой, экстрагируют эфиром, экстракт сушат безводным сульфатом натрия, упаривают, из остатка колоночной хроматографией (элюент гексан—эфир, 5 : 2) выделяют продукты IV и V соответственно.

Расщепление гетероцикла 20-(4-гидрокси-3-изопропилизоксазолинил-5) стероидов IV6, V6 и 20-(4-ацетокси-3-изопропилизоксазолинил-5) стероида VII6. К никелю Ренея марки W-2, насыщенному в течение 2 ч водородом, при перемешивании в этаноле добавляют 1 ммоль борной кислоты и раствор 0,01 ммоль соединения IV6 в этаноле. Реакционную смесь перемешивают при комнатной температуре в атмосфере водорода 5 ч. После окончания реакции (по данным TCX) катализатор отфильтровывают, растворитель упаривают. Остаток растворяют в этилацетате, раствор промывают водой, сушат безводным сернокислым натрием, упаривают. Из остатка колоночной хроматографией (элюент эфир—гексан, 2 : 7) выделяют продукт VIII6. Аналогично проводят расщепление соединений V6 и VII6; полученные продукты XI6 и XII6 соответственно без хроматографической очистки подвергают дальнейшему ацетилированию (см. ниже).

Ацетилирование 4'-гидроксиизоксазолинилстероидов IVб и Vа,б, 22,23-стероидных диолов VIIIб и XI6, 22-гидрокси-23-ацетоксистероида XII6. К раствору 0,16 ммоль исходного стероида в 1 мл пиридина по каплям добавляют 0,5 мл уксусного ангидрида. Реакционную смесь выдерживают при комнатной температуре 18...20 ч, обрабатывают водой, экстрагируют эфиром, экстракт промывают 0,5% раствором соляной кислоты до нейтральной реакции. Сушат над безводным сернокислым натрием, растворитель упаривают, остаток растворяют в небольшом количестве хлороформа и очищают, пропуская через слой силикагеля.

Работа выполнена при финансовой поддержке Международного научного фонда (грант MWC000 и MWC300).

СПИСОК ЛИТЕРАТУРЫ

- 1. Литвиновская Р. П., Драч С. В., Хрипач В. А. // ЖОрХ. 1994. Т. 30. С. 304.
- 2. Барановский А. В., Литвиновская Р. П., Хрипач В. А. // Успехи химии. 1993. Т. 62. С. 704.
- Хрипач В. А., Литвиновская Р. П., Барановский А. В., Ахрем А. А. // ДАН. 1991. Т. 318. — С. 597.

- 4. Khripach V. A., Litvinovskaya R. P., Baranovskii A. V. // Mendeleev Commun. 1992. N 3. P. 117.
- Litvinovskaya R. P., Baranovskii A. V., Khripach V. A., Ovchinnikov Yu. E., Struchkov Yu. T. // Mendeleev Commun. — 1994. — N 3. — P. 89.
- 6. Schwab W., Jager V. // Angew. Chem. Int. Ed. 1981. Vol. 20. P. 603.
- 7. Jager V., Schwab W. // Tetrah. Lett. 1978. N 34. P. 3129.
- 8. Ахрем А. А., Хрипач В. А., Литвиновская Р. П., Барановский А. В. // ЖОрХ. 1989. T. 25. — С. 1901.
- 9. Хрипач В. А., Литвиновская Р. П., Барановский А. В., Драч С. В. // ЖОрХ. 1993. Т. 29. — С. 724.

Институт биоорганической химии АН Беларуси, Минск 220141 Поступило в редакцию 13.05.96