Я. С. Каюков, П. М. Лукин, О. Е. Насакин, Я. Г. Урман, В. Н. Хрусталев, В. Н. Нестеров, М. Ю. Антипин, В. В. Шевердов

ВЗАИМОДЕЙСТВИЕ

2-АРИЛ-6-ГИДРОКСИ-5,6-ТЕТРАМЕТИЛЕНПИПЕРИДИН-3,3,4,4-ТЕТРАКАРБОНИТРИЛОВ И 2-АРИЛ-5,6-ТЕТРАМЕТИЛЕН-3,3,4-ТРИЦИАНО-2,3,4,5-ТЕТРАГИДРОПИРИДИН-4-КАРБОКСАМИДОВ С АММИАКОМ

При взаимодействии 2-арил-6-гидрокси-5,6-тетраметиленпиперидин-3,3,4,4-тетракарбонитрилов и 2-арил-5,6-тетраметилен-3,3,4-трициано-2,3,4,5-тетрагидропиридин-4-карбоксамидов с аммиаком образуются 5-арил-1,7-тетраметилен-3-имино-4,8-дициано-2,6-диазабицикло [2.2.2] октан-8-карбоксамиды, которые в растворителях (в зависимости от их природы) превращаются в 3-амино-6-оксо-1,8-тетраметилен-2,7-диазабицикло [3.2.1] окта-3-ен-4,5-дикарбонитрил и 2-амино-3-циано-5,6-тетраметиленпиридин-4-карбоксамид.

Недавно нами при взаимодействии (2-оксоциклогексил) этан-1,1,2,2-тетракарбонитрилов с 1,3,5-триарил-2,4-диаза-1,4-пентадиенами в качестве промежуточных соединений были выделены 2-арил-6-гидрокси-5,6-тетраметиленпиперидин-3,3,4,4-тетракарбонитрилы (I) и 2-арил-5,6-тетраметилен-3,3,4-трициано-2,3,4,5-тетрагидропиридин-4-карбоксамиды (II), которые легко изомеризуются в 3-амино-4-арил-6,7-тетраметилен-1-оксо-3а,4,5,7а-тетрагидро-1H-пирроло [3,4-с] пиридин-3а,7а-дикарбонитрилы при нагревании в спиртах. При действии третичного амина этот процесс ускоряется [1].

Продолжая исследования, мы обнаружили, что в отличие от замещенных аминов водный аммиак образует с соединениями Ia,б и IIa—в 5-арил-1,7-тетраметилен-3-имино-4,8-дициано-2,6-диазабицикло[2.2.2]октан-8-карбоксамиды (IIIa—в). Эти соединения, устойчивые в кристаллическом состоянии, в растворе претерпевают дальнейшие превращения, степень которых зависит от природы растворителя и условий проведения реакции. Соединения IIIа, в ацетоне изомеризуются в 2-амино-6арилиденамино-5,6-тетраметилен-3,4-дициано-1,4,5,6-тетрагидропиридин-4-карбоксамиды (IVa,в). Нагревание или длительное выдерживание бициклов IIIа—в в изопропиловом спирте приводит к 3-амино-6-оксо-1,8тетраметилен-2,7-диазабицикло [3.2.1]окта-3-ен-4,5-дикарбонитрилу При выдерживании бициклов IIIа—в в ацетонитриле при комнатной температуре наряду с соединением V с небольшим выходом образуется 2-амино-3-циано-5,6-тетраметилен-пиридин-4-карбоксамид (VI). Структуры соединений IVв, V, VI установлены по данным рентгеноструктурных исследований монокристаллов (рис. 1-3). Строение соединения IVa определено сопоставлением его ИК спектра со спектром соединения IVв. Строение бициклов IIIа—в установлено на основании данных элементного анализа и ИК спектров (табл. 1, 2), а также тем, что они количественно превращаются в бициклы V через промежуточные соединения IVа-в.

Основываясь на полученных данных, можно предположить, что спирты Ia,б предварительно превращаются в амиды IIa,б. Далее, вероятно, в соединениях IIa—в происходит нуклеофильное присоединение аммиака по двойной C=N связи с последующей внутримолекулярной циклизацией в бициклы IIIa—в. Стереохимические условия этого процесса таковы, что при

I–IV а Ar=Ph, б Ar=2-фурил, в Ar=p-MeOC $_6H_4$

Таблица 1

Соеди- нение	Бругго-	<u>Найдено. %</u> Вычислено, %			<i>Т</i> пл (разл.),	Выход, %	
нение	формула	с н		N	°€	2	
			1.00				
Ша	C ₁₉ H ₂₀ N ₆ O	65,37 65,50	<u>5.65</u> 5,78	$\frac{24.04}{24,12}$	119121	50	
шб	C ₁₇ H ₁₈ N ₆ O	60,12 60,29	5,42 5,36	24.67 24,83	>110	30 🗀	
Шв	C ₂₀ H ₂₂ N ₆ O ₂	63,32 63,47	5.76 5,86	22,03 22,21	9596	15	
IVa	C ₁₉ H ₂₀ N ₆ O	65,38 65,50	5,65 5,78	24,12 24,12	>110	80	
IVв	C ₂₀ H ₂₂ N ₆ O ₂	63.35 63,47	5.78 5,86	22,14 22,21	>130	75	

Характеристики соединений IIIа-в, IVa,в

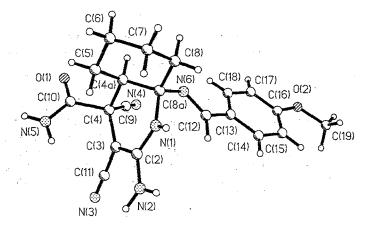


Рис. 1. Молекулярная структура соединения IVв

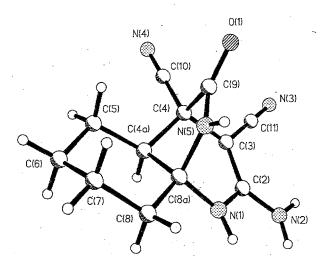


Рис. 2. Молекулярная структура соединения V

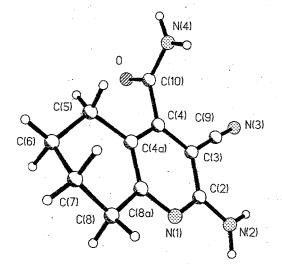


Рис. 3. Молекулярная структура соединения VI

Таблица 2 ИК спектры соединений ППа—в, IVa,в

		·				
Соеди-	ν, _{см} -1					
нение	$\nu_{\text{C=O}}, \nu_{\text{C=C}}, \nu_{\text{C=N}}, \delta_{\text{NH2}}$	$\nu_{\rm C} \equiv { m N}$	$ u_{ m NH2}, u_{ m N-H}$			
IIIa	1695, 1640, 1590	2260	3575, 3490, 3370, 3260, 3150			
Шб	1695, 1645, 1580	2255	3525, 3405, 3340, 3270, 3150			
Шв	1695, 1635, 1600, 1590	2255	3590, 3495, 3380, 3280, 3160			
IVa	1730, 1670, 1620, 1600	2265, 2190	3590, 3510, 3390, 3270, 3100			
IVв	1730, 1670, 1630, 1600	2240, 2180	3490, 3340, 3260			

 $\begin{tabular}{llll} T аблица 3 \\ Koopдuhatы неводородных атомов (<math>\times 10^4$) и коэффициенты эквивалентного изотропного смещения ($\mathring{A}^2 \times 10^5$) соединения IVв

Атом	х	у	z	U(eq)
0	50(4(2)	0600(3)	1042(2)	35(1)
O ₍₁₎	5064(3) 2134(3)	9699(2) 7391(2)	5932(2)	47(1)
O(2)	3409(4)	2630(3)	6540(3)	94(2)
O(3)	765(5)	9740(4)	6989(3)	74(3)
O(4)	2270(3)	11594(3)	2311(2)	27(1)
N(1)	643(4)	11400(3)	1311(2)	32(2)
N(2)	1070(3)	9206(3)	226(2)	42(2)
N(3)	3776(3)	8406(3)	22/2/2)	42(2)
N(4)	3661 (4)	10510(3)	182(2)	33(2)
N(5)	3277(3)	10310(3)	3317(2)	28(1)
N(6)	1710(4)	11120(3)	1634(2)	25(2)
C ₍₂₎	2247(4)		1289(2)	24(2)
C ₍₃₎	3487(4)	10380(3)	1585(2)	24(2)
C ₍₄₎	4092(4)	10172(3)	2205(2)	26(2)
C _(4a)	4413(4)	11886(3)	1772(3)	31(2)
C ₍₅₎	4980(5)	12656(4)	2388(3)	39(2)
C ₍₆₎	4223(5)	12965(3)	2943(3)	40(2)
C ₍₇₎	3891 (4)	12965(3)	3385(3)	33(2)
C ₍₈₎	3342(4)	11251(3)	2796(2)	26(2)
C(8a)	3657(4)	9187(4)	1983(3)	29(2)
C ₍₉₎	4141(4)	10098(3)	891(3)	26(2)
C ₍₁₀₎	1591(4)	9747(3)	706(3)	30(2)
C ₍₁₁₎	2354(5)	10187(3)	3500(2)	29(2)
C ₍₁₂₎	2267(4)	9406(3)	4092(2)	29(2)
C ₍₁₃₎	1323(4)	9374(3)	4421 (3)	34(2)
C ₍₁₄₎	1243(4)	8716(3)	5036(3)	36(2)
C ₍₁₅₎	2112(4)	8066(3)	5319(3)	34(2)
C ₍₁₆₎	3048(5)	8062(4)	4976(3)	39(2)
C ₍₁₇₎	3116(4)	8727(4)	4375(3)	38(2)
C ₍₁₈₎	1195(6)	7396(4)	(215(4)	59(3)
C ₍₁₉₎	3035(6)	2105(6)	5962(4)	76(3)
C ₍₂₀₎	3692(7)	1297(8)	5757(5)	80(4)
C ₍₂₁₎	1913(9)	2342(8)	5385(8)	80(4)
C ₍₂₂₎	1613(5)	9834(4)	7499(4)	59(3)
C ₍₂₃₎	2732(10)	9616(8)	7320(6)	82(6)
C ₍₂₄₎ C ₍₂₅₎	1578(6)	10127(4)	8335(4)	62(3)

Таблица 4 Длины связей и валентные углы в молекуле соединения IVв

Связь	Длина, Å	Угол	ω, град.	Угол	ω, град.
,				-	
O(1)—C(10)	1,226(6)	C(16)—O(2)—C(19)	116,8(4)	$N_{(1)}-C_{(8a)}-C_{(8)}$	109,3(3)
O(2)—C(16)	1,374(5)	$C_{(2)}$ — $N_{(1)}$ — $C_{(8a)}$	122,3(4)	$N_{(6)}$ — $C_{(8a)}$ — $C_{(8)}$	105,8(3)
O(2)—C(19)	1,439(9)	C(8a)—N(6)—C(12)	119,3(4)	$C_{(4a)}$ — $C_{(8a)}$ — $C_{(8)}$	110,5(4)
O(3)—C(20)	1,206(8)	N ₍₁₎ —C ₍₂₎ —N ₍₂₎	117,3(4)	N(4)—C(9)—C(4)	176,0(4)
O(4)—C(23)	1,187(7)	N ₍₁₎ —C ₍₂₎ —C ₍₃₎	119,9(4)	$O_{(1)}$ — $C_{(10)}$ — $N_{(5)}$	124,8(5)
$N_{(1)}$ — $C_{(2)}$	1,346(5)	N(2)—C(2)—C(3)	122,8(4)	$O_{(1)}-C_{(10)}-C_{(4)}$	118,7(3)
$N_{(1)}$ — $C_{(8a)}$	1,450(5)	$C_{(2)}$ — $C_{(3)}$ — $C_{(4)}$	122,1(3)	N(5)—C(10)—C(4)	116,4(4)
$N_{(2)}$ — $C_{(2)}$	1,347(6)	$C_{(2)}$ — $C_{(3)}$ — $C_{(11)}$	118,9(4)	N(3)—C(11)—C(3)	178,2(5)
$N_{(3)}$ — $C_{(11)}$	1,166(6)	$C_{(4)}$ — $C_{(3)}$ — $C_{(11)}$	118,7(4)	N ₍₆₎ —C ₍₁₂₎ —C ₍₁₃₎	121,8(4)
N(4)—C(9)	1,147(6)	$C_{(3)}$ — $C_{(4)}$ — $C_{(4a)}$	111,6(3)	$C_{(12)}$ — $C_{(13)}$ — $C_{(14)}$	119,0(4)
N(5)—C(10)	1,321(5)	C(3)—C(4)—C(9)	109,9(3)	$C_{(12)}C_{(13)}C_{(18)}$	123,0(5)
$N_{(6)}$ — $C_{(8a)}$	1,478(5)	$C_{(4a)}-C_{(4)}-C_{(9)}$	109,8(3)	$C_{(14)}-C_{(13)}-C_{(18)}$	117,9(4)
N ₍₆₎ —C ₍₁₂₎	1,267(7)	C(3)—C(4)—C(10)	114,6(3)	$C_{(13)}-C_{(14)}-C_{(15)}$	121,5(4)
$C_{(2)}$ — $C_{(3)}$	1,399(6)	$C_{(4a)}-C_{(4)}-C_{(10)}$	107,1(3)	$C_{(14)}$ — $C_{(15)}$ — $C_{(16)}$	119,4(5)
$C_{(3)}$ — $C_{(4)}$	1,509(6)	C(9)—C(4)—C(10)	103,5(3)	$O_{(2)}$ — $C_{(16)}$ — $C_{(15)}$	124,5(5)
$C_{(3)}$ — $C_{(11)}$	1,406(6)	$C_{(4)}$ — $C_{(4a)}$ — $C_{(5)}$	112,7(3)	$O_{(2)}-C_{(16)}-C_{(17)}$	115,5(4)
$C_{(4)}$ — $C_{(4a)}$	1,576(5)	$C_{(4)}$ — $C_{(4a)}$ — $C_{(8a)}$	109,4(4)	$C_{(15)}-C_{(16)}-C_{(17)}$	120,0(4)
$C_{(4)}$ — $C_{(9)}$	1,493(6)	$C_{(5)}$ — $C_{(4a)}$ — $C_{(8a)}$	111,5(3)	$C_{(16)}-C_{(17)}-C_{(18)}$	119,7(5)
$C_{(4)}$ — $C_{(10)}$	1,560(7)	$C_{(4a)}$ — $C_{(5)}$ — $C_{(6)}$	111,3(4)	$C_{(13)}$ — $C_{(18)}$ — $C_{(17)}$	121,5(5)
$C_{(4a)}-C_{(5)}$	1,530(6)	$C_{(5)}$ — $C_{(6)}$ — $C_{(7)}$	111,1(4)	$O_{(3)}-C_{(20)}-C_{(21)}$	120,9(6)
$C_{(4a)}$ — $C_{(8a)}$	1,542(7)	$C_{(6)}$ — $C_{(7)}$ — $C_{(8)}$	109,9(4)	O(3)—C(20)—C(22)	120,2(7)
$C_{(5)}$ — $C_{(6)}$	1,522(6)	$C_{(7)}-C_{(8)}-C_{(8a)}$	113,2(4)	$C_{(21)}-C_{(20)}-C_{(22)}$	118,7(7)
C ₍₆₎ —C ₍₇₎	1,516(8)	$N_{(1)}$ — $C_{(8a)}$ — $N_{(6)}$	115,0(4)	O(4)—C(23)—C(24)	121,4(7)
$C_{(7)}-C_{(8)}$	1,535(7)	$N_{(1)}-C_{(8a)}-C_{(4a)}$	108,2(3)	$O_{(4)}-C_{(23)}-C_{(25)}$	120,1(6)
$C_{(8)}$ — $C_{(8a)}$	1,534(6)	$N_{(6)}$ — $C_{(8a)}$ — $C_{(4a)}$	108,0(3)	$C_{(24)}$ — $C_{(23)}$ — $C_{(25)}$	118,4(6)
$C_{(12)}$ — $C_{(13)}$	1,476(6)			•	
C ₍₁₃₎ —C ₍₁₄₎	1,391(7)				
$C_{(13)}$ — $C_{(18)}$	1,390(6)	÷			
$C_{(14)}$ — $C_{(15)}$	1,387(7)				
C(15)—C(16)	1,381(7)	* .			
$C_{(16)}$ — $C_{(17)}$	1,395(8)				
$C_{(17)}$ — $C_{(18)}$	1,373(7)				
$C_{(20)}$ — $C_{(21)}$	1,45(1)	• .			
$C_{(20)}$ — $C_{(22)}$	1,52(1)				
$C_{(23)}$ — $C_{(24)}$	1,50(2)				
C ₍₂₃₎ —C ₍₂₅₎	1,467(9)			, '	

присоединении образуется новая связь C—N в μuc -позиции по отношению к карбамоильной группе. Только в этом случае возможны соблюдения стереохимических особенностей соединений IV и V (рис. 1, 2). При образовании соединений IV и V определяющей стадией, по-видимому, является гетеролитический разрыв связи C(4)—C(5) соединения III. Соединение VI не получается из соединений IVа, в даже при проведении реакции в сильноосновной среде, вероятно, потому, что потенциально уходящие группы (H и N=CHAr или H и C $\equiv N$) не могут отщепляться по

Координаты неводородных атомов ($\times 10^4$) и коэффициенты эквивалентного изотропного смещения ($\mathring{A}^2 \times 10^3$) соединения V

Таблица 5

Атом	. x	у	z	$U_{(eq)}$
O ₍₁₎	4048(2)	3339(1)	941(1)	40(1)
N(1)	7058(2)	8605(1)	2944(1)	34(1)
N(2)	9755(2)	8199(2)	4236(1)	43(1)
N(3)	7374(2)	3394(2)	4509(1)	69(1)
N(4)	1179(2)	2026(2)	3089(1)	59(1)
N(5)	4785(2)	6437(1)	1174(1)	31(1)
C ₍₂₎	7694(2)	7488(2)	3586(1)	31(1)
C(3)	6212(2)	5692(2)	3532(1)	33(1)
C ₍₄₎	3958(2)	5030(2)	2696(1)	30(1)
C(4a)	3296(2)	6636(2)	2640(1)	31(1)
C ₍₅₎	994(2)	6059(2)	1891(1)	40(1)
C ₍₆₎	653(3)	7690(2)	1457(2)	49(1)
C ₍₇₎	2224(2)	8688(2)	803(1)	45(1)
C(8)	4518(2)	9386(2)	1577(1)	37(1)
C(8a)	4962(2)	7848(2)	2076(1)	30(1)
C ₍₉₎	4216(2)	4762(2)	1474(1)	30(1)
C ₍₁₀₎	2397(2)	3340(2)	2923(1)	37(1)
C(11)	6866(2)	4437(2)	4073(1)	41(1)

Таблица б Длины связей и валентные углы в молекуле соединения V

Связь	Длина, Å	Угол	ω, град.	Угол	ω, град.
CBS3b O(1)—C(9) N(1)—C(2) N(1)—C(8a) N(2)—C(2) N(3)—C(11) N(4)—C(10) N(5)—C(8a) N(5)—C(9) C(2)—C(3) C(3)—C(4) C(3)—C(11) C(4)—C(4a) C(4)—C(9)	Длина, Å 1,224(2) 1,360(2) 1,452(1) 1,340(2) 1,146(2) 1,134(2) 1,469(2) 1,342(2) 1,390(2) 1,523(2) 1,403(2) 1,543(2) 1,549(2)	Yron C(2)—N(1)—C(8a) C(8a)—N(5)—C(9) N(1)—C(2)—N(2) N(1)—C(2)—C(3) N(2)—C(3)—C(4) C(2)—C(3)—C(11) C(4)—C(3)—C(11) C(3)—C(4)—C(4a) C(3)—C(4)—C(9) C(4a)—C(4)—C(9) C(4a)—C(4)—C(10) C(4a)—C(4)—C(10)	ω, град. 120,2(1) 112,8(1) 117,1(1) 119,3(1) 123,6(1) 117,9(1) 120,7(1) 120,6(1) 110,1(1) 104,6(1) 101,2(1) 113,1(1) 114,4(1)	Yfon C(5)—C(4a)—C(8a) C(4a)—C(5)—C(6) C(5)—C(6)—C(7) C(6)—C(7)—C(8) C(7)—C(8)—C(8a) N(1)—C(8a)—N(5) N(1)—C(8a)—C(4a) N(5)—C(8a)—C(4a) N(5)—C(8a)—C(8) C(4a)—C(8a)—C(8) C(4a)—C(8a)—C(8) O(1)—C(9)—N(5) O(1)—C(9)—C(4)	0, rpag. 112,6(1) 112,1(1) 111,8(2) 110,5(1) 112,0(1) 110,6(1) 107,9(1) 100,4(1) 110,4(1) 112,4(1) 114,8(1) 128,4(1) 126,5(1)
$C_{(4)}$ — $C_{(10)}$ $C_{(4a)}$ — $C_{(5)}$	1,465(2) 1,524(2) 1,545(2)	$C_{(9)}$ — $C_{(4)}$ — $C_{(10)}$ $C_{(4)}$ — $C_{(4a)}$ — $C_{(5)}$	112,4(1) 113,6(1) 97,3(1)	N ₍₅₎ —C ₍₉₎ —C ₍₄₎ N ₍₄₎ —C ₍₁₀₎ —C ₍₄₎ N ₍₃₎ —C ₍₁₁₎ —C ₍₃₎	105,1(1) 179,4(1) 179,1(1)
$C_{(4a)}$ — $C_{(8a)}$ $C_{(5)}$ — $C_{(6)}$ $C_{(6)}$ — $C_{(7)}$ $C_{(7)}$ — $C_{(8)}$ $C_{(8)}$ — $C_{(8a)}$	1,545(2) 1,525(3) 1,527(3) 1,516(2) 1,516(2)	C(4)—C(4a)—C(8a)	71,0(1)		

Координаты неводородных атомов ($^{\times}10^4$) и коэффициенты эквивалентного изотропного смещения (2 2 2 3) соединения VI

Таблица 7

Атом	· x	У	z ·	$U_{(eq)}$
	·			
0	6861 (2)	7600(1)	6886(2)	49(1)
N ₍₁₎	4470(2)	5489(1)	1875(2)	31(1)
N ₍₂₎	6950(2)	5016(1)	2207(3)	43(1)
N(3)	9691(2)	5850(1)	6341 (3)	56(1)
N(4)	6304(2)	6521(1)	8431(2)	44(1)
C ₍₂₎	6036(2)	5473(1)	2879(2)	29(1)
C ₍₃₎	6668(2)	5913(1)	4573(2)	29(1)
C(4)	5642(2)	6374(1)	5173(2)	29(1)
C(4a)	4016(2)	6399(1)	4113(2)	31(1)
C ₍₅₎	2875(3)	6907(2)	4708(3)	46(1)
C ₍₆₎	1289(3)	7059(2)	3162(4)	55(1)
C ₍₇₎	645(3)	6276(2)	2075(4)	60(1)
C(8)	1762(2)	5909(2)	1223(3)	41(1)
C(8a)	3494(2)	5937(1)	2472(2)	30(1)
C(9)	8349(2)	5895(1)	5586(3)	36(1)
C(10)	6329(2)	6888(1)	6928(2)	31(1)

Таблица 8 Длины связей и валентные углы в молекуле соединения VI

Связь	Длина, Å	Угол	ω , град.	Угол	ω, град.
				j.	
O_C ₍₁₀₎	1,223(2)	$C_{(2)}$ — $N_{(1)}$ — $C_{(8a)}$	119,7(2)	$C_{(5)}$ — $C_{(4a)}$ — $C_{(8a)}$	121,6(2)
$N_{(1)}$ — $C_{(2)}$	1,342(2)	N(1)—C(2)—N(2)	116,9(2)	$C_{(4a)}-C_{(5)}-C_{(6)}$	113,0(2)
$N_{(1)}$ — $C_{(8a)}$	1,347(3)	$N_{(1)}-C_{(2)}-C_{(3)}$	120,6(2)	$C_{(5)}$ — $C_{(6)}$ — $C_{(7)}$	112,3(2)
$N_{(2)}$ — $C_{(2)}$	1,346(3)	$N_{(2)}-C_{(2)}-C_{(3)}$	122,4(2)	$C_{(6)}-C_{(7)}-C_{(8)}$	112,5(2)
$N_{(3)}$ — $C_{(9)}$	1,140(3)	$C_{(2)}-C_{(3)}-C_{(4)}$	119,0(2)	$C_{(7)}$ — $C_{(8)}$ — $C_{(8a)}$	114,0(2)
N(4)—C(10)	1,322(3)	$C_{(2)}-C_{(3)}-C_{(9)}$	118,9(2)	$N_{(1)}-C_{(8a)}-C_{(4a)}$	123,6(2)
$C_{(2)}$ — $C_{(3)}$	1,415(2)	$C_{(4)}$ — $C_{(3)}$ — $C_{(9)}$	122,1(2)	$N_{(1)}$ — $C_{(8a)}$ — $C_{(8)}$	114,9(2)
$C_{(3)}$ — $C_{(4)}$	1,395(3)	$C_{(3)}-C_{(4)}-C_{(4a)}$	120,3(2)	$C_{(4a)}$ — $C_{(8a)}$ — $C_{(8)}$	121,6(2)
$C_{(3)}-C_{(9)}$	1,432(3)	$C_{(3)}-C_{(4)}-C_{(10)}$	119,0(2)	$N_{(3)}-C_{(9)}-C_{(3)}$	176,8(2)
$C_{(4)}$ — $C_{(4a)}$	1,396(2)	$C_{(4a)}$ — $C_{(4)}$ — $C_{(10)}$	120,6(2)	O-C ₍₁₀₎ -N ₍₄₎	124,2(2)
$C_{(4)}$ — $C_{(10)}$	1,515(2)	$C_{(4)}-C_{(4a)}-C_{(5)}$	121,6(2)	$O-C_{(10)}-C_{(4)}$	119,7(2)
$C_{(4a)}$ — $C_{(5)}$	1,514(4)	$C_{(4)}$ — $C_{(4a)}$ — $C_{(8a)}$	116,8(2)	N(4)—C(10)—C(4)	116,1(2)
$C_{(4a)}$ — $C_{(8a)}$	1,397(3)				i.
$C_{(5)}$ — $C_{(6)}$	1,514(3)				
$C_{(6)}$ — $C_{(7)}$	1,486(4)				
$C_{(7)}$ — $C_{(8)}$	1,522(4)				
$C_{(8)}$ — $C_{(8a)}$	1,509(2)			; •	

механизму Е2, так как находятся в гош-положении друг к другу, а протеканию процесса по анионному механизму препятствует более быстрый процесс внутримолекулярного нуклеофильного замещения с образованием соединения V. Причиной образования пиридина VI, возможно, является конкурирующее с гетеролитическим расшеплением пиклоэлиминирование (ретрореакция Дильса—Альдера) из таутомерной формы Б соединения III с образованием интермедиата із. В интермедиате із, по-видимому, должно протекать син-элиминирование цианистого водорода. В пользу этого свидетельствует более низкий выход соединения VI при проведении реакции в толуоле в отличие от реакции в ацетонитриле. Таким образом, для образования соединения VI необходимы совершенно противоположные условия: для первой стадии — неполярный растворитель, для второй полярный, так как элиминирование цианистого водорода, скорее всего, протекает по анионному механизму (механизм ElcB). Сравнительно невысокий выход соединения VI при проведении реакции в ацетонитриле объясняется возможностью конкурирующего процесса — ацетонитрил как полярный растворитель способствует гетеролитическому разрыву связи С(4)—С(5) соединений IIIа—в. Низкий выход соединения VI при проведении реакции в толуоле, возможно, объясняется тем, что вторая стадия реакция элиминирование цианистого водорода — протекает с очень малой скоростью.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры сняты на приборе UR-20 для образцов в вазелиновом масле. Параметры элементарных ячеек и интенсивности отражений для рентгеноструктурного анализа соединений V и VI измерены на автоматическом четырехкружном дифрактометре Siemens P3/PC (λ MoK α , графитовый монохроматор, θ /2 θ -сканирование), а соединения IV — на автоматическом четырехкружном дифрактометре Syntex P2₁ (λ MoK α , графитовый монохроматор, θ /2 θ -сканирование). Структуры исследуемых соединений расшифрованы прямым методом и уточнены полноматричным методом наименьших квадратов в анизотропном приближении для неводородных атомов. Атомы водорода, локализованные объективно в разностном Фурье-синтезе, уточнены в изотропном приближении. Все расчеты проведены по программе SHELXTL PLUS (версия PC). Координаты атомов, длины связей, валентные углы и тепловые параметры депонированы в Кембриджском центре кристаллографических данных. Чистоту синтезированных соединений, а также степень завершения реакций устанавливали методом TCX (Silufol UV-254).

5-Арил-1,7-тетраметилен-3-имино-4,8-дициано-2,6-диазабицикло [2.2.2] октан-8-карбоксамиды (Ша—в). А. К 10 мл концентрированного раствора водного аммиака добавляют 3 ммоль спирта Іа,в и перемешивают до окончания реакции (5...10 мин). Осадок отфильтровывают, промывают этилацетатолм, сушат в вакууме.

Б. Аналогично получают соединения Ша—в из амидов Па—в.

6-Амино-2-арилиденамино-2,3-тетраметилен-4,5-дициано-1,2,3,4-тетрагидропиридин-4-карбоксамиды (IVa,в). В 10 мл ацетона растворяют 3 ммоль бицикла Ша,в и выдерживают 2 ч. Образующийся осадок отделяют, промывают, сушат в вакууме до постоянной массы.

Рентгеноструктурные исследования соединения IVв. Полученные из ацетона прозрачные беспветные кристаллы моноклинные, сольватированы молекулами ацетона в соотношении 1:2, при -80 °C: a=12,228(3), b=13,641(3), c=16,754(4) Å, $\beta=103,42$ (1)°, V=2718,8(2) ų, $d_{\rm Bыч}=1,214$ г/см³, пространственная группа $P2_1/n$, Z=4. Было измерено 2716 отражений, $\theta_{\rm max}=25$ °. Окончательные значения факторов расходимости R=0,032 по 2365 отражениям с $I>2\sigma(I)$ и $R_{\rm W}=0,032$ по всем 2716 независимым отражениям.

3-Амино-6-оксо-1,8-тетраметилен-2,7-диазабицикло[3.2.1] окта-3-ен-4,5-дикарбонитрил (V). А. Суспензию 3 ммоль соединения Ша—в в 10 мл изопропилового спирта нагревают до кипения. Реакционную массу охлаждают, осадок отфильтровывают, промывают изопропиловым спиртом, сушат в вакууме. Получают 0,72 г (99%) белого кристаллического порошка, $T_{\rm ILT} > 240\,^{\circ}{\rm C}$ (разл.). Найдено, %: C 59,12; H 5,27; N 28,65. C₁₂H₁₃N₅O. Вычислено, %: C 59,25; H 5,38; N 28,79. ИК спектр: 3450, 3330, 3230, 3200 ($\nu_{\rm NH2}, \nu_{\rm NH}$); 2275, 2195 ($\nu_{\rm C}$ = N); 1695, 1630, 1570 см $^{-1}$ ($\nu_{\rm C}$ = O, $\nu_{\rm NH2}, \nu_{\rm C}$ = C).

Рентгеноструктурные исследования соединения V. Полученные из изопропилового спирта прозрачные бесцветные кристаллы триклинные, при 20°C a=7,150(2), b=8,035(3), c=12,096(4) Å, $\alpha=93,45(2)^\circ$, $\beta=104,71(2)^\circ$, $\gamma=113,74(2)^\circ$, V=604,8(8) ų, $d_{\rm BHI}=1,342~{\rm r/cm}^3$, пространственная группа ${\rm P\bar{I}}$, Z=2. Измерено 2337 отражений, $\theta_{\rm max}=26^\circ$. Окончательные значения факторов расходимости R=0,032 по 1983 отражениям с $I>2\sigma$ (I) и $R_{\rm W}=0,032$ по всем 2337 независимым отражениям.

2-Амино-3-циано-5,6-тетраметиленпиридин-4-карбоксамид (VI). А. Растворяют в 10 мл ацетонитрила 0,35 г (1 ммоль) соединения Ша и выдерживают раствор 5 сут. Образовавшийся осадок отфильтровывают, промывают охлажденным ацетонитрилом, сущат в вакууме. Получают 20 мг (10%) розовых кристаллов, $T_{\rm HI} > 230$ °C (разл.). Найдено, %: С 60,95; Н 5,46; N 25,82. С₁₁H₁₂N₄O. Вычислено, %: С 61,1; H 5,59; N 25,91. ИК спектр: 3420, 3375, 3320, 3240 ($\nu_{\rm NH2}$); 2230 ($\nu_{\rm C}$ =N); 1680, 1650, 1635 см⁻¹ ($\nu_{\rm C}$ =O, $\delta_{\rm NH2}$, $\nu_{\rm C}$ =N, $\nu_{\rm C}$ =C).

После концентрирования фильтрата получают 0,08 г (40%) соединения V.

Б. В 50 мл абсолютного толуола растворяют при нагревании 5 ммоль соединения Ша,в и кипятят 10 ч с обратным холодильником. Охлаждают реакционную массу, осадок отфильтровывают, промывают этилацетатом. Очистку проводят переосаждением водой из раствора в диметилсульфоксиде. Получают 25 мг (2%) розовых кристаллов.

Рентгеноструктурные исследования соединения VI. Кристаллы соединения VI, полученные из ацетонитрила, моноклинные, при 20 °C: $a=9,084(2),\ b=15,698(3),\ c=7,856(4)$ Å, $\beta=112,11(2)^\circ,\ V=1038(1)$ ų, $d_{\rm BMY}=1,390\ {\rm r/cm}^3$, пространственная группа P21/c, Z=2. Измерено 2070 отражений, $\theta_{\rm max}=26^\circ$. Окончательные значения факторов расходимости R=0,040 по 1503 отражениям с $I>2\sigma(I)$ и $R_{\rm W}=0,040$ по всем 2070 независимым отражениям.

СПИСОК ЛИТЕРАТУРЫ

1. Каюков Я. С., Насакин О. Е., Урман Я. Г., Хрусталев В. Н., Нестеров В. Н., Антипин М. Ю., Лыщиков А. Н., Лукин П. М. // ХГС. — 1996. — № 10. — С. 1395.

Чувашский государственный университет им. И. Н. Ульянова, Чебоксары 428015

Поступило в редакцию 31.10.96