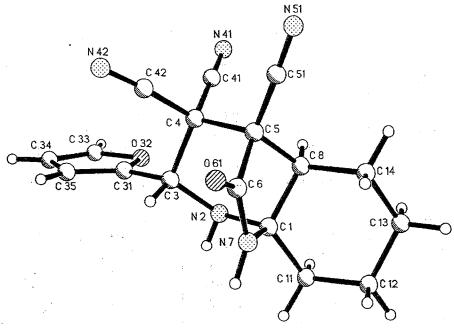
Я. С. Каюков, П. М. Лукин, О. Е. Насакин, В. Н. Хрусталев, В. Н. Нестеров, М. Ю. Антипин, А. Н. Лышиков

ИЗОМЕРИЗАЦИЯ


2-АРИЛ-5,6-ТЕТРАМЕТИЛЕН-3,3,4-ТРИЦИАНО-2,3,4,5-ТЕТРАГИДРО-ПИРИДИН-4-КАРБОКСАМИДОВ ПРИ ДЕЙСТВИИ КИСЛОТ

При действии кислот 2-арил-5,6-тетраметилен-3,3,4-трициано- 2,3,4,5-тетрагидропиридин-4-карбоксамиды в зависимости от природы кислоты и продолжительности процесса изомеризуются в 2-арил-5,6-тетраметилен-3,3,4-трициано-1,2,3,4-тетрагидропиридин-4-карбоксамиды и 3-арил-1,8-тетраметилен-2,7-диазабицикло[3.2.1] октан-4,4,5-трикарбонитрилы.

Нами было показано, что 2-арил-5,6-тетраметилен-3,3,4-трициано-2,3,4,5-тетрагидропиридин-4-карбоксамиды (Іа—в), полученные при взаимодействии 1-(2-оксоциклогексил) этан-1,1,2,2-тетракарбонитрила с 1,3,5-триарил-2,4-диаза-1,4-пентадиенами, в присутствии оснований превращаются в 4-арил-3-амино-6,7-тетраметилен-1-оксо-3а,4,5,7а-тетрагидро-1H-пирроло [3,4-с] пиридин-3а,7а-дикарбонитрилы (IVа—в) [1]. Продолжением этих исследований является изучение превращения соединений Іа—в при действии кислот.

Соединения Ia—в в уксусной, муравьиной, масляной, трифторуксусной кислоте изомеризуются в 2-арил-5,6-тетраметилен- 3,3,4-трициано-1,2,3,4-тетагидропиридин-4-карбоксамиды (IIa—в), а при действии 20% водного раствора серной кислоты соединения Ia—в превращаются в 3-арил-1,8-тетраметилен-6-оксо-2,7-диазабицикло [3.2.1] октан-4,4,5-трикарбонитрилы (IIIa—в). Оказалось, что соединения IIIa—в образуются и при действии водных растворов органических кислот.

I-IV а Ar = Ph, б Ar = 2-фурил, в Ar = p-MeOC₆H₄

Молекулярная структура соединения Шб

Кристаллическая структура молекулы IIIб установлена по данным рентгеноструктурного анализа (рисунок). Строение соединений IIIа, в определено сопоставлением их ИК спектров со спектром соединения IIIб, а их состав — по данным элементного анализа (табл. 1, 4).

О строении соединений IIа—в можно судить по их способности практически количественно превращаться в известные соединения IVа—в [1] при действии на них оснований. С другой стороны, соединения IIа—в, как и соединения Iа—в, превращаются в бициклы IIIа—в в 20% водном растворе серной кислоты. ИК спектры и данные элементного анализа соединений IIа—в также соответствуют предложенной структуре (табл. 1, 4).

Можно предположить, что при образовании как соединения II, так и III происходит протонирование субстрата I с образованием катиона K, дальнейшее превращение которого, возможно, зависит от концентрации его

Таблица 1 Характеристики соединений Па—в, Ша—в

Соеди-	Брутто-		<u>Найдено, %</u> Вычислено, %		Т _{пл} (разл.), °С	Выход, %
нение	формула	С	н	N		(Merogy)
Па	C ₁₉ H ₁₇ N ₅ O	68,64 68,74	<u>5,11</u> 5,24	21,10 21,19	155156	69
Пб	C17H15N5O2	63,38 63,54	4.62 4,71	21,66 21,79	>150	73
Шв	C ₂₀ H ₁₉ N ₅ O	66,32 66,47	5.17 5,30	19,25 19,38	>155	76
IIIa	C ₁₉ H ₁₇ N ₅ O	68.59 68,74	5,10 5,24	21,14 21,19	>175	65 (A)
Шб	C ₁₇ H ₁₅ N ₅ O ₂	63,37 63,54	4.58 4.71	21.67 21.79	>110	82 (A)
Шв	C ₂₀ H ₁₉ N ₅ O	66,40 66,47	5,16 5,30	19,27 19,38	>160	71 (A)

Координаты неводородных атомов (×10 4) и коэффициенты эквивалентного изотропного смещения (Å 2 × 10 3) соединения Шб

Атом	x .	y ,	Ž	U_{eq}
O(32)	689(2)	5941(1)	4102(1)	33(1)
O(61)	-3040(2)	10509(1)	2508(1)	19(1)
N(2)	-239(3)	6952(1)	2774(1)*	15(1)
N ₍₇₎	-1307(2)	8882(1)	2105(1)	15(1)
N(41)	-3781 (2)	5602(1)	3841(1)	33(1)
N(42)	-2916(2)	9681(1)	4304(1)	29(1)
N(51)	-6903(4)	8715(2)	2777(1)	25(1)
C(1)	-1231(3)	7433(1)	2139(1)	14(1)
C(11)	-436(3)	6852(2)	1532(1)	18(1)
C ₍₁₂₎	-1660(3)	7028(2)	867(1)	22(1)
C(13)	-3502(3)	6524(2)	932(1)	22(1)
C ₍₁₄₎	-4351(3)	7254(2)	1491(1)	16(1)
C ₍₃₎	-506(4)	7735(1)	3365(1)	15(1)
C(31)	561(3)	7259(1)	3997(1)	18(1)
.C(33)	1736(3)	5783(2)	4711(1)	38(1)
C(34)	2230(3)	-6927(2)	. 4982(1)	29(1)
C ₍₃₅₎	1475(3)	7897(2)	4518(1)	25(1)
C ₍₄₎	-2558(4)	7816(1)	3420(1)	15(1)
C ₍₄₁₎	-3260(3)	6566(1)	3657(1)	18(1)
C(42)	-2823(3)	8853(1)	3922(1)	18(1)
C ₍₅₎	-3585(4)	8172(1)	2695(1)	11(1)
C(51)	-5438(6)	8452(2)	2741(1)	15(1)
C ₍₆₎	-2624(3)	9378(1)	2422(1)	14(1)
C ₍₈₎	-3182(3)	7117(1)	2176(1)	13(1)

в используемой среде. В водном растворе серной кислоты из-за сильнокислой среды концентрация катиона K достаточна для внутримолекулярной циклизации с образованием соединения III. В ледяной уксусной кислоте константа кислотности катиона K, по-видимому, соизмерима с константой аутопротолиза уксусной кислоты и вследствие этого происходит легкий отрыв протона с образованием более термодинамически устойчивого основания II. Образование соединения III при длительном выдерживании в органических кислотах также объясняется обратимостью этой реакции.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры сняты на приборе UR-20 для образцов в вазелиновом масле. Чистоту синтезированных соединений, а также степень завершения реакций устанавливали методом TCX (Silufol UV-254).

Рентгеноструктурные исследования соединения III6. Кристаллы соединения III6 (C17H15N5O2, M 321,34) моноклинные, пространственная группа P21/с, при -100 °C: a=7,574(3), b=10,252(3), c=19,745(7) Å, $\beta=96,55(2)$ °, V=1523(1) ų, Z=4, d=1,238 г/см³. Параметры элементарной ячейки и интенсивности 2036 отражений измерены на автоматическом четырехкружном дифрактометре Siemens P3/PC (T=-100 °C, λ MoK α , графитовый монохроматор, $\theta/2\theta$ -сканирование, $\theta_{\rm max}=27$ °). Структура расшифрована прямым методом и уточнена полно-

Таблица 3 Длины связей и валентные углы в молекуле соединения IIIб

аєкаЭ	Длина, Å	Угол	∅, град.	Угол	ω , град.
			5		
$O_{(32)}-C_{(31)}$	1,369(2)	$C_{(31)}-O_{(32)}-C_{(33)}$	105,86(12)	$C_{(3)}$ — $N_{(2)}$ — $C_{(1)}$	113,3(2)
$O_{(32)}-C_{(33)}$	1,373(2)	$C_{(6)}$ — $N_{(7)}$ — $C_{(1)}$	112,69(14)	$N_{(2)}$ — $C_{(1)}$ — $N_{(7)}$	112,76(12
$O_{(61)}-C_{(6)}$	1,218(2)	$N_{(2)}-C_{(1)}-C_{(8)}$	107,0(2)	$N_{(7)}$ — $C_{(1)}$ — $C_{(8)}$	100,51(14
$N_{(2)}-C_{(3)}$	1,450(2)	$N_{(2)}-C_{(1)}-C_{(11)}$	109,3(2)	N(7)—C(1)—C(11)	111,85(13
$N_{(2)}-C_{(1)}$	1,471(2)	$C_{(8)}$ — $C_{(1)}$ — $C_{(11)}$	115,3(2)	$C_{(1)}-C_{(11)}-C_{(12)}$	112,0(2)
$N_{(7)}$ — $C_{(6)}$	1,337(2)	$C_{(13)}-C_{(12)}-C_{(11)}$	111,3(2)	$C_{(12)}$ — $C_{(13)}$ — $C_{(14)}$	111,2(2)
$N_{(7)}-C_{(1)}$	1,487(2)	$C_{(13)}-C_{(14)}-C_{(8)}$	110,0(2)	N(2)—C(3)—C(31)	112,4(2)
$N_{(41)}$ — $C_{(41)}$	1,139(2)	N(2)—C(3)—C(4)	108,3(2)	$C_{(31)}$ — $C_{(3)}$ — $C_{(4)}$	113,98(14
$N_{(42)}$ — $C_{(42)}$	1,142(2)	$C_{(35)}-C_{(31)}-O_{(32)}$	110,08(13)	$C_{(35)}-C_{(31)}-C_{(3)}$	131,68(14
$N_{(51)}-C_{(51)}$	1,152(3)	$O_{(32)}-C_{(31)}-C_{(3)}$	118,24(12)	C(34)—C(33)—O(32)	110,9(2)
$C_{(1)}-C_{(8)}$	1,522(3)	C(33)—C(34)—C(35)	106,5(2)	C(31)—C(35)—C(34)	106,6(2)
$C_{(1)}$ — $C_{(11)}$	1,524(2)	$C_{(42)}$ — $C_{(4)}$ — $C_{(41)}$	109,06(14)	$C_{(42)}$ — $C_{(4)}$ — $C_{(3)}$	107,1(2)
$C_{(11)}-C_{(12)}$	1,528(2)	$C_{(41)}$ — $C_{(4)}$ — $C_{(3)}$	111,6(2)	$C_{(42)}$ — $C_{(4)}$ — $C_{(5)}$	110,36(14
$C_{(12)}C_{(13)}$	1,507(3)	$C_{(41)}-C_{(4)}-C_{(5)}$	109,0(2)	$C_{(3)}$ — $C_{(4)}$ — $C_{(5)}$	109,7(2)
$C_{(13)}-C_{(14)}$	1,535(2)	$N_{(41)}-C_{(41)}-C_{(4)}$	179,3(2)	N(42)—C(42)—C(4)	175,4(2)
$C_{(14)}C_{(8)}$	1,535(2)	$C_{(51)}-C_{(5)}-C_{(8)}$	116,6(2)	$C_{(51)}-C_{(5)}-C_{(6)}$	110,99(14
$C_{(3)}-C_{(31)}$	1,489(2)	$C_{(8)}$ — $C_{(5)}$ — $C_{(6)}$	100,9(2)	$C_{(51)}-C_{(5)}-C_{(4)}$	111,6(2)
$C_{(3)}-C_{(4)}$	1,572(3)	$C_{(8)}-C_{(5)}-C_{(4)}$	108,9(2)	$C_{(6)}$ — $C_{(5)}$ — $C_{(4)}$	107,0(2)
$C_{(31)}C_{(35)}$	1,343(2)	$N_{(51)}-C_{(51)}-C_{(5)}$	177,9(2)	O ₍₆₁₎ —C ₍₆₎ —N ₍₇₎	130,21(14
$C_{(33)}$ — $C_{(34)}$	1,324(3)	$O_{(61)}-C_{(6)}-C_{(5)}$	124,5(2)	N(7)—C(6)—C(5)	105,24(14
$C_{(34)}-C_{(35)}$	1,428(2)	$C_{(1)}-C_{(8)}-C_{(14)}$	113,84(14)	$C_{(1)}$ — $C_{(8)}$ — $C_{(5)}$	98,6(2)
$C_{(4)}$ — $C_{(42)}$	1,484(2)	$C_{(14)}-C_{(8)}-C_{(5)}$	112,5(2)		
$C_{(4)}$ — $C_{(41)}$	1,484(2)				•
$C_{(4)}-C_{(5)}$	1,591(2)				
$C_{(5)}-C_{(51)}$	1,445(4)				
$C_{(5)}$ — $C_{(8)}$	1,545(2)				
$C_{(5)}C_{(6)}$	1,562(2)				

Таблица 4 ИК спектры соединений Па—в, IIIа—в

	$ u$, cm $^{-1}$				
Соеди- нение	$ u_{\mathrm{NH2}},$	$\nu_{\rm C} = N$	$\nu_{\text{C=O}}, \nu_{\text{C=C}},$ δ_{NH2}		
	ν _{N—H}	, C ≡ N			
Па	3460, 3400, 3345, 3270	2260	1695, 1650		
Пб	3470, 3410, 3360	2265	1690, 1640		
Пв	3480, 3370, 3323	2250, 2260	1685, 1650		
Ша	3350, 3230	2260	1708		
Шб	3360, 3295	2265	1710		
Шв	3320, 3250	2260	1711		

матричным МНК в анизотропном приближении для неводородных атомов. Атомы водорода, локализованные объективно в разностном Фурье-синтезе, уточнены в изотропном приближении. Окончательные факторы расходимости $R_{\rm f}$ = 0,029 по 1779 независимым отражениям с I > $2\sigma(I)$ и wR_2 = 0,103 по всем 1815 независимым отражениям. Расчеты проведены на IBM PC/AT-486 по программам SHELXTL PLUS, SHELXL-93. Координаты атомов, длины связей, валентные углы и тепловые параметры депонированы в Кембриджском центре кристаллографических данных.

2-Арил-5,6-тетраметилен-3,3,4-трициано-2,3,4,5-тетрагидропиридин-4-карбоксамиды (Па—в). Добавляют 5 ммоль соответствующего соединения Іа—в к 5 мл ледяной уксусной кислоты. При перемешивании сначала происходит растворение реагента, а через 2...3 мин образуется осадок. По окончании реакции осадок отфильтровывают, промывают охлажденным изопропиловым спиртом, перекристаллизовывают из изопропилового спирта, сушат в вакууме.

Аналогично получают соединения Па—в, используя вместо уксусной кислоты муравьиную, масляную и трифторуксусную кислоты.

- 3-Арил-1,8-тетраметилен-6-оксо-2,7-диазабицикло[3.2.1]октан-4,4,5-трикарбонитрилы (Ша—в). А. К 15 мл 20% серной кислоты добавляют 5 ммоль амида Іа—в. При перемешивании реагент постепенно растворяется. Одновременно происходит образование нового осадка. По окончании реакции осадок отфильтровывают, промывают водой. Очистку соединения Ша—в проводят переосаждением водой из ацетонитрила. Вещества сушат в вакууме над Р₂О₅.
- Б. Аналогично методу А, используя 50% водные растворы муравьиной и трифторуксусной кислот, получают соединения Ша—в. При использовании 50% водного раствора уксусной кислоты для завершения реакции необходимо нагревание реакционной массы до температуры кипения.
- В. Растворяют 5 ммоль амида Іа—в в уксусной кислоте, смесь выдерживают 24 ч, осадок отфильтровывают, промывают водой, сушат в вакууме.
 - Г. Аналогично методу А из соединений На—в получают IIIа—в.
- 3-Амино-6-метил-7-пропил-1-оксо-4-фенил-3а,4,5,7-тетрагидро-1H-пирроло [3,4-c] пиридин-3а,7а-дикарбонитрил (IVa). К суспензии 0,33 г (1 ммоль) соединения Па в 2 мл изопропилового спирта добавляют 0,1 мл 5% раствора триэтиламина в изопропиловом спирте и нагревают до кипения. При этом сначала растворяется осадок, затем в кипящем растворе образуется новый осадок. Реакционную смесь охлаждают, осадок отфильтровывают, промывают охлажденным изопропиловым спиртом, сущат в вакууме до постоянной массы. Получают 0,32 г (97%) бесцветного кристаллического соединения, $T_{\Pi \Pi}$ 208...210 °C (разл.). ИК спектр: 1566, 1650 (ν C=N, ν C=C, δ NH₂); 1730 (ν C=O); 2265 (ν C =N); 3325 см⁻¹ (ν N—H).

ИК спектр синтезированного вещества идентичен ИК спектру соединения IVa, полученного по методике [1], а их проба смешения не имеет депрессии температуры плавления.

Аналогично из соединений Пб, в получают соединения ПБ, в.

СПИСОК ЛИТЕРАТУРЫ

 Каюков Я. С., Насакин О. Е., Урман Я. Г., Хрусталев В. Н., Нестеров В. Н., Антипин М. Ю., Лыщиков А. Н., Лукин П. М. // ХГС. — 1996. — № 10. — С. 1395.

Чувашский государственный университет, Чебоксары 428015 Поступило в редакцию 24.10.96