Т. Т. Лахвич, О. Ф. Лахвич, Л. С. Станишевский

СТЕРЕОХИМИЯ И ПРОДУКТЫ ПРИСОЕДИНЕНИЯ трет-БУТИЛИЗОНИТРИЛА ПО КАРБОНИЛЬНОЙ ГРУППЕ 3-ГИДРОКСИПИПЕРИДИН-4-ОНОВ

Изучены стереохимия и продукты присоединения *трет*-бутилизонитрила по карбонильной группе 3-гидроксипиперидин-4-онов. Разработаны препаративные методы синтеза производных 3-гидроксиизонипекотиновой кислоты. Установлена ориентация углеродсодержащих заместителей у четвертичного атома углерода с использованием вицинальных КССВ 3 $_{\rm C,H}$ в спектрах ЯМР 13 $_{\rm C.}$

Трехкомпонентная реакция присоединения изонитрилов по двойной связи кетонов, известная как реакции Пассерини, является эффективным методом синтеза производных α -гидроксикарбоновых кислот [1—4]. Однако до настоящего времени не была изучена стереохимия присоединения изонитрилов по карбонильной группе циклических кетонов. В данной работе нами изучены стереохимия и реакции продуктов присоединения mpem-бутилизонитрила к 3-гидроксипиперидин-4-онам I, II с целью синтеза производных гидроксиизонипекотиновой кислоты, являющихся в зависимости от относительной конфигурации заместителей пиперидинового цикла агонистами или ингибиторами захвата γ -аминомасляной кислоты [5]. Нами показано, что реакция присоединения mpem-бутилизонитрила к пиперидонам I и II протекает стереоселективно с образованием диастереомерных ацилированных амидов III—V.

I, III, VI, IX $R^1 = OH$, $R^2 = Me$; II, V, VIII, XI $R^1 = Me$, $R^2 = OH$; $Bn = CH_2Ph$

Физико-химические характеристики соединений III—XI

Соеди- нение	Спектр ЯМР ¹ н*													
	химические сдвиги, δ , м. д.									кссв, Ј, Гц			ИК спектр, ν , см ⁻¹	
	t-Bu	3-CH3	Ac	ОСН3	^a H ₆	a _{H5}	e _{H5}	Н2	Н2	a _{H5} a _{H6}	e _{H5} a _{H6}	^a H5 ^e H5		
***	1.05	1.05	2.00		2 66	2.46	1 06	3,38	2.62	11.5	3,0	14.5	2560 2420 2200 1740 1680	
III	1,35	1,95	2,00		3,66	2,46	1,86	1 ' 1	2,62	11,5	1 '	14,5	3560, 3420, 3300, 1740, 1680	
, IV	1,38	1,56	2,07		3,69	1,86	2,87	2,77	2,43	12,0	3,5	13,5	3480, 3420, 1740, 1720, 1680	
V	1,34	1,16	2,18	·	3,38	2,22	3,21	2,60	2,60	11,5	3,0	15,0	3420, 3350, 1740, 1690	
VI	1,34	1,38			3,51	2,42	2,72	2,52	2,37	12,0	3,5	14,0	3600, 3510, 3400, 1665	
VII	1,38	1,46			4,06	1,80	2,03	2,82	2,52	12,0	3,5	13,5	3400, 3370, 1660	
VĮII	1,34	0,98			3,60	2,34	1,58	2,51	2,49	11,5	3,0	14,5	3320, 1660	
IX		1,34		3,72	3,53	2,37	1,83	2,55	2,44	12,0	3,5	15,0	3610, 3500, 1740	
X		1,44		3,81	3,91	1,83	1,88	2,66	2,53	11,5	4,0	14,0	3580, 3550, 1730	
ΧI	·	1,09		3,72	3,54	2,67	1,73	2,52	2,52	11,5	3,0	14,5	3530, 1740	

^{*} Спектры ЯМР ¹Н соединений III—V записаны в CDCl3, VI—XI в CD3OD.

Таблица 2

Спектры ЯМР ¹³С соединений IX—XI в CD₃OD

Соеди- нение		кссв, Ј, Гц								
	С2, т	С3, с	C4, c	С5, т	С6, д	3-CH3	осн ₃ , к	CO	CO— ^a H ₅	CO-eH5
IX	59,10	77,24	71,07	41,73	62,56	23,33	51,30	173,26	<2,5	<2,5
X	59,19	78,45	72,47	44,27	64,61	22,89	51,49	174,49	6,5	3,3
XI	59,22	76,32	70,85	40,73	62,36	21,24	51,40	173,82	<2,5	<2,5

Данные элементного анализа соединений III—XI

Соеди-	' Брутто– формула		<u>Найдено, %</u> Вычислено, %	<i>T</i> _{ILTI} , °C	Выход, %		
HCAMC	формузіа	, c	н	N			
, · · .		1:					
m	C ₂₆ H ₃₄ N ₂ O ₄	71.02 71,21	7.70 7,81	6,20 6,39	242243	67,4	
IV	C26H34N2O4	70,98 71,21	7.69 7,81	6,21 6,39	103104	23,6	
V	C ₂₆ H ₃₄ N ₂ O ₄	71.09 71,21	7.72 7,81	6,24 6,39	148149	92,0	
VI	C ₂₄ H ₃₂ N ₂ O ₃	72,54 72,70	8.07 8,13	6,94 7,06	197198	93,0	
VII	C24H32N2O3	72,49 72,70	7,99 8,13	6.89 7,06	165166	95,0	
VIII ·	C24H32N2O3	72.52 72,70	8,04 8,13	6,90 7,06	152153	93,0	
IX	C ₂₁ H ₂₅ NO ₄	70.75 70,96	6,96 7,09	3,85 3,94	130131	86,0	
X	C ₂₁ H ₂₅ NO ₄	70,69 70,96	6,92 7,09	3.78 3,94	148149	87,0	
XI	C ₂₁ H ₂₅ NO ₄	70,82 70,96	7,01 7,09	3.86 3,94	113115	90,0	

При взаимодействии пиперидона I с изонитрилом и уксусной кислотой в дихлорметане образуется смесь амидов III, IV с преобладанием продукта экваториальной атаки реагентом карбонильной группы (75/25) с общим выходом 91%. В случае пиперидона II удалось выделить только продукт с экваториальной ориентацией амидной группы (соединение V) с выходом 92%. При гидролизе ацетата щелочным водно-диоксановым раствором образуются диастереомерные дигидроксиамиды VI—VIII с выходом 93...95%. При гидролизе ацилированных амидов в концентрированной соляной кислоте с последующей этерификацией метиловым спиртом образуются соответствующие сложные эфиры IX—XI с общим выходом 86...90%.

Идентификация полученных в индивидуальном состоянии соединений III—XI проведена на основании данных ИК, ЯМР 13 С и 1 Н спектроскопии (табл. 1, 2). Так, в спектрах ЯМР 1 Н соединений III—XI сигналы протонов у $C_{(5)}$ и $C_{(6)}$ наблюдаются в виде трех квадруплетов, а у $C_{(2)}$ в виде двух дублетов или неразрешенной AB системы с константами, указывающими на кресловидную конформацию пиперидинового цикла [6].

ИК спектры разбавленных растворов амидов и эфиров характеризуются наличием полос колебаний амидной, ацетильной и сложноэфирной карбонильных групп при 1660...1690, 1720...1740 и 1730...1750 см⁻¹ соответственно.

Конфигурация заместителей при С₍₄₎ эфиров IX—XI была определена на основании данных ЯМР ¹³С спектроскопии по разработанной ранее методике [7]. Сигналы атомов углерода рассматриваемых соединений расположены в ожидаемых областях (табл. 2). Вид сигнала атома углерода карбонильной группы в СD₃OD при селективном облучении протонов сложноэфирной группы определяется только взаимодействием его через три связи с атомами водорода при С₍₅₎, поскольку С₍₃₎ и С₍₄₎ являются четвертичными. Известно, что существует зависимость величин вицинальных КССВ между атомами ¹³С и ¹Н от двугранных углов, аналогичная таковой для атомов водорода и выражаемая уравнением Карплуса [8]. Соединения IX—XI находятся в одной кресловидной конформации и отличаются только ориентацией заместителей при С₍₄₎. Очевидно, что в спектре ЯМР ¹³С эфиров с

аксиальной карбонильной группой величина КССВ $^3J_{\rm CO,aH}$ должна быть больше, чем соответствующая КССВ в эфирах с экваториальной карбонильной группой.

Оказалось, что сигнал карбонильного атома углерода метоксикарбонильной группы эфира X представляет собой дублет дублетов с наблюдаемым расщеплением 3,0 и 6,5 Гц. Расчет спектральных параметров, выполенный с помощью программы PANIC, входящей в стандартное математическое обеспечение прибора, показал, что эти величины в пределах точности эксперимента являются КССВ 3 $_{JaCO,eH5}$ и 3 $_{JaCO,aH5}$ соответственно. Сигнал атома углерода карбонильной группы эфиров IX, XI представлен уширенным синглетом с полушириной 2,5 Гц. Приведенные величины КССВ 3 $_{JCO,H}$ свидетельствуют об аксиальной ориентации метоксикарбонильной группы эфира X и экваториальной ориентации метоксикарбонильной группы эфиров IX, XI.

Таким образом, изучение реакции Пассерини в ряду 3-гидроксипиперидин-4-онов показывает, что *трет*-бутилизонитрил атакует атом углерода карбонильной группы преимущественно из экваториальной области, а данный подход является весьма эффективным методом синтеза производных изонипекотиновой кислоты.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н растворов соединений в CD₃OD и CDCl₃ получены на спектрометре Bruker AC-200 с рабочей частотой 200 МГ ц для ядер ¹Н. Спектры ЯМР ¹³С растворов соединений IX—XI в CD₃OD записаны на приборе Bruker AC-200 при рабочей частоте 50 МГ ц для ядер ¹³С. Наряду с обзорными спектрами с полной развязкой и без развязки от протонов с целью увеличения цифрового разрешения для эфиров IX—XI были записаны узкие цифровые интервалы, содержащие сигнал атома углерода карбонильной группы; цифровое разрешение в этом случае составляло 0,3 Гц. ИК спектры разбавленных растворов соединений III—XI (10⁻³ моль/л) в CCl₄ фиксировали на спектрометре Specord-75IP. Контроль хода реакций и чистоты продуктов осуществляли на пластинках TCX Kieselgel.

Данные элементного анализа соответствуют расчетным.

4а-Ацетокси-1е-бензил-3е-гидрокси-3а-метил-6е-фенилпиперидин-4е-(N-трет бутил-карбоксамид) (III, С26Н34N2O4) и 4е-ацетокси-1е-бензил-3е-гидрокси-3а-метил-6е-фенилпиперидин-4а-(N-трет бутилкарбоксамид) (IV, С26Н34N2O4). Растворяют при комнатной температуре 2 г (6,8 моль) пиперидона I в 12 мл дихлорметана, затем добавляют 1,5 мл (13,3 ммоль) терт бутилизонитрила и 1,5 мл (26,2 ммоль) ледяной уксусной кислоты. Через 3 ч растворитель и реагенты отгоняют при пониженном давлении, а остаток растворяют при нагревании в 10 мл толуола. Кристаллизация из толуола при −15 °С дает 2,0 г ацилированного амида III. При кристаллизации остатка из смеси гексана и эфира получают 0,7 г амида IV. Количественное соотношение продуктов реакции, вычисленное сравнением интенсивностей сигналов метильной группы эпимерных амидов III и IV в спектре ЯМР ¹Н реакционной смеси, составляет 75 : 25 соответственно.

4a-Аңетокси-1e-бензил-3a-гидрокси-3e-метил-6e-фенилпиперидин-4e-(N-mpem- бутил-карбоксамид) (V, $C_{26}H_{34}N_{2}O_{4}$) получен аналогично из пиперидона II.

1*e*-Бензил-3*e*,4*a*-гидрокси-3*a*-метил-6*e*-фенилпиперидин-4*e*-(N-*mpem*-бутилкарбоксамид) (VI, C₂₄H₃₂N₂O₃). Растворяют 0,5 г (1,1 ммоль) ацилированного амида III при нагревании в смеси 20 мл диоксана и 8 мл воды, содержащей 0,3 г NaOH, и кипятят с обратным холодильником 4 ч. По окончании реакции смесь разбавляют 30 мл воды, выпавшие кристаллы отделяют на фильтре.

1e-Бензил-3e,4e-дигидрокси-3a-метил-6e-фенилииперидин-4a-(N-mpeт-бутилкарбоксамид) (VII, C₂₄H₃₂N₂O₃) и 1e-бензил-3a,4a-дигидрокси-3e-метил-6e-фенилииперидин-4e-(N-mpem-бутилкарбоксамид) (VIII, C₂₄H₃₂N₂O₃) получают аналогично.

Метиловый эфир 1*e*-бензил-3*e*,4*a*-дигидрокси-3*a*-метил-6*e*-фенилпиперидин-4*e*-карбоновой кислоты (IX, C₂₁H₂₅NO₄). Растворяют 1 г(2;5 ммоль) амида III в 25 мл концентрированной соляной кислоты и кипятят с обратным холодильником до исчезновения в смеси исходного амида. Реакционную смесь упаривают при пониженном давлении и полученный в остатке гидрохлорид растворяют в 20 мл:сухого метилового спирта, насыщенного хлороводородом. По окончании реакции растворитель отгоняют досуха при пониженном давлении, а гидрохлорид растворяют в воде и

подщелачивают раствором гидрокарбоната натрия. Свободное основание IX экстрагируют этилацетатом и после отгонки растворителя кристаллизуют из смеси этилацетата и гексана.

Метиловые эфиры 1*e*-бензил-3*e*,4*e*-дигидрокси-3*a*-метил-6*e*-фенилпиперидин-4*a*-карбоновой кислоты (X, C₂₁H₂₅NO₄) и 1*e*-бензил-3*a*,4*a*-дигидрокси- 3*e*-метил-6*e*-фенилпиперидин-4*e*-карбоновой кислоты (XI, C₂₁H₂₅NO₄) получают аналогично.

СПИСОК ЛИТЕРАТУРЫ

- 1. Isonitrile Chemistry / Ed. I. Uhi. New York: Academic Press, 1971. P. 133.
- 2. Lumma W. C. // J. Org. Chem. 1981. Vol. 46. P. 3668.
- Seebach D., Adam G., Gees T., Schiess M., Weigand W. // Chem. Ber. 1988. Bd 121. S. 507.
- 4. Bossio R., Marcaccini St., Pepino R., Torroba T. // Synthesis. 1993. N 8. P. 783.
- Jacobsen P., Labouta I. M., Shaumburg K., Falch E., Krogsgaard-Larsen P. // J. Med. Chem. 1982. — Vol. 10. — P. 1157.
- 6. Быстров В. Ф. // Успехи химии. 1972. Т. 41. С. 512.
- 7. Лахвич Ф. Ф., Хрипач Н. Б., Станишевскей Л. С. // ХГС. 1993. № 5. С. 673.
- 8. Werhly S. W., Morchand A. D., Werhly S.// Interpretation of Carbon-13 NMR Spectra. Chichester, etc.: J. Wiley, 1988. P. 79, 126.

Белорусский государственный университет, Минск 220080 Поступило в редакцию 19.07.96