Ю. М. Воловенко, Е. В. Блюмин, Т. В. Шокол, Г. Г. Дубинина, Ф. С. Бабичев

СИНТЕЗ ПРОИЗВОДНЫХ 2-ПИАНОМЕТИЛАЗАГЕТЕРОЦИКЛОВ

Синтезированы 2-(α -арилоксиацетил) цианометил-, 2-(α -1-адаминтилацетил) цианометил-, 2-(α -1-адамантоил) цианометил- и 2-(α -1-нафтилацетил) цианометил- и 2-(α -1-нафтилацетил) цианометилазагетероциклы взаимодействием 2-цианометилазагетероциклов с хлорангидридами карбоновых кислот. Производные 2-цианометилбензимидазола существуют в енаминокетонной форме. Изучена биологическая активность синтезированных соединений и найдены вещества, обладающие фунгицидной активностью.

Ранее было описано взаимодействие 2-цианометилазагетероциклов I—IV с ангидридами и хлорангидридами алифатических, ароматических и гетероциклических карбоновых кислот [1-3]. Однако до сих пор не были получены ацилироизводные, содержащие в ацильном остатке арилоксиметиленовые и адамантильные группы.

Известно, что производные арилоксиуксусных кислот применяются как эффективные пестициды [4], поэтому можно предположить, что синтезированные нами соединения являются потенциально биологически активными.

Взаимодействие соединений I—IV с хлорангидридами арилоксиуксусных, 1-адамантилкарбоновой, 1-адамнтилуксусной и 1-нафтилуксусной кислот Va—и в присутствии основания приводит к $2-(\alpha-RCO)$ пианометилазагетероциклам VIa—и, VIIa—и, VIIIa—и, IXa—д,ж,з.

$$V_{X}$$
 CH₂CN + V_{X} CH₂CN + V_{X} CN V_{X} VIIIa- μ ; VIIIa- μ ; XXa- μ , 3

I, VIIа—и X = CH=CH—; II, VIIа—д,ж—и X = NH; III, VIIIа—и X = NCH3; IV, IXа—д,ж,3 X = S; V—IX а R = C₆H₅OCH₂; 6 R = 4-CH₃C₆H₄OCH₂; 6 R = 4-C₂H₅C₆H₄OCH₂; 6 R = 4-ClC₆H₄OCH₂; 6 R = 2,4-Cl₂C₆H₃OCH₂; 6 R = 2,4,5-Cl₃C₆H₂OCH₂; 6 R = 1-нафтилметилен; 6 R = 1-адамантил

Во всех изученных нами случаях выделены только С-ацилпроизводные (см. табл.).

Полученные соединения могут существовать в трех таутомерных формах: А, Б и В.

Характеристики 2- $(\alpha$ -R)-цианометилазагетероциклов VIа—и, Vа—д,ж—и, VIIIа—и, IXа—д,ж,з

		<u></u>						
Соеди- нение	Бругто- формула	<i>Т</i> _{ПЛ} , °С	Найдено, %			Вычислено, %		
			N	, CI	s	Ń	C1	S
VIa	C19H14N2O2	187,5	9,27			9,27		
VIб	C20H16N2O2	168	8,95	• · · · · · · · · · · · · · · · · · · ·	F	8,86		
VIB	C ₂₁ H ₁₈ N ₂ O ₂	156157	8,70			8,48		
VIr	C19H13ClN2O2	208,5	8,34	10,70		8,32	10,53	
VIд	C19H12Cl2N2O2	218	7,55	18,96	N. 10	7,55	19,10	
VIe	C19H11Cl3N2O2	215*	7,08	26,30		6,91	26,22	
VIж	C23H16N2O	150	8,38			8,33		
VI3	C23H24N2O	229230	8,35			8,37		
VIи	C22H22N2O	205*	8,54			8,48		
VIIa	C17H13N3O2	300*	14,55			14,43		*
VIIG	C ₁₈ H ₁₅ N ₃ O ₂	>300*	13,85			13,76	·	
VIIB	C19H17N3O2	298*	13,28			13,16		
VIIr	C ₁₇ H ₁₂ ClN ₃ O ₂	302*	12,88	10,75		12,89	10,88	
VIIд ·	C ₁₇ H ₁₁ Cl ₂ N ₃ O ₂	>300*	11,72	19,57		11,66	19,68	
VЦж	C21H15N3O	297298	12,77			12,91		
VIIз	C ₂₁ H ₂₃ N ₃ O	>300*	12,70			12,60	-	
VПи	C ₂₀ H ₂₁ N ₃ O	270271	13,08	,		13,16		7.
VIIIa	C ₁₈ H ₁₅ N ₃ O ₂	204206	13,86			13,76		
VШб	C19H17N3O2	208209	13,09			13,16		
VIIIB	C20H19N3O2	200201	12,75			12,61		
VIIIr	C ₁₈ H ₁₄ ClN ₃ O ₂	216217	12,48	10,51		12,37	10,43	
VШд	C ₁₈ H ₁₃ Cl ₂ N ₃ O	223224	11,69	19,72		11,73	19,79	
VIIIe	C ₁₈ H ₁₂ Cl ₃ N ₃ O ₂	243244	10,35	25,98		10,28	26,08	
VШж	C22H17N3O	234235	12,38			12,38		
VIII3	C22H25N3O	202	12,21			12,09		
VШи	C ₂₁ H ₂₃ N ₃ O	212	12,56	_		12,60		
IXa	C ₁₇ H ₁₂ N ₂ O ₂ S	235237	9,02		10,47	9,09		10,40
ІХб	C18H14N2O2S	237238	8,61		10,08	8,69		9,95
IХв	C19H16N2O2S	219	8,30		9,65	8,33		9,53
IXr	C ₁₇ H ₁₁ ClN ₂ O ₂ S	253	8,28	10,42	9,46	8,17	10,34	9,35
ІХд	C ₁₇ H ₁₀ Cl ₂ N ₂ O ₂ S	246247	7,55	18,92	8,45	7,40	18,80	8,49
IXж	C ₂₁ H ₁₄ N ₂ OS	256257	8,30	2	9,54	8,18		9,36
IХз	C ₂₁ H ₂₂ N ₂ OS	232233	8,12		9,20	8,01		9,15

^{*} При $T_{\Pi\Pi}$ разлагается.

В спектрах ПМР ацильных производных VIa—и, VIIIa—и, IXa—д,ж,з, записанных в ДМСО-D6, наблюдается синглет в области 13,2...16,0 м. д. протона, включенного в хелатное кольцо, сигнал которого исчезает при встряхивании образца с D_2O .

В пользу таутомеров Б и В свидетельствует наличие полос поглощения в ИК спектрах в области 2800...2600 см⁻¹, отвечающих внутримолекулярной водородной связи хелатного типа. Полоса поглощения нитрильной группы наблюдается при 2205...2195 см⁻¹. Сдвиг в длинноволновую область по сравнению с ее обычным положением в ИК спектрах можно объяснить тем, что ацилпроизводные и в твердом состоянии существуют в формах Б и В. Таким образом, как в растворах, так и в твердом состоянии кетонная форма не наблюдается.

Из спектров ПМР следует, что соединения VIIa—д,ж—и существуют в енаминокетонной форме В.

В спектрах, записанных в ДМСО- D_6 , кроме симметричного мультиплета фениленовых протонов бензимидазола в области 6.8...7.6 м. д. наблюдается узкий двухпротонный синглет в области 12.5...13.2 м. д., исчезающий при добавлении D_2O .

Полученные соединения представляют собой кристаллические устойчивые при хранении вещества. Однако при нагревании до температуры плавления многие из них разлагаются.

Биологические испытания показали, что соединения ІХд, VIII, VIIIж активны против *Phytophthora infestans*; VIIIд — против *Erisyphe graminis*; VIIIг — против *Septoria nodorum*.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Контроль за ходом реакций и чистотой синтезированных соединений осуществляли хроматографически на пластинках Silufol UV-254. ИК спектры записаны на приборе Pye Unikam SP-300 в таблетках КВг. Спектры ПМР синтезированных соединений записаны в ДМСО- D_6 и в CF3COOD на приборе Bruker WP-100 с рабочей частотой 100 МГ α и с ТМС в качестве внутреннего стандарта. Величины химических сдвигов измеряли с точностью до 0,01 м. д.

2-(α -Арилоксиацетил) цианометилазагетероциклы VIa—e, VII а—д, VIIIa—e, IXa—д. К 0,01 моль 2-цианометилазагетероцикла I—IV в диоксане добавляют 0,81 мл (0,01 моль) пиридина и 0,01 моль хлорангидрида Va—и. Реакционную смесь нагревают на водяной бане 2 ч. Растворитель упаривают в вакууме. Остаток промывают водой, фильтруют, сущат и перекристаллизовывают из диоксана или изопропанола. Продукты получают с выходом 90...96%.

2-(α -1-Адамантилацетил) цианометилазагетероциклы VIд—IX3, 2-(α -1-адамантоил) цианометилазагетероциклы VIи—VIIIи и 2-(α -1-нафтилацетил) цианометилазагетероциклы VIж—IXж получают по методике, приведенной выше, с выходами 91...95%.

Работа финансирована фирмой Дюпон.

СПИСОК ЛИТЕРАТУРЫ

- 1. Бабичев Ф.С., Воловенко Ю.М. // ХГС. 1975. № 7. С. 1005.
- 2. Бабичев Ф.С., Воловенко Ю.М. // Укр. хим. журн. 1977. Т. 43. С. 41.
- 3. Бабичев Ф.С., Воловенко Ю.М., Олейник А.А. // ХГС. 1977. № 11. С. 1515.
- 4. *Мельников Н.Н.* // Химия пестицидов. М.: Химия, 1968. С. 496.

Киевский университет им. Т. Г. Шевченко, Киев 252033 Поступило в редакцию 31.05.96