Л. А. Свиридова, Г. А. Голубева, А. В. Мизгунов, И. В. Длинных, В. Н. Нестеров

ВЗАИМОДЕЙСТВИЕ 1-АЦЕТИЛ-2-ФЕНИЛ-5-ГИДРОКСИПИРАЗОЛИДИНОВ С β -ЗАМЕЩЕННЫМИ СЛОЖНЫМИ ЭФИРАМИ НА ПОВЕРХНОСТИ АДСОРБЕНТОВ

Взаимодействие 1-ацетил-2-фенил-5-гидроксипиразолидинов со сложными эфирами карбоновых кислот, имеющими в β -положении электроноакцепторную группу, протекает в нейтральных условиях на поверхности адсорбентов без предварительного активирования. Для производных циануксусного и нитроуксусного эфиров определен диастереомерный состав полученных изомеров; производное ацетоуксусного эфира в растворе проявляет кето-енольную таутомерию. Показана возможность активирования реакций на поверхности адсорбента при СВЧ-облучении.

Ранее мы показали, что гидроксильная группа 5-гидроксипиразолидинов I легко подвергается нуклеофильному замещению [1], в том числе в реакциях с кетонами как С-нуклеофилами. При осуществлении последнего превращения весьма удачным оказалось применение необычного метода проведения процесса — в адсорбированном состоянии, без растворителя [2], не требующего предварительного активирования СН-кислоты. Адсорбент, применявшийся нами в реакциях с кетонами — окись алюминия — один из самых распространенных для реакций на поверхности [3], показал неудовлетворительные результаты для синтеза производных сложных эфиров II — реакции имели плохой выход или, например для циануксусного эфира, не шли вовсе [2]. Предпринятый нами в настоящей работе поиск лучших условий для синтеза производных II показал, что универсального адсорбента для проведения реакций пиразолидинов I с CH-кислотными соединениями не существует: практически для каждого случая предпринимался индивидуальный поиск оптимальных условий — адсорбента и температуры. Кроме того, мы показали, что в некоторых случаях полезным оказалось применение облучения реакционной смеси в микроволновой печи вместо обычного нагревания. При этом во всех случаях сокращалось время реакции, а при взаимодействии пиразолидина Іб с карбэтоксициклопентаноном изменялся состав реакционной смеси. Найденные оптимальные условия реакций, а также характеристики синтезированных соединений приведены в табл. 1.

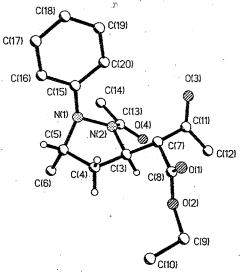
HO
Ac
$$N$$
 R^1
 R^2
 R^2

I a $R^1 = H$; 6 $R^1 = Me$; II a $R^1 = Me$; $R^2 = COMe$; 6 $R^1 = H$; $R^2 = COOEt$; B $R^1 = H$; $R^2 = NO_2$; $R^1 = H$; $R^2 = CN$

Полученное нами ранее на поверхности окиси алюминия [2] соединение Ша является α -замещенным β -кетоэфиром, обладающим способностью к кето-енольной таутомерии. Спектральные данные соединения Па (см. табл. 1—3), синтезированного нами на поверхности полиамида, подтвердили

Таблица 1 Характеристики полученных соединений Па—д, IIIд

Сое- ди- не- ние	Адсор бент	Время реак- ции, ч	Темпе- ратура реак- ции, °C	т _{пл} , °С (<i>Rf</i>)	<u>Найце</u> Вычисл С		Брутго- формула	ИК спектр, см ⁻¹	Выход,
Па	Al ₂ O ₃	72	60	129			C ₁₈ H ₂₄ N ₂ O ₄	1750, 1725	9 [2]
	Полиамид	72	60			7		1680	18
Пб	Al ₂ O ₃ MgSiO ₃	240 72	60 20	84	62,2 62,7	6,9 6,9	C ₁₈ H ₂₄ N ₂ O ₅	1740, 1685	7 [2] 52
Пв	Al ₂ O ₃ ДЭАЭ	240 72	60 20	. 87 .	54.7 55,6	6,1 6,1	C ₁₅ H ₁₉ N ₃ O ₅	1760, 1690, 1535	Следы 11
IIr	MgSiO ₃	72	20	74	65.4 64,7	7.1 6,8	C ₁₆ H ₁₉ N ₃ O ₃	2270, 1730, 1680	51
Пд	Катализа- тор Гудри	12 0,5	60 СВЧ	(0,75)	63,4 67,0	7.8 7,2	C ₂₀ H ₂₆ N ₂ O ₄	1750, 1720, 1680	0 10
Щд	Катализа- тор Гудри	12 13	60 СВЧ	(0,6)	70,7 71,3	8, 2 7,7	C ₁₇ H ₂₂ N ₂ O ₂	1720, 1680	8


его идентичность образцу, полученному на окиси алюминия. Так же, как и ранее [2], спектральные характеристики свидетельствуют о наличии лишь кетонного таутомера — ИК спектр раствора в СС14 не содержит полос поглощения енольного изомера. По данным [2], соединение Па имеет mpanc-конфигурацию пиразолидинового цикла. В то же время в спектрах ЯМР 1 Н и 13 С соединения Па, имеющего три хиральных центра, мы не видим хотя бы удвоения сигналов в связи с появлением нового хирального центра

 ${\rm T}\, a\, 6\, \pi\, u\, u\, a\, \, 2$ Спектры ПМР полученных соединений Иа—д, IIIд, δ , м. д.

Сое- ди- не- ние	Ac (3H)	3-Me (3H)	3-Н	4-H (2H)	5-H (1H)	P h (5H)	α-H (1H)	EtOOC (5H)	R ²
Па	2,06 c	1,21 д	4,15 м	1,69 м 2,28 д. д	4,97 м	6,96 м, 7,17 м, 7,29 м	3,38 д	1,34, 4,25	2,13 c
пб	2,09 с		3,87 м 3,31 м	1,82 м 2,54 м	4,95 д. д	7,15 м, 7,35 м	3,45 м	1,20, 4,05	1,31, 4,32
Ⅱв	2,12 c 2,07 c		3,45 м 3,95 м	1,94 м	5,15 д. д 5,31 д. д	7,01 м, 7,43 м	4,35 м	1,26, 1,38 4,22, 4,23	
Πr	2,10 c 2,15 c		3,39 м 3,95 м		4,77 д. д 5,02 д. д	6,95 м, 7,41 м	3,92 м	1,28, 1,38 4,23, 4,24	over the first
Пд	2,05 c	1,45 д	3,82 м	1,92 м 2,19 м	5,42 д. д	6,67 м 7,18 м	<u>—</u>	1,32, 4,19	1,51 т 1,82 м 2,22 т
Шд	2,05 с	1,39 д	3,69 м	1,89 м, 2,29 м	5,41 д. д	6,40 м, 7,21 м	4,12 м		2,32 м 1,81 м

	•								
Сое- ди- не- ние	Ac	3-Me	C ₍₃₎	C(4)	C ₍₅₎	Ph	cα	COOEt	сигналы ные Осталь-
Пб	175,091 21,571	-	52,625	31,948	55,957	149,091 <i>i</i> 114,558 <i>o</i> 129,091 <i>m</i> 121,423 <i>p</i>	61,692	167,1 60, 167,1 26, 61,178, 13,646	
Пв	177,010 21,103 21,019		52,941	29,661	56,522 56,811	149,292 150,123 <i>i</i> 114,402 114,710 <i>o</i> 129,557 129,571 <i>m</i> 122,021 <i>p</i>	63,569	160,0 66 162,7 98 63,135 63,569 13,719 13,659	
IIr	176,130 21,148 21,385		53,701	29,655 31,976	56,144	149,433 <i>i</i> 115,504 115,474 <i>o</i> 129,342 129,473 <i>m</i> 122,012 <i>p</i>	57,010	164,2 28 63,147 13,646	114,732 (CN)
Ид	174,518 20,845	15,002	52,367	37,683	57,784	148,831 <i>i</i> 112,817 <i>o</i> 125,443 <i>m</i> 117,015 <i>p</i>	62,811	174,1 19 57,506 19,355	210,147 (CO) 37,119 26,101 25,634 20,084
Щд	172,926 23,111	14,661	50,118	36,015	56,271	150,456 i 112,352 o 125,536 m 117,243 p	53,356		212,913 (CO) 38,156 25,315 23,111

при α -атоме углерода. Таким образом, следует предположить, что мы видим усредненный спектр ЯМР за счет наличия кето-енольной таутомерии в растворе Π с практически полным преобладанием кетонного изомера. Такое преобладание встречается у производных ацетоуксусного эфира, имеющих

Общий вид молекулы Па. Показаны только атомы водорода, связанные с гетероциклом

объемный заместитель в α -положении [4]. Рентгеноструктурный анализ соединения IIа (см. рисунок, табл. 4—7) также свидетельствует о *транс*-конфигурации цикла и кетонном строении соединения в кристаллическом состоянии. Конформация гетероцикла и ориентация заместителей близка к установленным ранее для исходного пиразолидина Iб [5]—пиразолидиновый цикл соединения IIа находится в конформации искаженного конверта (см. табл. 4), отклонение атома $C_{(5)}$ от плоскости $N_{(1)}$ — $N_{(2)}$ — $C_{(3)}$ — $C_{(4)}$ (плоскость выполняется с точностью ± 0.043 Å) составляет -0.526Å, двугранный угол между рассматриваемой плоскостью и плоскостью, проведенной через атомы $N_{(1)}$ — $C_{(5)}$ — $C_{(4)}$, равен 34.8° . Длины связей и валентные углы в молекуле IIа близки к стандартным значениям [6], меж- и внутримолекулярных взаимодействий (расстояний меньше сумм ван-дер-ваальсовых радиусов атомов [7]) не обнаружено.

Соединения IIв и IIг содержат два хиральных центра, поэтому в спектрах ЯМР 1 Н и 13 С мы видим сигналы двух диастереомерных пар, однако соотношение их меняется в зависимости от растворителя: от 1:3 в CDCl3 до 1:6 в ацетоне- D_6 . По-видимому, енолизация в таких системах возможна за счет высокой СН-кислотности эфира, а ее невысокая скорость позволяет увидеть каждый из изомеров.

Таблица 4

Длины связей в молекуле Па

Связь	ı, Å	Связь	ı, Å	Связь	ı, Å
		2			,
O(1)—C(8)	1,189(5)	N(2)—C(13)	1,371(5)	$C_{(11)}$ — $C_{(12)}$	1,491(7)
$O_{(2)}-C_{(8)}$	1,333(5)	$C_{(3)}$ — $C_{(4)}$	1,543(7)	$C_{(13)}$ — $C_{(14)}$	1,492(6)
$O_{(2)}-C_{(9)}$	1,470(5)	$C_{(3)}$ — $C_{(7)}$	1,539(6)	$C_{(15)}$ — $C_{(16)}$	1,394(6)
$O_{(3)}$ — $C_{(11)}$	1,207(5)	C(4)—C(5)	1,524(6)	$C_{(15)}$ — $C_{(20)}$	1,391(6)
O ₍₄₎ —C ₍₁₃₎	1,223(5)	C(5)—C(6)	1,515(7)	$C_{(16)}$ — $C_{(17)}$	1,375(6)
N ₍₁₎ —N ₍₂₎	1,429(5)	$C_{(7)}$ — $C_{(8)}$	1,509(5)	$C_{(17)}$ — $C_{(18)}$	1,381(7)
N ₍₁₎ —C ₍₅₎	1,487(5)	$C_{(7)}$ — $C_{(11)}$	1,533(6)	$C_{(18)}$ — $C_{(19)}$	1,384(7)
N(1)—C(15)	1,430(5)	C(9)—C(10)	1,490(8)	$C_{(19)}$ — $C_{(20)}$	1,382(6)
N(2)—C(3)	1.469(5)		1		

Таблица 5

Валентные углы ω (град.) в молекуле Па

Угол	ω , град.	Угол	ω, град.
$C_{(8)}$ — $C_{(2)}$ — $C_{(9)}$	117,5(4)	$O(1) - C_{(8)} - C_{(7)}$	123,4(4)
$N_{(2)}-N_{(1)}-C_{(5)}$	103,3(3)	$O_{(2)}$ — $C_{(8)}$ — $C_{(7)}$	112,1(3)
$N_{(2)}-N_{(1)}-C_{(15)}$	114,5(3)	O ₍₂₎ —C ₍₉₎ —C ₍₁₀₎	110,0(4
$C_{(5)}$ — $N_{(1)}$ — $C_{(15)}$	117,7(3)	$O_{(3)}-C_{(11)}-C_{(7)}$	118,1(4
$N_{(1)}-N_{(2)}-C_{(3)}$	111,4(3)	$O_{(3)}-C_{(11)}-C_{(12)}$	122,1(4
$N_{(1)}-N_{(2)}-C_{(13)}$	119,0(3)	$C_{(7)}-C_{(11)}-C_{(12)}$	119,8(4
$C_{(3)}$ — $N_{(2)}$ — $C_{(13)}$	120,8(3)	$O_{(4)}-C_{(13)}-N_{(2)}$	119,5(4
$N_{(2)}$ — $C_{(3)}$ — $C_{(4)}$	103,7(3)	$O_{(4)}-C_{(13)}-C_{(14)}$	123,2(4
N ₍₂₎ —C ₍₃₎ —C ₍₇₎	111,9(3)	$N_{(2)}-C_{(13)}-C_{(14)}$	117,2(4
$C_{(4)}$ — $C_{(3)}$ — $C_{(7)}$	112,1(3)	$N_{(1)}$ — $C_{(15)}$ — $C_{(16)}$	118,6(4
$C_{(3)}-C_{(4)}-C_{(5)}$	104,0(3)	$N_{(1)}$ — $C_{(15)}$ — $C_{(20)}$	122,3(4
N(1)—C(5)—C(4)	104,0(4)	$C_{(16)}$ — $C_{(15)}$ — $C_{(20)}$	118,8(4
N(1)—C(5)—C(6)	109,9(3)	$C_{(15)}-C_{(16)}-C_{(17)}$	120,7(4
$C_{(4)}$ — $C_{(5)}$ — $C_{(6)}$	113,2(4)	$C_{(16)}$ — $C_{(17)}$ — $C_{(18)}$	120,8(5
$C_{(3)}-C_{(7)}-C_{(8)}$	111,5(3)	$C_{(17)}$ — $C_{(18)}$ — $C_{(19)}$	118,4(4
$C_{(3)}$ — $C_{(7)}$ — $C_{(11)}$	112,0(3)	$C_{(18)}$ — $C_{(19)}$ — $C_{(20)}$	121,7(4
$C_{(8)}-C_{(7)}-C_{(11)}$	112,8(4)	$C_{(15)}$ — $C_{(20)}$ — $C_{(19)}$	119,5(4
$O_{(1)}-C_{(8)}-O_{(2)}$	124,5(3)		

Координаты ($\times 10^4$; для H — $\times 10^3$) и изотропные эквивалентные тепловые параметры неводородных атомов (H — изотропные) в молекуле На

Таблица 6

Атом	X	у	z	U _(eq)
		41 (0 (2)	7562(2)	52(1)
O ₍₁₎	647(3)	4169(3)	7563(2)	the second second
O ₍₂₎	352(3)	2321 (3)	7092(2)	44(1)
· O(3)	2626(3)	2409(3)	9598(2)	45(1)
O(4)	3700(3)	-150(2)	8766(2)	40(1)
N ₍₁₎	5976(4)	2010(3)	8204(2)	28(1)
N(2)	4699(3)	1509(3)	8408(2)	27(1)
C ₍₃₎	3311(5)	1859(4)	7832(2)	29(1)
C ₍₄₎	3856(5)	2462(4)	7150(3)	33(2)
C ₍₅₎	5497(5)	2116(4)	7315(2)	32(2)
C ₍₆₎	5746(6)	953(5)	6929(3)	44(4)
· C ₍₇₎	2364(5)	2696(4)	8211(2)	31(2)
C ₍₈₎	1036(5)	3165(4)	7591(2)	33(2)
C(9)	-888(5)	2680(5)	6420(3)	47(2)
C(10)	-316(6)	2968(6)	5704(3)	49(2)
C ₍₁₁₎	1932(5)	2128(4)	8932(3)	33(2)
C ₍₁₂₎	668(6)	1272(5)	8797(3)	44(2)
C(13)	4826(5)	422(3)	8773(2)	28(1)
C ₍₁₄₎	6354(6)	34(4)	9210(3)	39(2)
C ₍₁₅₎	6557(4)	3044(3)	8653(2)	. 25(1)
C(16)	7687(5)	3674(4)	8431 (3)	33(2)
. C ₍₁₇₎	8345(5)	4632(4)	8875(3)	37(2)
C ₍₁₈₎	7913(5)	4982(4)	9554(3)	39(2)
C(19)	6813(5)	4339(4)	9783(3)	35(2)
C ₍₂₀₎	6134(5)	3377(4)	9344(2)	28(1)
	264(4)	113(4)	766(2)	4(1)
H ₍₃₎	328(4)	216(3)	667(2)	3(1)
H ₍₄₁₎	369(5)	336(4)	717(3)	6(1)
H ₍₄₂₎	605(4)	278(4)	714(2)	3(1)
H ₍₅₎	1	102(3)	635(2)	3(1)
H ₍₆₁₎	540(4)	29(5)	709(3)	7(2)
H ₍₆₂₎	519(6)	1	707(2)	4(1)
H ₍₆₃₎	679(5)	70(4)	839(2)	1(1)
H ₍₇₎	297(4)	342(3)		4(1)
H ₍₉₁₎	-146(5)	200(4)	629(2)	7(2)
$H_{(92)}$	-146(6)	336(5)	653(3)	
$H_{(101)}$	-113(5)	314(4)	524(3)	5(1)
$H_{(102)}$. 31(5)	369(4)	579(3)	6(2)
$H_{(103)}$.19(5)	232(5)	554(3)	7(2)
$H_{(121)}$	57(5)	81 (4)	836(3)	7(2)
$H_{(122)}$	-42(6)	170(5)	866(3)	7(2)
$H_{(123)}$	71 (5)	84(4)	927(3)	6(1)
H(141)	630(4)	-73(4)	934(2)	4(1)
H ₍₁₄₂₎	670(5)	49(4)	969(3)	. 5(1)
H(143)	715(6)	28(5)	889(3)	7(2)
H(16)	797(4)	349(3)	797(2)	2(1)
H ₍₁₇₎	909(4)	505(3)	873(2)	3(1)
H ₍₁₈₎	839(4)	559(4)	989(2)	4(1)
H(19)	652(4)	455 (3)	1024(2)	3(1)
H ₍₂₀₎	536(4)	294(3)	950(2)	3(1)

<u> </u>					
Основные	торсионные	углы	ι	В	молекуле Ha

Угол	τ	Угол	τ
N ₍₁₎ —N ₍₂₎ —C ₍₃₎ —C ₍₄₎	9,7	$C_{(15)}$ — $N_{(1)}$ — $C_{(5)}$ — $C_{(6)}$	148,4
$N_{(1)}-N_{(2)}-C_{(13)}-O_{(4)}$	-161,4	$C_{(13)}$ — $N_{(2)}$ — $C_{(3)}$ — $C_{(7)}$	101,6
$N_{(1)}-N_{(2)}-C_{(13)}-C_{(14)}$	22,6	$C_{(9)}$ — $C_{(2)}$ — $C_{(8)}$ — $O_{(1)}$	5,5
$N_{(2)}-N_{(1)}-C_{(5)}-C_{(4)}$	37,1	$C_{(8)}$ — $C_{(2)}$ — $C_{(9)}$ — $C_{(10)}$	90,5
$N_{(2)}-N_{(1)}-C_{(15)}-C_{(16)}$	-172,5	$C_{(9)}$ — $C_{(2)}$ — $C_{(8)}$ — $C_{(7)}$	-175.2
$N_{(2)}-C_{(3)}-C_{(4)}-C_{(5)}$	13,8	$C_{(3)}$ — $C_{(7)}$ — $C_{(8)}$ — $O_{(1)}$	-136,8
$C_{(3)}-C_{(4)}-C_{(5)}-N_{(1)}$	-31,4	$C_{(11)}-C_{(7)}-C_{(8)}-O_{(1)}$	96,2
$C_{(5)}-N_{(1)}-N_{(2)}-C_{(3)}$	-29,6	$C_{(3)}-C_{(7)}-C_{(8)}-O_{(2)}$	43,9
$C_{(7)}-C_{(3)}-C_{(4)}-C_{(5)}$	134,7	$C_{(3)}-C_{(7)}-C_{(11)}-O_{(3)}$	101,4
$C_{(3)}$ — $C_{(4)}$ — $C_{(5)}$ — $C_{(6)}$	87,8	$C_{(8)}$ — $C_{(7)}$ — $C_{(11)}$ — $O_{(3)}$	-131,9
$C_{(15)}$ — $N_{(1)}$ — $N_{(2)}$ — $C_{(3)}$	99,6	$C_{(3)}-C_{(7)}-C_{(11)}-C_{(12)}$	-79,6
$C_{(15)}$ — $N_{(1)}$ — $N_{(2)}$ — $C_{(13)}$	-112,7	$C_{(8)}-C_{(7)}-C_{(11)}-C_{(12)}$	47,1

Взаимодействие пиразолидина II6 с карбэтоксициклопентаноном протекает медленнее и труднее остальных реакций. На поверхности катализатора Гудри при $60\,^{\circ}$ С через $12\,^{\circ}$ ч наблюдалось образование лишь небольшого количества α -пиразолидинилциклопентанона IIIд — продукта декарбоксилирования искомого соединения IIд при отсутствии самого эфира IIд. Такие процессы наблюдались нами ранее в реакциях на поверхности окиси алюминия [2]. То же взаимодействие на поверхности того же катализатора при облучении в микроволновой печи в течение $25\,^{\circ}$ мин приводило к образованию только малоустойчивого соединения IIд (см. табл. 1-3); последующее облучение приводило к появлению в реакционной смеси декарбоксилированного продукта IIIд, который становится единственным через $13,5\,^{\circ}$ ч.

Соединение IIIд получено также непосредственным взаимодействием пиразолидина I6 с циклопентаноном на поверхности катализатора Гудри (см. табл. 1—3)

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры измерены на приборе UR-20 и Specord IR-75 в вазелиновом масле или хлористом метилене. Спектры ЯМР 1 Н и 13 С получены на приборах Varian VXR-400 и Bruker WM-250 в CDCIз с ГМДС в качестве внутреннего стандарта. Контроль за ходом реакций и чистотой полученных соединений осуществляли методом ТСХ на пластинках Silufol UV-254 в системе бензол—этилацетат, 1:1, проявление проводили парами йода и спиртовым раствором хлорного железа. Очистку полученных соединений проводили методом флеш-хроматографии на силикагеле L 40/100 в градиенте бензол—этилацетат.

Использовались адсорбенты: Al_2O_3 фирмы Reanal; Florisil фирмы Fluka; полиамид фирмы Woelm; катализатор Гудри Грозненского химического завода, с содержанием $Al_2O_3 \sim 15\%$.

Рентгеноструктурное исследование. Кристаллы соединения Па моноклинные, при – 80 °C: a=9,248(3), b=11,305(4), c=17,175(8) Å, $\beta=104,29(3)$ °, V=1740(2) ų, $d_{\rm Bhrq}=1,269$ г/см³, Z=4, пространственная группа P21/C. Параметры ячейки и интенсивности 2528 независимых отражений измерены на четырехкружном автоматическом дифрактометре Syntex P21 Å МоК α , графитовый монохроматор, $\theta/2\theta$ -сканирование до $\theta_{\rm max}=26$ °). Структура расшифрована прямым методом, выявившим все неводородные атомы, и уточнена полноматричным МНК в анизотропном приближении для неводородных атомов по 1450 отражениям с $I>3\sigma$ (I). Все атомы водорода объективно выявлены разностными Фурье-синтезами и уточнены изотропно. Окончательные значения факторов расходимости R=0,043, $R_{\rm w}=0,043$ (S = 1,137). Все расчеты проведены по программе SHELXTL PLUS [8] (версия PC). Координаты и изотропные эквивалентные (для Н изотропные) тепловые параметры неводородных атомов даны в табл. 6.

Общая методика синтеза соединений П. В минимальном количестве бензола растворяют исходные пиразолидин и сложный эфир и последовательно вносят на десяти кратное по весу количество прокаленного адсорбента при непрерывном встряхивании, которое продолжают еще около 5 мин. Растворитель упаривают в вакууме досуха, смесь оставляют при комнатной температуре, нагревают в термостате или облучают в микроволновой печи (мощность 170 Вт, облучают по 2...5 мин с интервалами 5 мин, в табл. 1 приводится суммарное время облучения). Контроль осуществляют ТСХ отобранных проб. Полученные соединения экстрагируют хлороформом, упаривают растворитель, очищают хроматографией. Характеристики полученных соединений приведены в табл. 1, спектры ЯМР — в табл. 2, 3, данные РСА — в табл. 4—7.

Авторы выражают благодарность $P\Phi\Phi U$ (гранты 96-03-32507 и 94-03-08338) за финансовую поддержку данной работы.

СПИСОК ЛИТЕРАТУРЫ.

- 1. Моторина И. А., Свиридова Л. А. // ХГС. 1992. № 6. С. 829.
- 2. Мусатов Д. М., Свиридова Л. А., Моторина И. А., Лещева И. Ф., Голубева Г. А. // XFC. 1994. № 4. С. 483.
- Ragni R. M., Kabalra G. W., Boothe R., Gaetano K., Stewart L. J. // J. Org. Chem. —1988. Vol. 53. — P. 4477.
- 4. Строение и таутомерные превращения β -дикарбонильных соединений / Под ред. Э. Ю. Гудриниеце, С. А. Гиллера, Э. Я. Грена, О. Я. Нейланда, Я. П. Страдыня. Рига: Зинатне, 1977. С. 24.
- Довгилевич А. В., Зеленин К. Н., Еспенбетов А. А., Стручков Ю. Т., Бежан И. П., Свиридова Л. А., Голубева Г. А., Малов М. Ю., Бундель Ю. Г. // ХГС. — 1985. — № 9. — С. 1242.
- Allen F. H., Kennard O., Watson D. G., Brammer L., Orpen A. G., Taylor R. // J. Chem. Soc. Perkin Trans. II. —1987. — N 12. — P. S1.
- 7. Bondi A. // J. Phys. Chem. 1966. Vol. 70. P. 3006.
- 8. Robinson W., Sheldrick G. M. // Crystallographic computing-techniques and new technologies. Oxford: Oxford Univ. Press, 1988. P.366.

Московский государственный университет им. М. В. Ломоносова, Москва 119899

Поступило в редакцию 20.02.97