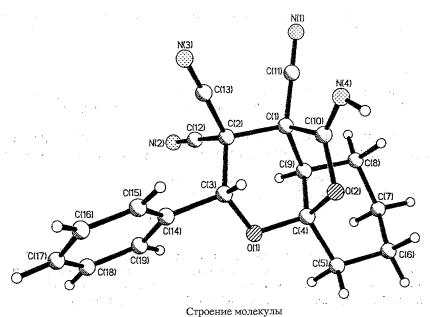
Я. С. Каюков, П. М. Лукин, О. Е. Насакин, В. Н. Хрусталев, В. Н. Нестеров, М. Ю. Антипин, В. В. Шевердов

УТОЧНЕНИЕ СТРУКТУРЫ ПРОДУКТОВ ВЗАИМОДЕЙСТВИЯ 4-ОКСОАЛКАН-1,1,2,2-ТЕТРАКАРБОНИТРИЛОВ С АЛЬДЕГИДАМИ

Методом рентгеноструктурного анализа установлено, что при реакции 4-оксоалкан-1,1,2,2-тетракарбонитрилов с альдегидами образуются 6-имино-2,7-диоксабицикло[3.2.1] октан-4,4,5-трикарбонитрилы, а не 3-имино-2,6-диоксабицикло-[2.2.2] октан-4,8,8-трикарбонитрилы, как предполагалось.

Ранее сообщалось [1], что при взаимодействии 4-оксоалкан-1,1,2,2-тетракарбонитрилов с альдегидами образуются 3-имино-2,6-диоксабициклю [2.2.2] октан-4,8,8-трикарбонитрилы (II), структура которых была представлена на основании данных ИК, ЯМР 13 С и масс-спектров.


NC CN
$$R^2$$
 CN
 R^3
 R^4
 CN
 R^4
 R^4

Недавно нами было показано [2], что при взаимодействии соединений I с 1,3,5-триарил-2,4-диазапента-1,4-диенами в качестве промежуточных соединений образуются 2-арил-5,6-диалкил-6-гидроксипиперидин-3,3,4,4-тетракарбонитрилы, строение которых таково, что предпочтительным оказывается 1,3-взаимодействие гидроксильной и цианогруппы. Этот факт привел нас к мысли, что и при взаимодействии соединений I с альдегидами в интермедиате А имеет место подобное 1,3-взаимодействие, в результате которого образуются не 3-имино-2,6-диоксабицикло [2.2.2]октан-4,8,8-три-карбонитрилы (II), а 6-имино-2,7-диоксабицикло [3.2.1]октан-4,4,5-трикарбонитрилы (III). Правомерность предположения была подтверждена рентгеноструктурными исследованиями монокристалла соединения III [$\mathbb{R}^1+\mathbb{R}^2=(CH_2)_4,\mathbb{R}^3=\mathbb{P}h$] (рис.).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Соединение III $[R^1 + R^2 = (CH_2)_4, R^3 = Ph]$ получено по методике [1].

Ренттеноструктурные исследования соединения III [$R^1+R^2=(CH_2)_4$, $R^3=Ph$]. Кристаллы моноклинные, пространственная группа $P2_1/c$, при -80 °C a=7,583(1), b=10,931(3), c=20,109(4) Å, $\beta=93,15(2)$ °, V=1664,3(6) Å 3 , Z=4, $d_{\rm BhY}=1,324$ г/см 3 . Параметры элементар-

6-имино-1,8-тетраметилен-3-фенил-2,7-диоксабицикло[3.2.1]октан-4,4,5-трикарбонитрила

Координаты неводородных атомов ($\times 10^4$) и коэффициент эквивалентного изотропного смещения ($\mathring{\rm A}^2 \times 10^3$) 6-имино-1,8-тетраметилен-3-фенил-2,7-диоксабицикло[3.2.1] октан-4,4,5-трикарбонитрила

Таблица 1

Атом	х	'π' y	z	U(eq)
O ₍₁₎	4630(2)	. 6960(1)	2742(1)	32(1)
O ₍₂₎	3741(2)	8651(1)	2082(1)	33(1)
N(1)	-1954(3)	8706(2)	2818(1)	53(1)
N ₍₂₎	1029(3)	5708(2)	3823(1)	63(1)
N(3)	1873(3)	9495(2)	4280(1)	65(1)
N(4)	2021 (3)	10271(2)	2465(1)	40(1)
C ₍₁₎	1335(3)	8114(2)	2702(1)	29(1)
C ₍₂₎	2274(3)	7776(2)	3400(1)	31(1)
C ₍₃₎	4330(3)	7700(2)	3308(1)	30(1)
C ₍₄₎	3661(3)	7325(2)	2146(1)	30(1)
C ₍₅₎	4518(3)	6732(2)	1570(1)	39(1)
C ₍₆₎	3414(4)	6892(3)	917(1)	47(1)
C ₍₇₎	1511(3)	6497(3)	992(1)	49(1)
C ₍₈₎	647(3)	7221 (2)	1532(1)	40(1)
C ₍₉₎	1698(3)	7081 (2)	2203(1)	31(1)
C(10)	2365(3)	9164(2)	2404(1)	30(1)
C ₍₁₁₎	-523(3)	8437(2)	2765(1)	34(1)
C ₍₁₂₎	1567(3)	6609(2)	3646(1)	38(1)
C ₍₁₃₎	2002(3)	8748(2)	3897(1)	40(1)
C ₍₁₄₎	5409(3)	7233(2)	3906(1)	33(1)
C ₍₁₅₎	6226(3)	8086(2)	4333(1)	43(1)
C(16)	7260(4)	7706(3)	4884(1)	53(1)
C(17)	7510(4)	6483(3)	5004(1)	56(1)
C(18)	6714(4)	5631 (3)	4580(1)	53(1)
C ₍₁₉₎	5656(3)	5998(2)	4032(1)	41(1)

Длины связей и валентные углы в молекуле 6-имино-1,8-тетраметилен-3фенил-2,7-диоксабицикло[3.2.1]октан-4,4,5-трикарбонитрила

Связь	Длина, Å	Угол	ω, град.	Угол	ω, град.
$O_{(1)}$ — $C_{(3)}$	1,424(2)	$C_{(21)}-C_{(22)}-C_{(23)}$	106,0(2)	$C_{(10)}-N_{(1)}-C_{(2)}$	121,5(2)
$O_{(1)}$ — $C_{(4)}$	1,428(2)	$C_{(3)}-C_{(1)}-C_{(4)}$	114,5(2)	$C_{(10)}-O_{(2)}-C_{(4)}$	109,2(2)
$O_{(2)}$ — $C_{(10)}$	1,377(3)	$C_{(11)}$ — $C_{(1)}$ — $C_{(10)}$	111,5(2)	$C_{(11)}-C_{(1)}-C_{(9)}$	116,0(2)
$O_{(2)}$ — $C_{(4)}$	1,456(3)	$C_{(10)}$ — $C_{(1)}$ — $C_{(9)}$	100,4(2)	$C_{(11)}-C_{(1)}-C_{(2)}$	111,6(2)
$N_{(1)}-C_{(11)}$	1,135(3)	$C_{(10)}-C_{(1)}-C_{(2)}$	107,9(2)	$C_{(9)}-C_{(1)}-C_{(2)}$	108,6(2)
$N_{(2)}$ — $C_{(12)}$	1,131(3)	$C_{(12)}$ — $C_{(2)}$ — $C_{(13)}$	109,1(2)	$C_{(12)}$ — $C_{(2)}$ — $C_{(1)}$	110,1(2)
$N_{(3)}$ — $C_{(13)}$	1,131(3)	$C_{(13)}$ — $C_{(2)}$ — $C_{(1)}$	111,0(2)	$C_{(12)}$ — $C_{(2)}$ — $C_{(3)}$	111,8(2)
N(4)—C(10)	1,245(3)	$C_{(13)}$ — $C_{(2)}$ — $C_{(3)}$	107,0(2)	$C_{(1)}$ — $C_{(2)}$ — $C_{(3)}$	107,9(2)
$C_{(1)}-C_{(11)}$	1,464(3)	$O_{(1)}$ — $C_{(3)}$ — $C_{(14)}$	110,0(2)	$O_{(1)}-C_{(3)}-C_{(2)}$	109,0(2)
$C_{(1)}$ — $C_{(10)}$	1,529(3)	$C_{(14)}$ — $C_{(3)}$ — $C_{(2)}$	114,9(2)	$O_{(1)}$ — $C_{(4)}$ — $O_{(2)}$	109,3(2)
$C_{(1)}$ — $C_{(9)}$	1,545(3)	$O_{(1)}-C_{(4)}-C_{(5)}$	107,5(2)	$O_{(2)}-C_{(4)}-C_{(5)}$	109,9(2)
$C_{(1)}$ — $C_{(2)}$	1,582(3)	$O_{(1)}$ — $C_{(4)}$ — $C_{(9)}$	110,3(2)	$O_{(2)}C_{(4)}C_{(9)}$	103,1(2)
$C_{(2)}-C_{(12)}$	1,480(3)	$C_{(5)}-C_{(4)}-C_{(9)}$	116,6(2)	$C_{(4)}$ — $C_{(5)}$ — $C_{(6)}$	111,9(2)
$C_{(2)}$ — $O_{(13)}$	1,480(3)	$C_{(7)}$ — $C_{(6)}$ — $C_{(5)}$	111,1(2)	$C_{(8)}-C_{(7)}-C_{(6)}$	111,7(2)
$C_{(2)}$ — $C_{(3)}$	1,582(3)	$C_{(7)}$ — $C_{(8)}$ — $C_{(9)}$	110,6(2)	$C_{(4)}$ — $C_{(9)}$ — $C_{(8)}$	112,2(2)
$C_{(3)}$ — $C_{(14)}$	1,506(3)	$C_{(4)}$ — $C_{(9)}$ — $C_{(1)}$	97,5(2)	$C_{(8)}$ — $C_{(9)}$ — $C_{(1)}$	113,2(2)
$C_{(4)}$ — $C_{(5)}$	1,505(3)	N(4)—C(10)—O(2)	127,7(2)	$N_{(4)}$ — $C_{(10)}$ — $C_{(1)}$	125,2(2)
C(4)—C(9)	1,523(3)	$O_{(2)} - C_{(10)} - C_{(1)}$	107,1(2)	$N_{(1)}-C_{(11)}-C_{(1)}$	178,8(2)
$C_{(5)}$ — $C_{(6)}$.1,527(3)	$N_{(2)}$ — $C_{(12)}$ — $C_{(2)}$	178,7(3)	N(3)—C(13)—C(2)	176,9(3)
$C_{(6)}$ — $C_{(7)}$	1,522(4)	C(19)—C(14)—C(15)	119,3(2)	$C_{(19)}-C_{(14)}-C_{(3)}$	122,6(2)
C ₍₇₎ —C ₍₈₎	1,521(4)	$C_{(15)}-C_{(14)}-C_{(3)}$	118,1(2)	$C_{(16)}$ — $C_{(15)}$ — $C_{(14)}$	120,5(2)
$C_{(8)}$ — $C_{(9)}$	1,536(3)	$C_{(17)}C_{(16)}C_{(15)}$	120,0(2)	$C_{(16)}-C_{(17)}-C_{(18)}$	119,9(2)
C(14)—C(19)	1,385(3)	C(17)—C(18)—C(19)	120,7(3)	$C_{(14)}-C_{(19)}-C_{(18)}$	119,6(2)
C ₍₁₄₎ —C ₍₁₅₎	1,390(3)				
C(15)—C(16)	1,384(4)			3	
C ₍₁₆₎ —C ₍₁₇₎	1,371(4)				[
C(17)—C(18)	1,378(4)	i. • 1		•	
$C_{(18)}-C_{(19)}$	1,387(4)			**	

ной ячейки и интенсивности 3298 отражений измерены на автоматическом четырехкружном дифрактометре Syntex P21 (T=-80 °C, λ MoK α , графитовый монохроматор, $\theta/2\theta$ -сканирование, $\theta_{\text{max}}=27$ °). Структура расшифрована прямым методом и уточнена полноматричным МНК в анизотропном приближении для неводородных атомов. Атомы водорода, локализованные объективно в разностном Фурье-синтезе, уточнены в изотропном приближении. Окончательные факторы расходимости $R_1=0,051$ по 3003 независимым отражениям с $I>\sigma(I)$ и $wR_2=0,140$ по всем 3022 независимым отражениям. Все расчеты проведены на IBM PC/AT-486 по программам SHELXTL PLUS и SHELXL-93. Координаты атомов, длины связей и валентные углы приведены в табл. 1 и 2.

СПИСОК ЛИТЕРАТУРЫ

^{1.} Насакин О. Е., Николаев Е. Г., Терентьев П. Б., Булай А. Х., Хаскин Б. А., Дагер К. // XГС. — 1984. — № 11. — С. 1462.

Каюков Я. С., Насакин О. Е., Урман Я. Г., Хрусталев В. Н., Нестеров В. Н., Антипин М. Ю., Лыщиков А. Н., Лукин П. М. // ХГС. — 1996. — № 10. — С.1395.