Ж. А. Красная, С. А. Бурова, В. С. Богданов, Ю. В. Смирнова

СИНТЕЗ

δ -ГЕТАРИЛ- α , α -ДИКАРБОНИЛСОДЕРЖАЩИХ ДИЕНОВ И ИЗУЧЕНИЕ ИХ ВАЛЕНТНОЙ ИЗОМЕРИЗАЦИИ

Изучено взаимодействие β -гетарил- и β -гетарил- α -метилакролеинов с эфирами ацетоуксусной и малоновой кислот. Строение полученных продуктов установлено методами ЯМР 1 Н, 13 С и УФ спектроскопии. Показано, что в зависимости от замещения в исходном альдегиде и от использованного эфира образуются (E)- и (Z)-изомеры α , α -дикарбонилсодержащих диенов, их смеси с соответствующими 2Н-пирапами или исключительно 2Н-пираны. Обнаружено, что 6-метил- и 3,6-диметил-5-карбалкокси-2-(пиридил-2) пираны при нагревании превращаются в замещенные 2-(пирилиден) пираны.

Ранее нами было показано [1—5], что некоторые α, α -дикарбонилсодержащие диены типа I превращаются в результате валентной изомеризации в соответствующие 2H-пираны II и между соединениями I и II устанавливается динамическое равновесие.

На способность диенов I к такому превращению и связанное с ним проявление подобными соединениями сольвато-, термо- и фотохромных свойств значительное влияние оказывают заместители. Так, ранее было показано, что вследствие сильного стерического взаимодействия в соединениях I (R = Me, OMe; $R^1 = Me$, $R^2 = H$, $R^3 = H$, $R^4 = H$, Me, Ph, циклогексил; $R^3 = R^4 = Me$) между одним из α -заместителей и γ -протоном замещение последнего на группу Me полностью смещает равновесие в сторону соответствующего 2H-пирана II [3—5]. Для диенов I ($R^2 = H$), имеющих в δ -положении группу NMe2, в отличие от аналогичных соединений с алкильной группой при $C(\delta)$, превращение в 2H-пиран не наблюдалось. Однако: при наличии в γ -положении таких диенов заместителей либо устанавливалось динамическое равновесие между формами I и II ($R^2 = Me$, Ph, Cl, Br, OEt) [6, 7], либо оно полностью сдвигалось в сторону последней ($R^2 = Pr$ -i, NMe2) [8].

С целью изучения влияния гетарильных заместителей в δ -положении α, α -дикарбонилсодержащих диенов на валентную изомеризацию последних в данной работе осуществлена реакция Кневенагеля β -гетарил- α, β -непредельных альдегидов (IIIа—и) с метиловым и этиловым эфирами ацетоуксусной (IV) или малоновой (V) кислот и определено строение полученных продуктов.

На схеме в общем виде представлены продукты, которые могут образовываться в результате конденсации альдегидов IIIа—и с эфирами IV—Va,б.

IIIа,е, VIa,в, VIIa,б, VIIIа Het = фурил-2; IIIб,ж, VIб,г, VIIв—е, VIIIб Het = тиенил-2; IIIв,з, VIд, VIIж—и, VIIIв,д Het = пиридил-2; IIIг,и, VIе,ж, VIIк,л, VIIIе Het = пиридил-3; IIIд, VIз, VIIм Het = пиридил-4; IIIа—д, VIa,б,д,е,з, VIIж,к,м R = H; IIIе—и, VIв,г,ж, VIIз,и,л, VIIIа—г,е R = Me; IVa, VIa—з, VIIIа—в,е, R¹ = R² = Me; IVб, VIIIг, R¹ = Me, R² = Et; Va, VIIа—в,д,ж,з,к—м R¹ = OMe, R² = Me; Vб, VIIг,е,и, R¹ = OEt, R² = Et

Исходные соединения IIIа,6,е—з получены в результате альдольной конденсации гетероциклических альдегидов с уксусным и пропионовым альдегидом по известным методикам [9—11]. Следует отметить, что для синтеза α -метилзамещенных альдегидов IIIж,3, а также IIIи оказался удобным недавно разработанный способ альдольной конденсации в гетерофазной системе [11]. К сожалению, он не пригоден для синтеза β -пиридилакролеинов IIIв—д и крайне мало эффективен для получения ранее не известного α -метил- β -(пиридил-4)акролеина (IIIк), который был получен нами в незначительном количестве и в дальнейших синтезах не использовался.

В литературе неоднократно указывалось на то, что конденсация ацетальдегида с альдегидами пиридинового ряда протекает с очень низкими выходами [12, 13]. Лучшим способом для синтеза β -пиридилакролеинов IIIв—д оказалась реакция Виттига между соответствующими пиридинальдегидами и (формилметилен) трифенилфосфораном [14], несмотря на необходимость получения последнего. β -(Пиридил-2) акролеин IIIв нам также удалось получить с выходом 15% по достаточно простой методике, предложенной для синтеза β -(пиридил-4) акролеина IIIд [13] — путем непосредственной альдольной конденсации 2-пиридинальдегида с ацетальдегидом в бензоле в присутствии морфолинацетата (см. эксперим. часть). Попытка получить это соединение конденсацией 2-пиридинальдегида с литиевым производным основания Шиффа CH3CH=NBu-t [15] оказалась неудачной.

Спектральные характеристики альдегидов IIIа—к представлены в табл. 1. Из данных спектров ПМР следует, что соединения IIIа—д представляют собой (E)-изомеры ($J_{\alpha}\beta$ = 15...16 Γ_{Π}).

Конденсация альдегидов IIIа—и с эфирами IV и Vа,б осуществлена в присутствии катализатора — пиперидина или смеси пиперидина и ледяной уксусной кислоты. Характеристики полученных при этом продуктов представлены в табл. 2 и 3. Их строение установлено по данным УФ спектров (табл. 2, 3), а также спектров ЯМР ¹Н (табл. 4, 6) и ¹³С (табл. 5, 7).

Отнесение резонансных сигналов в спектрах ЯМР 1 Н и 13 С синтезированных соединений к структуре диена (VI) и 2H-пирана (VIII) сделано на основании сравнения значений их химических сдвигов и КССВ с таковыми алифатических диенов и 2H-пиранов, изученных ранее [3, 16]. О принадлежности сигналов к (E)- или (Z)-изомерам судили на основе наших данных о стереоспецифичности констант $^{3}J_{\rm CO}$, $_{\rm H}\beta$ и химических сдвигов

Данные ПМР и УФ спектров eta-гетарилакролеинов

· · · · · · · · · · · · · · · · · · ·			Спектр ПМР, химические сдвиги, δ_{τ} м. д., CDCl3, КССВ (J), Гц												
Соеди-	уф спектр, λ_{max} , нм (\mathcal{E}) , EtOH			β-н (1H)	Ме (3H)										
нение		CHO (1H)	α-H			фурил / тиенил			пиридил					KCCB	
	(0), Elon	(111)	(1Н, д. д)			3-Н (1H, д)	4-H (1H)	5-Н (1Н, д)	2-Н (1H, д)	3-Н (1H, д)	4-H (1H)	5-Н (1Н)	6-H (1H)		
IIIa	322 (27000)	9,62 (д)	6,58	7,22 (д)		6,77	6,53 (м)	7,57		·				$J_{\alpha}\beta = 16;$ $J_{\text{CHO},\alpha-\text{H}} = 8$	
Шб	325 (18900)	9,76 (д)	6,50	7,57 (д)	·	7,35	7,09 (д, д)	7,49		, <u></u>	·	·		$J_{\alpha\beta} = 16;$ $J_{\text{CHO},\alpha-H} = 8$	
IIIB	295 (13900), 255 (11400)	9,80 (д)	7,10	7,55 (д)						7,53	7,78 (м)	7,30 (м)	8,70 (д)	$J_{CHO,\alpha-H} = 8$	
IIIr	270 (18500)	9,75 (д)	6,78	7,50 (д)	-				8,80	,	7,90 (м)	7,39 (д. д)	8,65 (д. д)	$J_{\alpha,\beta} = 16,$ $J_{\text{CHO},\alpha-H} = 8$	
Шд	265 (19700)	9,76 (д)	6,83	7,43 (д)					8,71	7,40		7,40 (д)	8,71 (д)		
IIIe	320 (28000)	9,40 (c)	· -	6,95 (д)	2,02 (д)	6,71	6,48 (д, д)	7,56			·	·	·-	$J_{\text{CH3}}\beta_{-\text{H}} = 1,5$	
IIIж*	320	9,45 (c)	,	7,40 (c)	2,05 (д)	7,35	7,12	7,57		·-			·-	$J_{\text{CH3}}\beta_{-\text{H}} = 1.5$	
III3*	295; 255	9,55 (c)	·	7,18 (c)	2,18 (д)			·	·	7,42	7,70	7,20	8,65	$J_{\text{CH3}}\beta_{\text{-H}} = 1.5$	
Ши	275 (18800)	9,63 (c)		7,25 (c)	2,09 (c)				8,77		7,85 (д)	7,39 (д. д)	8,62 (丸)	,	
IIIĸ		9,54 (c)		7,15 (c)	1,97 (c)			·-	8,58	7,30	· -	7,30 (д)	8,58 (д)		

^{*} Данные спектра ПМР взяты из работы [11].

Характеристики продуктов реакции Кневенагеля кетоэфира IVa с альдегидами IIIa-ж,и*

				•			*				
Исходный альдегид		Продукты реа (кции: содержание по данным ПМР)	в смеси, %		т _{пл} , °С, (Z)-изо- мера VI* ²	<i>Т</i> кип, °С (мм рт. ст.)* ³	уф спектр, λ_{\max} , нм (\mathcal{E})	Масс-спектр, <i>m/z</i>	Выход, % (на исходны реагенты)	
	диен	(Е)-изомер	(Z)-изомер	пир	ан	Wohn 41		EtOH		,	
⁵ IIĮa	VĮa	46	54	· 	·	7275	143150 (0,47)	365 (52000)	220	45	
Шб	VIG	40	60			7783	140143 (0,09)	365 (27100)	236	48	
IIIe	VIB	40	48	VIIĮa	12	5760	125130 (0,37)	360 (38500)	234		
жШ	VIr	9	78	VIII6	13	8994	· ·	355 (32100)	250	24	
IIIB -	VIд	40	60			Масло	· - .	330 (20800)	·	*4	
$\Pi\Pi$ r	VIe	45	55			102108		325 (27700)	·	25	
IIIn	VIж	·-	14	VIIIe	86	`	130140 (0,3)	208 (16800), 310 (8400)	245	28	
Шд	VI3	38	62			Масло		315 (15400)		20	

Данные элементного анализа приведены в экспериментальной части, для некоторых соединений они отсутствуют из-за трудностей очистки при работе с малыми количествами.

^{*2} Нечеткая Тпл связана с превращением при плавлении (Z)-изомера в смесь с (E)-изомером и пираном VIII.

 $^{^{*3}}$ Для указанной смеси (E)- и (Z)-VIa 20 = 1,6348, для смеси (E)-, (Z)-VIв и VIIIa — 1,5945; для смеси (Z)-VIж и VIIIe — 1,5723.

^{*4} См. экспериментальную часть.

Характеристики	синтезированных	пиэфиров	VIIIам
Aupunicphicinan	CHITCOMPONDINIDIA	даофиров	V ALLEA IVA

Pean	енты			т _{кип} , °С	УФ спектр,	Macc-	Выход, %
альде- гид	диэфир	Продукт	<i>T</i> _{ПЛ} , °C .	(мм рт. ст.)	λ _{max} , _{HM} (ε) EtOH	спектр, М ⁺	(на исходные реагенты)
IIIa	Va	VIIa	8890	140145 (0,47)	350 (47000)	236	60
IIIe	Va	VIIG	7678	147150* (0,5)	360 (32500)	250	35
шб	Va	VIIB	6465	- : '	350 (42100)	252	20
Шб	Vб	VIIr	3845	156161 (0,37)	360 (31600)		48
Шж	Va	VПд	7174	_	345 (35600)	266	14
Шж	Vб	VIIe	<u> </u>	152156 (0,36)	345 (34600)	_	26
Шв	Va	VIIж	7072		323 (32200)	—	20
Шз	Va	VII3	6163	_	315 (26100)	261	6
Шз	Vб	VIIи	Масло	150163 (0,35)	310 (14200)	289	3
${ m III}_{ m \Gamma}$	Va	VIIĸ	6165	_	320 (31100)		53
Ши	Va	VILn	7376		305 (32000)	261	20
Щд	Va	VII _M	8791	_	315 (25500)	_	54

^{*} $n_D^{20} = 1,6340.$

атомов 13 С группы СО в сопряженных карбонилсодержащих соединениях: $^3J_{\text{СО,H}}\beta$ (иис) $<^3J_{\text{СО,H}}\beta$ (мранс) [17], δ СО (иис) $<\delta$ СО (мранс) [18]. Из β -фурил- и β -тиенилакролеинов IIIа, δ и кетоэфира IVа образуются соответствующие диеновые кетоэфиры VIa, δ в виде равновесной смеси (E)-и (Z)-изомеров по α , β -двойной связи с содержанием (Z)-изомера 54% в случае продукта VIa и 60% — в случае VI δ .

COOMe
$$(Z)$$
-VIa, 6

 (E) -VIa, 6

 (E) -VIa, 6

После длительного стояния или охлаждения из этих смесей были выделены индивидуальные кристаллические (Z)-изомеры, при выдерживании которых в CDCl₃ (комнатная температура, несколько суток) были вновь получены равновесные смеси (Z)- и (E)-изомеров (данные спектров ПМР).

Из α -метилзамещенных β -фурил- и β -тиенилакролеинов IIIе,ж и кетоэфира IVa помимо (Z)- и (E)-изомеров диенов VIв,г образуются также 2H-пираны VIIIа,6; количественное содержание указанных продуктов, установленное спектрами ПМР, приведено в табл. 2.

Спектры ПМР фурил(тиенил)замещенных соединений в CDCl3, δ , м. д.

			Диеновый ф	рагмент / 2Н-пиран	ı		2-	Фурил / 2-тиенил (І	Het)	KCCD (V) Dv
Соеди- нение	MeCO/6-Me (3H, c)	COOMe (c)	γ-Me/3-Me (3H, c)	β-H/4-H (1H)	γ-H/3-H (1H)	δ-H/2-H (1H)	3-H (1H)	4-H (1H)	5-H (1H)	кссв (Л), Гц
(<i>E</i>) -VĮa	2,38	~ 3,74 (3H)	1 - T	7,31 (д)	7,11 (т)	6,75 (д)	6,52 (д)	6,38 (д. д)	7,40 (д)	$\begin{vmatrix} J\beta, \gamma = J\gamma, \delta = 12,0; J_{3,4} = 3,5; \\ J_{4,5} = 1,75 \end{vmatrix}$
(Z)-VIa	2,31	3,83 (3H)		7,31 (д)	7,11 (т)	6,81 (д)	6,50 (д)	6,40 (д. д)	7,43 (д)	$J\beta, \gamma = J\gamma, \delta = 12,0; J_{3,4} = 3,5; J_{4,5} = 1,75$
(<i>E</i>)-VI6	2,44	3,81 (3H)			l,	7,007,	45 (6Н, м)			· · · · · · · · · · · · · · · · · · ·
(Z)-VI6	2,38	3,89 (3H)				7,007,	45 (6Н, м)	•	1	
(E)-VIB	2,48	3,80 (3H)	2,07	7,27 (c)		6,61 (c)	6,28	6,55 (м)	7,48 (уш. с)	·
(Z)-VIB	2,35	3,87 (3H)	2,14	7,22 (c)		6,72 (c)	6,58 (д)	6,50 (уш. с)	7,53 (ym. c)	$J_{3,4}=3,5$
VIIIa	1,87	3,74 (3H)	1,68	6,286,55 (м)		5,56 (c)	6,28.	6,55 (м)	7,46 (уш. с)	·
(E)-VIr	2,48	3,81 (3H)	2,06	6,97,5 (м)		6,97,5 (м)		6,97,5 (м)		·
(Z)-VIr	2,36	3,88 (3H)	2,12	7,27 (c)	*	7,14 (c)	7,23 (д)	7,12 (д. д)	7,48 (д)	$J_{3,4}=3,6, J_{4,5}=4,8$
VIIIG	2,22	3,73 (3H)	1,75	6,34 (c)		5,76 (c)		6,97,5 (м)		
VIIIa		3,88 (3H)		7,49 (д)	7,10 (д. д)	6,80 (д)	6,57 (д)	6,45 (д. д)	7,46 (д)	$J\beta, \gamma = 11.5; J\gamma, \delta = 15.0;$ $J_{3,4} = 3.5; J_{4,5} = 1.7$
VIIG		3,81 (3H) 3,78 (3H)	2,08	7,37 (c)		6,64 (c)	6,54 (д)	6,45 (д. д)	7,49 (д)	$J_{3,4}=3,5; J_{4,5}=1,7$
VIIB		3,84 (3H) 3,76 (3H)		7,45 (д)		6,957	,15 (4H, м)		7,31 (д)	$J\beta, \gamma = 11.5; \ J_{4,5} = 4.8$
100		3,84 (3H)	!		-	7.00	7,20 (4Н, м)		7,35 (д)	$J\beta, \gamma = 11,5; \ J_{4,5} = 4,8$
$VIIr^*$	· ` · · ,			7,48 (д)		1	1	7 10 (7 7)	7,47 (д)	$J_{3,4} = 3,5; J_{4,5} = 4,8$
VIIд		3,81 (3H) 3,87 (3H)	2,11	7,45 (c)	,	7,11 (c)	7,21 (д)	7,10 (д. д)		
VIIe*2	- A 1	_	2,14	7,40 (c)		7,10 (c)	7,21 (д)	7,10 (д. д)	7,45 (д)	$J_{3,4}=3,6; J_{4,5}=4,8$

^{* 1,31} т и 1,38 т (6H, CH3CH2O), 4,26 к и 4,36 к (4H, CH3CH2O). *2 1,31 т и 1,36 т (6H, CH3CH2O), 4,27 к и 4,38 к (4H, CH3CH2O).

Таблица 5 Спектры ЯМР 13 С фурил(тиенил) замещенных соединений в CDCl3, δ , м. д. $(^3J_{13C,H})$ [$^4J_{CO,H}\beta$]

;				Диеновы	й фрагмент /	2Н-пиран				2-Фурил / 2-тиснил (Het)				
Соеди- нение	C(\alpha)/C(5)	C(β)/C(4)	C(y)/C(3)	င ₍ ঠ)/င ₍₂₎	Ме (в R ¹)/6-Ме	со (в R ¹)/С(6)	МеО (в R ²)	СО (в R ²)	γ-Me/3-Me	C ₍₂₎	C(3)	C ₍₄₎	C ₍₅₎	
(<i>E</i>) -VIa	131,05	144,72	121,70 (162)	131,54 (153)	31,09	200,16	52,02	165,76		151,97	113,93 (176)	112,45 (176)	144,53	
(Z)-VĮa	131,70	144,84	121,77 (160)	131,70 (151)	27,77	195,31	52,02	166,79		151,97	114,28 (176)	112,54 (176)	144,53	
(E)-VI6	130,47	145,49 (155)	122,94 (161)	138,3 (159)	31,17	200,03	52,06	165,85		141,1	130,23	128,13 (161)	128,59 (185)	
(Z)-VI6	131,18	145,04 (155)	123,04 (161)	138,2 (159)	28,03	195,41	52,06	166,68	· ·	141,1	130,06	128,22 (161)	128,59 (185)	
(Z)-VIB	131,68	145,74 (154)	129,61	128,95 (154)	25,94	194,56 [5, 6]	51,92	166,35	14,36	151,64	114,65 (172)	112,02 (176)	143,91 (203)	
(E)-VIr	123,18	*	*	* .	31,78	*2	52,05	166,40	16,60	*	*	*	*	
(Z)-VIr	126,4	146,23 (155)	131,11	135,31 (155)	26,13	194,63 [6, 5]	52,05	168,54 [13]	14,85	139,26	131,5 (167)	127,24 (167)	129,08	
VIIIQ	104,02	116,87 (166)	*	75,51 (153)	19,40	165,5	50,89	162,48	18,79	141,68	*	*	*	
VIIa	123,55	145,48 (156)	121,29 (156)	130,86 (156)		· 	52,20, 52,20	165,03, 165,60		151,76	113,98 (176)	112,39 (176)	144,64 (202,6)	
VII6	122,57	- 146,78 (157)	129,67	135,14 (155)			52,15, 52,15	167,28, 164,78	14,36	151,89	114,48 (176)	112,0 (176)	143,85 (203)	
VIIB	123,22	145,62 (156)	122,57 (160)	137,26 (159)			52,16, 52,08	165,46, 165,02	····· ·—.	140,91	129,93 (167).	128,07 (169)	128,31 (186)	
VIIд	122,67	147,49 (155)	130,01	135,04 (155)		·	52,49, 52,49	167,60, 165,13	15,06	139,45	131,47	127,47 (169)	129,01	

^{*} Химические сдвиги сигналов не определены из-за их наложения. Сигнал накопить не удалось.

Спектры ПМР пиридилзамещенных соединений в CDCl₃, δ , м. д.

		Диенов	вый фрагмент	/ 2Н-пиран ((пиран)			Пирі	идил / пирилил	цен		NH	KCCB
Соеди- нение	MeCO/6-Me (3H, c)	COOMe (c)	γ-Me/3-Me (3H, c)	β-H/4-H (1H)	γ-H/3-H (1H)	δ-н/2 - н (1н)	2-H (1H)	3-H (1H)	4-H (1H)	5-H (1H)	6-H (1H)	(1H, c)	(Л), Гц
									7,007,70		8,60 (д)		
(<i>E</i>)-VIд	2,48	3,83 (3H)		*	7,007,70		·	·			8,60 (д) 8,60 (д)		
(Z)-VIд	2,40	3,90 (3H)			7,007,70		0 'CM (-)		7,007,70	7,27. (д. д)	8,58 (д)		L. S == 140
(E) -VIe	2,48	3,82 (3H)			7,45	7,00 (д)	8,67 (c)		7,81 (д)		8,54 (д)		$J\gamma, \delta = 14,0$ $J\gamma, \delta = 14,0$
(Z)-VIe	2,38	3,90 (3H)			7,45	7,05 (д)	8,70 (c)		7,81 (д)	7,27 (д. д)			$J\gamma,0=14,0$
VIIIe	2,20	3,74 (3H)	1,65	6,42 (c)	·	5,60 (c)	8,62 (c)		7,70 (д)	7,30 (д. д)	8,59 (д)		,
(Z) -VI $_{\mathbb{X}}$	2,38	3,87 (3H)	2,02	7,40	·	6,92	8,51		7,25		8,51		
(E)-VI3	2,44	3,82 (3H)	· · · · ·		7,45	6,907,10	8,508,65		· 	7,257,45			· -
(Z) -VI3	2,39	3,90 (3H)			7,45	6,907,10	8,508,65	7,257,45		7,257,45			
VIIж		3,84 (3H);		7,55.	7,70	7,10 (д)	· ·	7,42 (д)	7,71 (м)	7,22 (м)	8,61 (д)		J_{γ} , $\delta = 13.5$
		3,94 (3H)			ı		:	m'00 / \	7.70 ()	719 ()	9 677 (-)		
VII3	·	3,82 (3H);	2,30	7,48 (c)	1 10000	6,90 (c)	·	7,30 (д)	7,70 (д. д)	7,18 (д. д)	8,67 (д)		·
. 3		3,88 (3H)				600 ()		7 26 (-)	7.70 ()	7,16 (д. д)	8,66 (д)		,
VIIu*3	,		2,30	7,42 (c)		6,88 (c)	0.70 (1)	7,26 (д)	7,70 (д. д)		8,57 (д)		1
VIIĸ	•	3,83 (3H);	·	7,55 (д)	7,277,38	7,03 (д)	8,70 (c)	·	7,83 (д)	7,277,38	а,57 (д)		$J\beta, \gamma = 12.5, J\gamma, \delta = 15.0$
2		3,90 (3H)	, , , , ,			C 97 ()	0.56 (-)		7 61 (-)	7 20 (7 7)	8,50 (д)	_	νη,ο - 15,0
VIIл	1	3,80 (3H);	1,99	7,43 (c)	`	6,87 (c)	8,56 (c)	\	7,61 (д)	7,29 (д. д)	8,50 (д)	i	
		3,84 (3H)		# FO ()	# 20 /= -\	6.05 (~)	0 62 ()	7.20 7.40		7,307,50	8,63 (д)		$IB \sim = 12.5$
VIIM		3,85 (3H);	·-	7,53 (д)	7,39 (д. д)	6,95 (д)	8,63 (д)	7,307,40		7,307,30	0,05 (д)		10.5 = 15.0
*****	0.00	3,93 (3H)	1.70	(20 (.)		F 71 (a)		7,40 (д)	7,70 (м)	7,22 (м)	8,60 (д)		$J\beta, \gamma = 12, 5, J\gamma, \delta = 15, 0$
VIIIB	2,28	3,75 (3H)	1,72	6,32 (c)		5,71 (c)				6,46 (T)	7,51 (д)	13,42	$J_{3, 4} = 8,75$
IXa	2,18	3,67 (3H)	1,78	6,35 (c)		· - .		7,30 (д)	6,65 (д. д)		7,57 (д)	15,72	$J_{4,5} = 6,50$
IXa*	2,15	3,64 (3H)	1,75	6,30 (c)		\	—	7,29 (д)	6,64 (д. д)		7,57 (д) 7,68 (д)	13,36	$J_{5,6} = 7,00$
IXa*² IXб*³	2,08	3,59 (3H)	1,70	6,29 (c)		·	·	7,32 (д)	6,66 (д. д)	6,46 (T)	7,52 (д)	13,54	75,6 - 7,00
	2,19	·	1,79	6,35 (c)			·	7,31 (д)	6,64 (д. д)	6,45 (T)			
IХв	1,85	3,67 (3H)		6,50	6,75	1	·	7,41 (д)	6,50.	0,/3	7,58 (д)	13,40	

^{*2} Спектр снят в СD3OD.
Спектр снят в ДМСО-D6.
*3 Химические сдвиги COOEt; IX6 1,14 (3H, т, CH3); 4,17 (2H, к, CH2); VIIи 1,2...1,4 (6H, м, CH3), 4,1...4,3 (4H, м, CH2).

Спектры ЯМР 13 С пиридил (пирилиден) замещенных соединений в CDCl₃, δ , м. д. (1 *J*_{13C,H})

Соеди- нение				Циеновый	фрагмент	/ 2Н-пираг	H			Пиридил / пирилиден				
	C(α)/C(5)	C(β)/C(4)	C(y)/C(3)	C _(δ) /C ₍₂₎	Ме (в R ¹)/6-Ме	СО (в R ¹)/С _(б)	-МеО (в R ²)	СО ₂ (в R ²)	γ-Me/3-Me	C ₍₂₎	C(3)	C ₍₄₎	C ₍₅₎	C ₍₆₎
(Z)-VIe	125,13	143,64	123,54	141,37	27,67	195,21	52,05 (148)	166,25		149,54 (178)	131,14	133,61 (161)	125,27 (157)	150,37 (182)
(E)-VIe	*	(157) 144,16	(165)	(157) 141,22	(128) 30,92 (128)	*2	52,05 (148)	165,8		149,40	*	133,46	*	*
VIIIe	103,53	117,32 (164)	121,60	78,55	19,16	166,10	50,82	162,53	18,71 (127)	148,92 (178)	133,47	135,40 (162)	123,40 (164)	149,83 (179)
(Z)-VIж	122,91	*	. *	*	26,04	194,49	52,05	*	14,40	148,58	131,60	*	*	150,10
VIIж* ³	126,5	144,30 (160)	123,50 (165)	143,20 (152)		,	52,20 (148)	164,70; 165,20	,,	153,80	123,38 (165)	136,40 (165)	126,70 (162)	150,00 (178)
VII3	124,86	147,40 (152)	136,50	139,53 (154)	1 200	·	52,55; 52,66	164,91; 167,33	14,58 (128)	155,28	122,35 (164)	136,21 (162)	125,88 (157)	149,55 (178)
VIIĸ	124,98	144,64 (160)	123,36 (163)	140,51 (150)			52,04 (148)	165,02; 164,47		149,27 (177)	130,91	133,38 (150)	124,66 (157)	150,14 (181)
ÙПл	124,48	146,50 (157)	134,79	137,85 (153)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	—	52,60; 52,65	164,80; 167,24	14,59 (125)	148,96 (179)		136,39 (161)	123,24	150,49 (179)
IXa	92,28	*4	115,25	132,51	12,09 (124)	178,90	51,99 (149)	173,30	19,34 (129)	124,61	*4	*4	*4	122,31 (178)
IX6	92,47	_* 5	115,39	132,35	11,98	178,62	_* 6	*6	19,16 (129)	124,58	*5	*5	*5	122,25 (179)

Химические сдвиги не определены из-за наложения сигналов. Сигнал накопить не удалось.

Сигнал накопить не удалось. Отнесение сигналов к атомам $C(\beta)$ и $C(\delta)$ произвольное. Сигналы 99,52 (170), 109,45 (163), 116,51 (163), 116,23 (163) к атомам углерода C(3), C(4), C(5) и $C(\beta)$ не отнесены. Сигналы 99,47 (170), 109,13 (166), 116,33 (163), 118,16 (161) к атомам углерода C(3), C(4), C(5) и $C(\beta)$ не отнесены. 14,14 (C(3)), 60,52 (C(3)), 172,71 (C(3)).

Me COMe

COMe

(Z)-VIB,
$$\Gamma$$

MeOOC

Me

VIIIa, δ
 $X = O, S$

Выделенные из продуктов реакции в кристаллическом виде (Z)-изомеры VIв,г при длительном выдерживании в растворе CDCl3 или CD3OD (10...12 сут, комнатная температура) претерпевали изомеризацию, и при этом, по данным спектров ПМР, образовывались соответствующие равновесные смеси (Z)- и (E)-изомеров VIв,г и пирана VIIIа,б (см. табл. 2). Следует отметить, что соотношение (E)-VI : VIII в указанных смесях было таким же, как и в продукте конденсации. Эти данные согласуются с результатами, полученными при изучении температурной зависимости изомерного состава α,α -дикарбонилсодержащих диенов, исследованных ранее, из которых следовало, что формы (E)-I, (Z)-I и II находятся в равновесии, причем между геометрическими изомерами оно устанавливается значительно медленнее, чем между структурами (E)-I и II.

В результате взаимодействия диметилмалоната Va с альдегидами IIIa,б,е,ж и диэтилмалоната Vб с альдегидами IIIб,ж получены только диеновые диэфиры VIIa—е (см. схему), не содержащие, по данным спектров ЯМР 13 С и 1 H, соответствующих 2H-пиранов.

Напротив, при конденсации α -метил- β -(2-пиридил) акролеина IIIз с кетоэфиром IVa образовался только пиран VIIIв.

VIII_B, IXa $R = R^2 = Me$; VIII_r, IX6 R = Me, $R^2 = Et$

Перегонка пирана VIIIв неожиданно сопровождалась его превращением в 3,6-диметил-5-карбометокси-2-(пирилиден) пиран (IXa). По данным спектра ПМР, перегнанный продукт представлял собой смесь 82 : 18 соединений IXa и VIIIв соответственно, из которой кристаллизацией был выделен индивидуальный пиран IXa. Последний образуется не только при перегонке, но и при нагревании соединения VIIIв: в результате выдерживания пирана VIIIв при 80 °C он через 40 мин содержал 40% пирана IXa. Строение пирана IXa установлено на основании данных ЯМР ¹H, ¹³C, УФ, масс-спектров (табл. 2, 6, 7) и элементного анализа. В спектре ПМР соединения IXa в CDCl₃ отсутствует сигнал при 5,71 м. д., отвечающий протону 2-H в пиране VIIIв. В том же спектре, а также в спектре, снятом в ДМСО-D₆, наблюдается сигнал протона группы NH при 13,42 и 13,36 м. д. соответственно, отсутствующий при замене растворителя на CD₃OD. Приведенные данные указывают на то, что пиран IXa представляет собой хелат с внутримолекулярной водородной связью. Следует отметить, что

химические сдвиги и КССВ протонов пирилиденового цикла в пиране IXа близки таковым в соединениях, имеющих пирилиденовую структуру и существующих в виде хелатов с внутримолекулярной водородной связью [19, 20].

В спектре ЯМР ¹³С соединения IXа в CDCl₃ наблюдаются синглеты при 132,51 и 124,61 м. д., отнесенные к атомам углерода в положениях 2 пиранового и пиридинового циклов соответственно.

Взаимодействие альдегида IIIз с кетоэфиром IVб протекает аналогично; при перегонке продукта реакции образуется илиденовый пиран IXб. В этом случае пиран VIIIг выделен не был, но его образование подтверждает УФ спектр неперегнанного продукта (λ_{max} 210, 250, 320 нм), аналогичный УФ спектру пирана VIIIв.

При реакции β -(2-пиридил) акролеина IIIв с кетоэфиром IVa образуется смесь 40 : 60 (E)- и (Z)-изомеров кетоэфира VIд (данные спектров ПМР, табл. 6). Тот же изомерный состав имеет и продукт, очищенный с помощью препаративной хроматографии на SiO₂.

COOMe COMe
$$\Delta$$

COMe Δ

COOMe Δ

COOMe

Перегонка кетоэфира VIд сопровождается его циклизацией в илиденовый пиран IXв. По данным спектра ПМР, перегнанный продукт содержит 82% пирана IXв и 18% исходного кетоэфира VIд в виде смеси 3 : 2 (Z)- и (E)-изомеров. Соединение IXв было выделено из указанной смеси кристаллизацией (MeOH). Его строение подтверждено данными ПМР, УФ и масс-спектров (табл. 2, 6), а также элементным анализом. Образование илиденового пирана IXв происходит, по-видимому, через пиран VIIIд, возникающий при циклизации диенона (E)-VIд.

В результате конденсации β -(3-пиридил) акролеина IIIг с кетоэфиром IVа образуется продукт VIе в виде равновесной смеси (Z)- и (E)-изомеров, из которой кристаллизацией был выделен индивидуальный (Z)-изомер.

Последний при кратковременном нагревании до 100...110 °C без растворителя или выдерживании в течение 1 ч при 50 °C в растворе CDCl3 вновь превращается в равновесную смесь 55:45 (Z) - и (E) -изомеров.

В отличие от альдегида IIIг, реакция его α -метилзамещенного IIIи с кетоэфиром IVa приводит к 3,6-диметил-5-карбметокси-2-(пиридил-3) пирану VIIIе, содержащему 14% диенона (Z)-VIж.

Продукт реакции, полученный в результате конденсации β -(4-пиридил) акролеина IIIд с кетоэфиром IVa, также, как и кетоэфир VIe, представляет собой смесь (Z)- и (E)-изомеров VIз, не содержащую примеси соответствующего пирана.

Следует отметить, что из синтезированных нами пиридилсодержащих диенонов и 2H-пиранов в илиденовые пираны типа IX превращаются только те из них, которые содержат 2-пиридильный цикл, что, по-видимому, связано со стабильностью пятичленных хелатов, образующихся в этих случаях.

При конденсации пиридилзамещенных акролеинов IIIв—д,з,и с малонатами Va, б получены диеновые диэфиры VIIж—м (схема), которые, по данным $SMP^{13}C$ и ^{1}H спектроскопии, находятся только в открытой форме и не содержат соответствующих 2H-пиранов.

В УФ спектрах δ -пиридилсодержащих диеновых диэфиров VIIж—м имеется один максимум поглощения в области 313...325 нм, характерный для диеновых диэфиров, содержащих в δ -положении фенильный заместитель [19]. Следует отметить, что в УФ спектрах диеновых диэфиров VIIа—е, имеющих в δ -положении фурильный или тиенильный заместитель, присутствует также один максимум поглощения, но в более длинноволновой области 345...360 нм.

В табл. 2 приведен изомерный состав полученных продуктов VIa—з и VIIIв (содержание валентных изомеров в CDCl3 и CD3OD одинаково). Данные этой таблицы показывают, что в γ -незамещенных диенонах VIa,6,д,е,з, содержащих в δ -положении гетарильный заместитель, пирановая форма отсутствует.

При введении метильной группы в γ -положение δ -фурил (тиенил) диенонов VIв,г наблюдается образование трехкомпонентной равновесной смеси (E)- и (Z)-изомеров и соответствующего 2H-пирана VIIIа, δ , в то время как в γ -метил- δ -пиридилдиенонах равновесие полностью смещено в сторону 2H-пирановой формы VIIIв,г,д. Заметим, что γ -метил- δ -фенилдиеноны также находятся только в циклической форме, в отличие от их γ -незамещенных аналогов, находящихся в открытой форме [21].

Результаты изучения валентной фотоизомеризации синтезированных диенонов и 2H-пиранов будут представлены в следующих публикациях.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

УФ спектры растворов соединений в спирте регистрировали на спектрофотометре Specord UV-vis. Спектры ПМР получены на приборе Bruker WM-250 (1 H 250 МГц), растворитель CDCl₃, внутренний стандарт ТМС. Спектры ЯМР 13 сняты на спектрометре Bruker AM-300 (75, 432 МГц).

 β -(2-Пиридин) акролеин (Шв). К смеси 0,87 мл (0,01 моль) морфолина и 0,6 мл (0,01 моль) АсОН в 400 мл бензола добавляют 9,5 мл (0,1 моль) свежеперегнанного 2-пиридинальдегида.

Далее одновременно начинают нагревать реакционную массу и добавлять к ней по каплям раствор 9 мл (0,16 моль) уксусного альдегида в 31 мл бензола. Температуру смеси доводят до 75 °C в течение 1 ч, раствор уксусного альдегида добавляют в течение 2,5 ч, после чего реакционную массу перемешивают еще 2,5 ч при 75 °C и выдерживают 16 ч при комнатной температуре. Растворитель упаривают, остаток перегоняют, получают 2,4 г (18%) альдегида Шв. $T_{\rm кип}$ 76...78 °C (0,47 мм рт. ст.) (кристаллизуется при охлаждении). Лит. $T_{\rm кип}$ 60...65 °C (0,001 мм рт. ст.), $T_{\rm пл}$ 46...49 °C [14].

 α -Метил- β -(3-пиридил) акролеин (Ши). К смеси 0,5 г КОН и 65 мл ДМФА одной порцией добавляют 4,8 мл (0,05 моль) свежеперегнанного 3-пиридинальдегида, затем в течение 1 ч добавляют по каплям раствор 4,4 мл (0,06 моль) пропионового альдегида в 25 мл ДМФА. Реакционную массу перемешивают еще 3 ч, после чего к ней добавляют воду и экстрагируют бензолом. Органический слой промывают водой и сущат прокаленным MgSO4. Растворитель упаривают, осадок отфильтровывают и промывают эфиром. Получают 2,1 г (29%) продукта Ши. $T_{\Pi \Pi}$ 40...45 °C.

 α -Метил- β -(4-пиридил) акролеин (Шк). К смеси 0,75 г КОН и 115 мл ДМФА одной порцией добавляют 8 г (0,075 моль) свежеперегнанного 4-пиридинальдегида, далее в течение 1,5 ч добавляют по каплям раствор 5,22 г (0,09 моль) пропионового альдегида в 35 мл ДМФА. Реакционную массу перемешивают еще 3,5 ч и обрабатывают, как описано выше для альдегида Ши. Получают 0,45 г (4%) альдегида Шк. $T_{\text{кип}}$ 156...165 °C (10 мм рт. ст.), n^{20}_{D} 1,5730.

Метиловый эфир α -ацетил- δ -(фурил-2) бутадиенкарбоновой кислоты (VIa). Смесь 0,04 моль кетоэфира IVa, 0,04 моль альдегида IIIa и 0,005 моль пиперидина выдерживают при комнатной температуре 7 сут. Реакционную массу разбавляют далее эфиром (15 мл) и бензолом (10 мл), промывают 3% H2SO4 и водой. Органический слой высушивают прокаленным MgSO4, упаривают и остаток фракционируют в вакууме. Найдено, %: С 65,82; H 5,71. $C_{12}H_{12}O_4$. Вычислено, %: С 65,50; H 5,45.

Аналогично получают кетоэфир VIв и диэфир VIIа (табл. 3). Для продукта VIIа: найдено, %: C 61,21; H 5,12. C $_{12}$ H $_{12}$ O $_{5}$. Вычислено, %: C 60,90; H 5,07.

Метиловый эфир α -ацетил- δ -(тиенил-2) бутадиенкарбоновой кислоты (VI6). Смесь 0,02 моль кетоэфира IVa, 0,02 моль альдегида III6, 0,003 моль пиперидина, 0,0025 моль ледяной АсОН и 1,5 мл бензола выдерживают при комнатной температуре 8 сут, далее обрабатывают, как описано выше для соединений VIa.

Аналогично (табл. 2 и 3) синтезируют VIr, 2H-пиран VIIIе, диэфиры VIIб,в,г,д,з,л,е. После перегонки соединения VIб, VIIб,г,е перекристаллизовывают из эфира, а диэфир VIIи очищают хроматографией на силикагеле в системе ацетон—петролейный эфир, 2:3, элюент эфир. Продукты VIr, VIIв,д,з,л выделяют кристаллизацией из эфира обработанной, но не перегнанной реакционной смеси.

Соединение VIб. Найдено, %: С 61,37; Н 5,29; S 13,32. $C_{12}H_{12}O_3S$. Вычислено, %: С 61,02; Н 5,08; S 13,60.

Соединение VIг. Найдено, %: С 62,10; Н 5,56; S 12,39. $C_{13}H_{14}O_3S$. Вычислено, %: С 62,40; Н 5,60; S 12,80.

Соединение VIIв. Найдено, %: С 57,10; Н 4,87; S 12,54. $C_{12}H_{12}O4S$. Вычислено, %: С 57,14; Н 4,76; S 12,70.

Соединение VIIд. Найдено, %: С 59,11; Н 5,31; S 12,00. С₁₃Н₁₄О4S. Вычислено, %: С 58,65; Н 5,26; S 12,04.

Метиловый эфир α -ацетил- δ -(пиридил-3)бутадиенкарбоновой кислоты (VIe). К охлажденной до 0 °C смеси 0,02 моль кетоэфира IVв и 0,02 моль альдегида IIIг добавляют смесь 0,003 моль пиперидина, 0,0025 моль ледяной AcOH и 1,5 мл бензола. Реакционную массу выдерживают 3 сут при температуре 4 °C, затем разбавляют эфиром (15 мл) и бензолом (10 мл), промывают водой. Органический слой высушивают прокаленным MgSO4 и упаривают. Продукт VIe выделяют кристаллизацией из эфира. Аналогично получают соединения VIз, VIIж,к,м (см. табл. 2 и 3).

Соединение VIIж. Найдено, %: С 63,20; Н 5,37; N 5,75. $C_{13}H_{13}NO_4$. Вычислено, %: С 63,20; Н 5,27; N 5,67.

3,6-Диметил-5-карбометокси-2-(пиридил-2) пиран (VIIIв), 3,6-диметил-5-карбометокси-2-(пирилиден) пиран (IXa). К смеси 0,02 моль кетоэфира IVa и 0,02 моль альдегида IIIз добавляют смесь 0,003 моль пиперидина, 0,0025 моль ледяной АсОН и 1,5 мл бензола. Реакционную массу выдерживают 8 сут при комнатной температуре, далее обрабатывают, как описано выше для соединения VIe. После упаривания 1/5 часть остатка подвергают хроматографии на пластинке

Silufol UV-254 в системе хлороформ—этилацетат, 15:7, элюент эфир. Выделяют пиран VIIIа в виде густого масла. УФ спектр, λ_{max} , нм (ϵ): 210 (14000), 250 (5700), 318 (3300). Основную часть остатка после удаления растворителя перегоняют в вакууме. Получают соединение IXa (выход 39%). $T_{\text{кип}}$ 110...120 °C (0,03 мм рт. ст.). $T_{\text{пл}}$ 102...103 °C (из эфира). УФ спектр, λ_{max} , нм (ϵ): 243 (32000). Масс-спектр: М⁺ 245. Найдено, %: С 68,25; Н 6,12; N 5,94. С₁₄Н₁₅NO₃. Вычислено, %: С 68,55; Н 6,13; N 5,71.

Аналогично получают 3,6-диметил-5-карбоэтокси-2-(пирилиден) пиран IX6 из альдегида IIIз и кетоэфира IV6. Выход 31%. $T_{\text{КИП}}$ 115...120 °C (0,3 мм рт. ст.). n^{20}_{D} 1,5776. УФ спектр, λ_{max} , нм (ε): 245 (38200). Масс-спектр: М $^+$ 259.

Метиловый эфир α -ацетил- δ -(пиридил-2)бутадиенкарбоновой кислоты (VIд), 6-метил-5-карбометокси-2-(пирилиден)пиран (IXв). К охлажденной до 0 °С смеси 0,02 моль кетоэфира IVа и 0,02 моль альдегида IIIв добавляют смесь 0,0015 моль пиперидина, 0,0013 моль ледяной АсОН и 1,5 мл бензола. Реакционную массу выдерживают 5 сут при 4 °С и обрабатывают как в предыдущем опыте. Выделяют соединение VIд в виде густого масла (УФ спектр, λ_{max} , нм (ε): 330 (20800)) и соединение IXв. Выход 12%. $T_{\text{кип}}$ 140...145 °С (0,47 мм рт. ст.). n^{20}_{D} 1,601. $T_{\text{пл}}$ 47...51 °С. УФ спектр, λ_{max} , нм (ε): 238 (33300). Масс-спектр: М $^+$ 231. Найдено, %: С 67,20; Н 5,67; N 6,05. С13Н13NO3. Вычислено, %: С 67,53; Н 5,63; N 6,06.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Красная Ж. А., Прокофьев Е. П., Кучеров В. Ф. //* Изв. АН СССР. Сер. хим. 1970. № 10. С. 2318.
- 2. Красная Ж. А., Прокофьев Е. П., Зарипова М. Ш., Кучеров В. Ф. // Изв. АН СССР. Сер. хим. 1973. № 10. С. 2356.
- 3. Прокофьев Е. П., Красная Ж. А., Литвак К. М. // Изв. АН СССР. Сер. хим. 1979. № 4. С. 766.
- Красная Ж. А., Прокофьев Е. П., Кучеров В. Ф. // Изв. АН СССР. Сер. хим. 1979. № 4. — С. 816.
- 5. Красная Ж. А., Богданов В. С., Бурова С. А., Смирнова Ю. В. // Изв. РАН. Сер. хим. 1995. № 11. С. 2212.
- 6. Красная Ж. А., Прокофьев Е. П., Яковлев И. П., Лубуж Е. Д. // Изв. АН СССР. Сер. хим. 1980. № 10. С. 2325.
- 7. Красная Ж. А., Стыценко Т. С., Богданов В. С., Дворников А. С. // Изв. АН СССР. Сер. хим. 1989. \mathbb{N}^0 6. С. 1323.
- 8. Красная Ж. А., Стыщенко Т. С., Богданов В. С., Дворников А. С. // ХГС. 1988. № 10. С. 1325.
- 9. Пономарев А. А. // Синтезы и реакции фурановых веществ. Изд-во Саратовского ун-та, 1960. С. 51,53.
- 10. Keskin H., Miller R. E., Nord F. F. // J. Org. Chem. 1951. Vol. 16. P. 199.
- 11. Крышталь Г. В., Жданкина Г.М., Серебряков Э. П. // ЖОрХ. 1994. Т. 30. С. 1325.
- 12. Hagedorn J., Hohler W. // Angew. Chem. 1975. Bd 87. S. 486.
- Лейтис Л. Я., Рубина К. И., Гольдбере Ю. Ш., Янсоне Д. И., Шиманская М. В. // Изв. АН Латв ССР. Сер. хим. — 1980. — № 4. — С. 469.
- 14. Carsky P., Hunig S., Stemmler J., Scheutzow D. // Ann. 1980. N 2. S. 291.
- 15. Wittig G., Frommeld H. D. // Chem. Ber. 1964. Bd 97. S. 3548.

and the state of the

- 16. Прокофьев Е. П., Красная Ж. А. // Изв. АН СССР. Сер. хим. 1980. № 5. С. 1011.
- 17. Богданов В. С., Уграк Б. И., Красная Ж. А., Стыценко Т. С. // Изв. АН СССР. Сер. хим. 1990. № 2. С. 356.
- 1990. № 2. С. 356. 18. Богданов В. С., Красная Ж. А., Стыщенко Т. С. // Изв. АН СССР. Сер. хим. — 1990. — № 6. — С. 1304.
- 19. Douglass J. E., Wesolsky J. M. // J. Org. Chem. 1971. Vol. 36. P. 1165.
- Pollak A., Stanovnik B., Tisler M., Venetic-Fortuna J. // Monatsh. Chem. 1975. Bd 106. — S. 473.
- 21. Красная Ж. А., Стыценко Т. С., Богданов В. С. // Изв. АН СССР. Сер. хим. 1988. № 8. С. 1815.

Constant Constant Constant August A

Институт органической химии им. Н. Д. Зелинского РАН, Москва 117913 Поступило в редакцию 27.05.96 После переработки 20.10.96