В. А. Мамедов, И. З. Нурхаметова, А. Т. Губайдуллин, И. А. Литвинов, Я. А. Левин

КОНКУРЕНЦИЯ РЕАКЦИЙ ГАНЧА И БОЗЕ ПРИ ВЗАИМОДЕЙСТВИИ 1-ТИОКАРБАМОИЛ-ТИОСЕМИКАРБАЗИДА С МЕТИЛОВЫМ ЭФИРОМ ФЕНИЛХЛОРПИРОВИНОГРАДНОЙ КИСЛОТЫ

1-Тиокарбамоилтиосемикарбазид, являющийся синтетическим эквивалентом тиомочевины и тиосемикарбазида, реагирует с метиловым эфиром фенилхлорпировиноградной кислоты исключительно как тиомочевина (реакция Ганча), образуя 2-гидразо-4-метоксикарбонил-5-фенилтиазол. Проведено диацетилирование, восстановительное расщепление этого гидразосоединения, а также окисление до соответствующего азосоединения, легко осуществляемое с помощью диметилсульфоксида.

Ставшие доступными благодаря нашим работам эфиры [1] и амиды [2] арилхлорпировиноградной кислоты (*α*-хлорбензилглиоксилаты и -глиоксиамиды) ArCHCICOCOA (A=OR, NR₂), являющиеся синтетическими эквивалентами синтона ArCH⁻C⁺(O⁻)C(O)A, при взаимодействии с 1,3- и 1,4-S,N-бинуклеофилами образуют функционализированные азотсодержащие гетероциклы — тиазолы [3—7], тиазолидины [8], 1,3,4- тиадиазины [8, 9], пергидро-1,3,4-тиадиазины [8, 9], 5,6-дигидро-1,4-тиазины [10—12]. Замыкание тех или иных циклов в этих реакциях часто зависит от условий их проведения и строения реагентов.

В связи с этим представляло интерес выяснить, как поведет себя в конденсации с простейшим электрофилом указанного типа — метиловым эфиром фенилхлорпировиноградной кислоты I — 1-тиокарбамоилтиосемикарбазид (бистиомочевина) II: как бистиоамид по схеме реакции Ганча с образованием дигидрохлорида бистиазолилгидразина III, как замещенный тиосемикарбазид по схеме реакции Бозе с образованием гидрохлорида пергидро-1,3,4-тиадиазина IV или по смещанной схеме с образованием соединения V. Оказалось, что с двумя молями соединения I бистиомочевина II почти количественно дает дигидрохлорид бистиазола III, т. е. гидразиновый фрагмент не затрагивается. Другими словами, конкуренция реакций Ганча и Бозе складывается в пользу первой.

Подобно другим дизамещенным гидразинам свободное бистиазольное основание VI легко диацетилируется и подвергается восстановительному расщеплению по связи N—N. При нагревании в диметилсульфоксиде гидразосоединение VI легко и с хорошим выходом окисляется до соответствующего азосоединения IX. То, что действительно образуется азосоединение, а не его дитиазолотетразиновый изомер X, показано методом рентгеноструктурного анализа.

Молекула IX в кристалле находится в частном положении — центр симметрии на середине связи в азогруппе $N_{(6)}=N_{(6')}$ (рисунок), поэтому в таблицах приведены координаты и геометрические параметры половины молекулы. Тиазольные циклы молекулы IX плоские в пределах 0,008(5) Å. Отклонение атома $N_{(6)}$ от плоскости гетероцикла 0,011(5) Å, т. е. практически он также лежит в этой плоскости. Вследствие того, что центр симметрии лежит на связи $N_{(6)}$ — $N_{(6')}$, весь центральный фрагмент молекулы, содержащий оба тиазольных цикла и азогруппу, плоский и имеет *транс*-конфигурацию. Плоскости фенильных заместителей и метоксикарбо-

Геометрия молекулы 2,2'-азобис-4-метоксикарбонил-5-фенилтиазола в кристалле

Таблица 1

Характеристики синтезированных соединений

								•	
Соеди- нение	Брутто- формуца	<u>Найлено. %</u> Вычислено, %				Т _{ПЛ} , °С (растворите ць)	ИК спектр, ν , см ⁻¹	Спектр ПМР, δ , м. д., <i>J</i> , Гц (растворитель)	Выход, %
	формуна	C.	н	N	s	(pactoophicity)			
***		10 -0				222 224			
111	C22H18N4O4S2 • 2HCI	<u>48,79</u> 48,99	$\frac{3.33}{3,70}$	10.47 10,38	<u>11.58*</u> 11,89	223224	1720 (C=O), 24003200 (NH)	3,85 (6H, с, MeO); 7,517,72 (10H, м, Ph); 8,12 (1H, с, NH) (ДМФА-D7)	90
VI	C22H18N4O4S2	<u>56,23</u> 56,65	<u>4.01</u> 3,85	<u>12.22</u> 12,00	$\frac{13.41}{13,75}$	202204	1720 (C=O), 27003340 (NH)	3,93 (6H, c, MeO); 7,46 (10H, c, Ph) (CF ₃ COOH)	92
VII	C26H22N4O6S2	<u>56.38</u> 56,73	<u>3,98</u> 3,99	<u>10,55</u> 10,17	<u>11,23</u> 11,65	216217 (<i>i</i> -PrOH)	1710 (С=О амидн.), 1730 (С=О эфирн.)	2,63 (6H, с, MeOCO); 3,78 (6H, с, MeCO); 7,557,75 (10H, м, Ph) (ДМСО-D ₆ + ацетон-D ₆)	89 (А) 76 (Б) 81 (В)
IX	C22H16N4O4S2	<u>56,85</u> 56,90	<u>3.44</u> 3,44	<u>12,01</u> 12,06	<u>13.77</u> 13,81	265266 (ДМСО)	1460 (N=N), 1760 (C=O)	3,84 (6H, c, MeO); 7,507,75 (10H, м, Ph) (ДМСО-D ₆)	75
				F	1				

* Найдено, %: Cl 12,87. Вычислено, %: Cl 13,14.

Координаты атомов соединения IX, эквивалентные изотропные температурные факторы неводородных атомов $B = 4/_3 \cdot \sum_{i=1}^3 \sum_{j=1}^3 (a_i \cdot a_j) B(i_j)$ (Å²) и изотропные температурные

Атом	x	у.	Z	В
S ₍₁₎	0,5871(5)	0,03754(6)	0,2477(2)	2,69(3)
O(8)	1,131(1)	0,1872(1)	0,2796(4)	3,8(1)
O(9)	1,001(1)	0,1825(1)	0,4929(4)	3,3(1)
N(3)	0,782(1)	0,0933(2)	0,4589(5)	2,5(1)
N(6)	0,574(1)	0,0192(1)	0,5266(5)	2,9(1)
C(2)	0,655(2)	0,0507(2)	0,4252(5)	2,6(2)
C(4)	0,839(1)	0,1174(2)	0,3433(6)	2,0(1)
C(5)	0,747(2)	0,0943(2)	0,2164(6)	2,1(1)
C ₍₇₎	1,004(2)	0,1660(2)	0,3649(6)	2,6(1)
C(10)	1,166(2)	0,2285(2)	0,5288(7)	4,5(2)
C(11)	0,745(2)	0,1080(2)	0,0718(6)	2,4(1)
C(12)	0,849(2)	0,0752(2)	-0,0224(6)	2,8(2)
C(13)	0,836(2)	0,0875(2)	-0,1602(6)	3,1(2)
C(14)	0,712(2)	0,1318(2)	-0,2068(6)	3,9(2)
C(15)	0,602(2)	0,1651(2)	-0,1169(6)	3,5(2)
C(16)	0,622(2)	0,1532(2)	0,0223(6)	2,8(2)
H(12)	0,942	0,044	0,013	3,5*
H(13)	0,921	0,064	-0,223	4,0*
H(14)	0,691	0,137	-0,288	6,0*
H(15)	0,497	0,199	-0,144	6,0*
H(16)	0,513	0,170	0,083	6,0*
H(101)	1,137	0,233	0,632	6,0*
H(102)	1,425	0,223	0,537	6,0*
H(103)	1,133	0,247	0,464	6,0*

факторы атомов водорода $B_{\rm H30}$ (Å²)

Не уточнялись.

нильных групп составляют с центральной плоскостью двугранные углы 44,4° и 14,3° соответственно, что несколько больше, чем в изученном нами ранее 2-(3',5'-диметилпиразол-1'-ил)-4-метоксикарбонил-5-фенилтиазоле [7]. Поскольку тиазольный цикл представляет собой гетероароматическую систему, а степень сопряжения пропорциональна косинусу угла между планарными фрагментами, 2-азотиазольную структуру IX можно рассматривать как сопряженную в пределах всей молекулы, включая (в меньшей степени) метоксикарбонильный и даже фенильный заместители. Судя по длинам связей в азотиазольном фрагменте (кроме $C_{(4)}=C_{(5)}$), не отличающимся в пределах точности эксперимента от этих длин в близком по строению к рассматриваемому 2-азотиазолу IX тиазол-2-азо-1'-нафтоле-2' [13], степень сопряжения в этих двух родственных соединениях примерно та же. Двойная же связь C(4)=C(5) в исследуемом 2-азотиазоле IX, как и в упомянутом 2-(3',5'-диметилпиразол-1'-ил)-4-метоксикарбонил-5-фенилтиазоле [7], заметно длиннее — 1,379(7) Å (против 1,332(9)) и отражает сопряжение в системе $MeOC(O) - C_{(4)} = C_{(5)} - Ph$, отсутствующее в нафтольном аналоге, не имеющем заместителей у атомов С(4) и С(5) гетероцикла. В обоих азотиазолах реализуется цис-ориентация атома серы гетероцикла по отношению к азогруппе, что на основании квантово-химических расчетов, выполненных для тиазол-2-азо-1'-нафтола-2' [13], связано с более сильными атрактивными электростатическими взаимодействиями азогруппы с атомом серы по сравнению с атомом N(3) при альтернативной

1557

Связь	<i>d</i> , Å	Связь	<i>d</i> , Å
S(1)-C(2)	1,738(5)	C(4)-C(5)	1,379(7)
S(1)-C(5)	1,741(6)	C(4)-C(7)	1,493(8)
O(8)-C(7)	1,196(7)	C(5)-C(11)	1,455(8)
O(9)-C(7)	1,329(7)	C(11)-C(12)	1,402(8)
O(9)-C(10)	1,443(7)	C(11)-C(16)	1,397(8)
N(3)-C(2)	1,298(7)	C(12)-C(13)	1,375(8)
N(3)-C(4)	1,361(7)	C(13)—C(14)	1,367(8)
N(6)-N(6)	1,274(6)	C(14)—C(15)	1,391 (9)
N(6)—C(2)	1,397(7)	C(15)—C(16)	1,382(8)
Угол	<i>ω</i> , град.	Угол	ω, град.
C(2)-S(1)-C(5)	89,4(3)	C(4)-C(5)-C(11)	134,4(5)
C(7)-O(9)-C(10)	116,7(5)	O(8)-C(7)-O(9)	123,9(5)
C(2)-N(3)-C(4)	110,6(4)	O(8)-C(7)-C(4)	124,7(5)
N(6)-N(6)-C(2)	112,4(4)	O(9)—C(7)—C(4)	111,4(5)
$S_{(1)}-C_{(2)}-N_{(3)}$	115,0(4)	C(5)-C(11)-C(12)	120,8(5)
S(1)-C(2)-N(6)	123,9(4)	C(5)-C(11)-C(16)	120,5(5)
N(3)-C(2)-N(6)	121,1(5)	$C_{(12)}-C_{(11)}-C_{(16)}$	118,6(5)
N(3)-C(4)-C(5)	117,2(5)	$C_{(11)}-C_{(12)}-C_{(13)}$	120,9(5)
N(3)-C(4)-C(7)	117,4(4)	$C_{(12)}-C_{(13)}-C_{(14)}$	119,6(6)
C(5)-C(4)-C(7)	125,4(5)	C(13)-C(14)-C(15)	121,2(5)
S(1)-C(5)-C(4)	107,8(4)	C(14)C(15)C(16)	119,5(5)
S(1)-C(5)-C(11)	117,7(4)	$C_{(11)}-C_{(16)}-C_{(15)}$	120,3(5)

Длины связей (d) синтезированных соединений и валентные углы (ω)

В скобках — стандартное отклонение.

Таблица 4

Угол	Т , град.	Угол	<i>Т</i> , град.
$C_{(5)} - S_{(1)} - C_{(2)} - N_{(3)}$	0,29 (0,49)	$S_{(1)}-C_{(5)}-C_{(11)}-C_{(12)}$	-43,50 (0,77)
$C_{(5)}-S_{(1)}-C_{(2)}-N_{(6)}$	179,08 (0,53)	$S_{(1)}-C_{(5)}-C_{(11)}-C_{(16)}$	133,40 (0,52)
$C_{(2)} - S_{(1)} - C_{(5)} - C_{(4)}$	0,55 (0,46)	$C_{(4)} - C_{(5)} - C_{(11)} - C_{(12)}$	139,79 (0,70)
$C_{(2)} - S_{(1)} - C_{(5)} - C_{(11)}$	-176,98 (0,50)	$C_{(4)} - C_{(5)} - C_{(11)} - C_{(16)}$	-43,31 (1,03)
$C_{(10)} - O_{(9)} - C_{(7)} - O_{(8)}$	-0,90 (0,85)	$C_{(5)}-C_{(11)}-C_{(12)}-C_{(13)}$	177,77 (0,58)
$C_{(10)} - O_{(9)} - C_{(7)} - C_{(4)}$	177,49 (0,49)	$C_{(16)}-C_{(11)}-C_{(12)}-C_{(13)}$	0,82 (0,92)
$C_{(4)} - N_{(3)} - C_{(2)} - S_{(1)}$	-1,06 (0,65)	$C_{(5)}-C_{(11)}-C_{(16)}-C_{(15)}$	-176,52 (0,59)
$C_{(4)} - N_{(3)} - C_{(2)} - N_{(6)}$	-179,89 (0,51)	$C_{(12)}-C_{(11)}-C_{(16)}-C_{(15)}$	0,44 (0,92)
$C_{(2)} - N_{(3)} - C_{(4)} - C_{(5)}$	1,57 (0,75)	$C_{(11)}-C_{(12)}-C_{(13)}-C_{(14)}$	-1,47 (0,95)
$C_{(2)} - N_{(3)} - C_{(4)} - C_{(7)}$	-176,78 (0,52)	$C_{(12)} - C_{(13)} - C_{(14)} - C_{(15)}$	0,86 (0,99)
$N_{(3)} - C_{(4)} - C_{(5)} - S_{(1)}$	-1,32 (0,67)	$C_{(13)}-C_{(14)}-C_{(15)}-C_{(16)}$	0,38 (1,01)
$N_{(3)} - C_{(4)} - C_{(5)} - C_{(11)}$	175,62 (0,63)	$C_{(14)} - C_{(15)} - C_{(16)} - C_{(11)}$	-1,03 (0,97)
$C_{(7)} - C_{(4)} - C_{(5)} - S_{(1)}$	176,88 (0,48)	$C_{(5)}-C_{(4)}-C_{(7)}-O_{(9)}$	168,10 (0,55)
$C_{(7)} - C_{(4)} - C_{(5)} - C_{(11)}$	-6,18 (1,10)	N(3)-C(4)-C(7)-O(9)	-13,70 (0,74)
N(3)C(4)-C(7)-O(8)	164,67 (0,57)	$C_{(5)} - C_{(4)} - C_{(7)} - O_{(8)}$	-13,53 (0,98)

Торсионные углы τ

транс-ориентации серы. В обоих рассматриваемых 2-азозамещенных тиазолах длина азосвязи несколько больше, чем в *транс*-азобензоле [14] и *транс*-азо-*n*-толуоле [15], что опять-таки может рассматриваться как признак более сильного сопряжения, включающего азогруппу.

Следует оговориться, что все сравнение с 1-(2'-тиазолилазо)-2-нафтолом проведено для той из двух независимых молекул в его кристалле [13], которая по геометрии ближе к истинному азосоединению; гидразоноподобная молекула во внимание не принималась.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Температуры плавления определены на столике Boetius. ИК спектры записаны на спектрометре UR-20 (паста в вазелине). Спектры ПМР соединений VI, VIII и X регистрировали на спектрометре Bruker WV-250 с рабочей частотой 250,13 МГц, соединения VI — на спектрометре Varian T-60 с рабочей частотой 60 МГц.

Рентгеноструктурный анализ выполнен на автоматическом четырехкружном дифрактометре Enraf-Nonius CAD-4 (λ МоК α , графитовый монохроматор, $\omega/2\theta$ -сканирование, $\theta \leqslant 26,3$ °). Кристаллы C22H₁₆N₄O₄S₂ моноклинные, $a \approx 3,905(6)$, b = 27,721(5), c = 9,731(1) Å, $\beta = 100,59(5)$ °, V =1035,5(9) Å³, $d_{\rm BbIY} = 1,39$ г/см³, Z = 2, пространственная группа Р 2₁/с. Параметры ячейки и интенсивности 2452 отражений, 723 из которых с $I \ge 3\sigma(I)$ измерены при 20 °С. Падения интенсивностей трех контрольных отражений за время съемки эксперимента не наблюдалось. Структура расшифрована прямым методом по программе SIR [16] и уточнена в изотропном, затем в анизотропном приближении. Все атомы водорода выявлены из разностных рядов электронной плотности, их вклад в структурные амплитуды учитывался с фиксированными позиционными и изотропными температурными параметрами. Окончательные значения факторов расходимости R = 0,04077, $R_W = 0,04195$ по 636 независимым отражениям с $F^2 \ge 3\sigma$. Все расчеты проведены на Alpha Station 200 по программам комплекса MolEN [17]. Координаты атомов, длины связей, валентные и торсионные углы приведены в табл. 2—4.

Дигидрохлорид 2-гидразо-4-метоксикарбонил-5-фенилтиазола (III). Раствор 9,14 г (0,043 моль) соединения I и 3,2 г (21,3 ммоль) гидразодитиокарбамида в 100 мл метанола кипятят 3 ч. Метанол удаляют в вакууме. К остатку добавляют 50 мл эфира, выпавшие кристаллы отфильтровывают, промывают эфиром и сушат на воздухе. Получают аналитически чистый продукт. Попытка перекристаллизации ухудшает его качество.

2-Гидразо-4-метоксикарбонил-5-фенилтиазол (VI). Перемешивают 10,0 г (18,5 ммоль) дигидрохлорида III с 50 мл 5% водного раствора NaHCO3. Выпавшие кристаллы отфильтровывают, промывают водой и сушат. Получают аналитически чистый продукт. Попытка перекристаллизации ухудшает его качество.

N,N'-Диацетил-2-гидразо-4-метоксикарбонил-5-фенилтиазол (VII). А. Раствор 2,00 г (4,3 ммоль) гидразобистиазола VI в 10 мл уксусного ангидрида кипятят 3 ч, упаривают в вакууме растворитель и перекристаллизовывают остаток.

Б. Вместо уксусного ангидрида используют уксусную кислоту, реакцию ведут 5 ч.

В. К суспензии 2,00 г (4,3 ммоль) гидразосоединения VI в 50 мл бензола и 1,00 г (10 ммоль) ЕtзN при перемешивании в атмосфере аргона при 10...15 °C добавляют 0,70 г (9 ммоль) ацетилхлорида, перемешивают 3 ч при 20 °C и смесь оставляют на ночь. Растворитель отгоняют, остаток промывают водой, сушат и перекристаллизовывают.

2-Азобис-4-метоксикарбонил-5-фенилтиазол (IX). Раствор 2,00 г (4,3 ммоль) гидразобистиазола VI в 20 мл ДМСО нагревают до кипения. Раствор тут же окрашивается и выпадают кристаллы красного цвета. Реакционную смесь охлаждают, выпавшие кристаллы отфильтровывают, промывают изопропанолом и перекристаллизовывают.

Восстановительное расщепление 2-гидразо-4-метоксикарбонил-5-фенилтиазола (VI). К раствору 1,00 г (2 ммоль) гидразотиазола VII в 25 мл уксусной кислоты, содержащей 3 мл воды, добавляют 5 г порошкообразного железа и кипятят 5 ч, после чего декантируют в горячем виде. При охлаждении из раствора выпадают кристаллы; их отфильтровывают, сушат на воздухе, перекристаллизовывают из водного MeOH, 1:1. Получают 0,45 г (45 %) 2-аминотиазола VIII. T_{III} 223 °C (лит. [3] 223 °C).

СПИСОК ЛИТЕРАТУРЫ

- 1. Мамедов В. А., Нуретдинов И. А. // Изв. АН. Сер. хим. 1992. № 9. С. 2159.
- 2. Мамедов В. А., Нуретдинов И. А., Сибгатуллина Ф. Г. // Изв. АН СССР. Сер. хим. 1988. — № 9. — C. 2172.
- 3. Мамедов В. А., Нуретдинов И. А. // Изв. АН СССР. Сер. хим. 1987. № 12. C. 2856.
- 4. Мамедов В. А., Нуретдинов И. А., Садкова Д. И. // Изв. АН СССР. Сер. хим. 1990. № 12. — C. 2854.
- 5. Мамедов В. А., Нуретдинов И. А., Сибгатуллина Ф. Г. // Изв. АН СССР. Сер.хим. 1991. — № 12. — C. 2832.
- 6. Мамедов В. А., Валеева В. Н., Антохина Л. А., Нуретдинов И. А. // Изв. АН СССР. Сер. хим. — 1991. — № 6. — С. 1422.
- 7. Мамедов В. А., Литвинов И. А., Ефремов Ю. Я., Валеева В. Н., Ризванов И. Х., Катаева О. Н., Антохина Л. А., Нуретдинов И. А. // ЖОрХ. — 1993. — Т. 29. — С. 1042.
- 8. Мамедов В. А., Бердников Е. А., Валеева В. Н., Исмаев И. Э., Ризванов И. Х., Антохина Л. А., Нуретдинов И. А., Чернов П. П. // Изв. АН. Сер.хим. — 1993. — № 11. — C. 1962.
- 9. Мамедов В. А., Крохина Л. В., Бердников Е. А., Левин Я. А. // ХГС. 1996. № 9. C. 1266.
- 10. Мамедов В. А., Нуретдинов И. А. // Изв. АН СССР. Сер. хим. 1988. № 7. С. 1670.
- 11. Мамедов В. А., Сибгатуллина Ф. Г., Губская В. П., Гайнуллин Р. М., Шагидуллин Р. Р., Ильясов А. В. // ХГС. — 1994. — № 9. — С. 1191.
- 12. Мамедов В. А., Валеева В. Н., Сибгатуллина Ф. Г., Антохина Л. А., Нуретдинов И. А. // XTC. — 1993. — № 2. — C. 250.
- 13. Kurahashi M. // Bull. Chem. Soc. Jpn. 1976. Vol. 49. № 11. P. 2927.
- Brown C. J. // Acta crystallogr. 1966. Vol. 21. P. 146.
 Brown C. J. // Acta crystallogr. 1966. Vol. 21. P. 153.
- 16. Altomare A., Cascarano G., Giacovazzo C., Viterbo D. // Acta crystallogr.A. 1991. -Vol. 47. — P. 744.
- 17. Straver L. H., Schierbeek A. J. MolEN. Structure Determination System. Vol. 1. Program Description. - Delft: Nonius B. V., 1994. - 180 p.

Институт органической и физической химии им. А. Е. Арбузова Казанского научного центра Российской академии наук, Казань 420088 e-mail: mamedov@glass. ksu.ras.ru

Поступило в редакцию 05.08.98