А. В. Борисов^{*}, Ж. В. Мацулевич, В. К. Османов, Г. Н. Борисова, Г. З. Мамедова^a, А. М. Магеррамов^a, В. Н. Хрусталев⁶

СТИМУЛИРОВАННОЕ ПЕНТАХЛОРИДОМ СУРЬМЫ ЦИКЛОПРИСОЕДИНЕНИЕ ДИ(2-ПИРИДИЛ)ДИТЕЛЛУРИДА К НОРБОРНЕНУ

Взаимодействие норборнена с системой ди(2-пиридил)дителлурид – пентахлорид сурьмы в метиленхлориде протекает с образованием хлорантимонатов(III) экзо-9-теллуро-3-азониатетрацикло[9.2.1.0^{2,10}.0^{3,8}]тетрадека-3(8),4,6-триена – продуктов полярного циклоприсоединения теллурсодержащих электрофилов по кратной связи. Строение продуктов гетероциклизации установлено методом РСА.

Ключевые слова: алкены, ди(2-пиридил)дителлурид, пентахлорид сурьмы, теллурсодержащие гетероциклы, полярное циклоприсоединение.

Недавно нами найдено, что пентахлорид сурьмы стимулирует катионное полярное циклоприсоединение инертных в обычных условиях дигетарилдисульфидов и селенидов к алкенам с замыканием цикла атомом азота гетарильного кольца исходного реагента [1, 2].

В настоящей работе с целью вовлечения в аналогичные процессы дигетарилдителлуридов изучена реакция ди(2-пиридил)дителлурида (1) с норборненом (2) в присутствии пентахлорида сурьмы. Нами установлено, что взаимодействие указанных реагентов в метиленхлориде при –40 °С приводит к образованию конденсированных систем 3 и 4 с выходами 45 и 37% соответственно. Строение соединений 3 и 4 установлено методом РСА (рис. 1 и 2).

Соединения **3** и **4** – соли, содержащие пиридиниевый катион и анионы $SbCl_5^{2-}$ и $SbCl_4^-$ соответственно. Два кристаллографически независимых катиона в структуре **3** имеют фактически одинаковую геометрию. Центральные пятичленные гетероциклы катионов в обоих соединениях принимают практически плоскую конформацию (средние отклонения атомов от среднеквадратичных плоскостей равны 0.028(2) и 0.036(2) Å для двух кристаллографически независимых катионов в соединении **3** и 0.007(2) Å в катионе соединения **4**. Как и следовало ожидать, длина одинарной связи Te^{···}C_{AIk}. Увеличенные значения длин связей атома азота N(1) вместе с его плоской конфигурацией ярко демонстрируют делокализацию положительного заряда внутри пиридинового фрагмента. Анион SbCl₅^{2–} в соединении **3** принимает искажённую тетрагонально-пирамидальную конфигурацию (диапазон значений валентных углов Cl^{···}Sb^{···}Cl 84.55(3)–95.36(3)°). Наибольшие искажения претерпевают экваториальные связи между атомом сурьмы и атомами хлора, расположенными в основании пирамиды.

Рис. 1. Молекулярная структура соединения **3** в представлении атомов эллипсоидами тепловых колебаний с 50% вероятностью. Толстыми пунктирами показано альтернативное положение разупорядоченной сольватной молекулы метиленхлорида, тонкими – короткие контакты Те[…]СІ

По-видимому, это объясняется наличием достаточно сильных невалентных взаимодействий между атомами теллура и атомами хлора Cl(2) и Cl(3) (Te(1)···Cl(3) 3.128(2) Å, Te(1)···Cl(3) [1-x, -y, 1-z] 3.454(2) Å, Te(2)···Cl(2) [x, -1+y, z] 3.131(2) Å и Te(2)···Cl(2) [2-x, -y, 1-z] 3.549(2) Å, рис. 1), которые приводят к значительному удлинению расстояний Sb···Cl в анионе SbCl₅²⁻. Аксиальная связь атома сурьмы с атомом хлора, находящимся в вершине тетрагонально-пирамидального аниона SbCl₅²⁻, существенно короче экваториальных связей. Такое строение является характерным для изолированного

Рис. 2. Молекулярная структура соединения 4 в представлении атомов эллипсоидами тепловых колебаний с 50% вероятностью. Пунктиром показан короткий контакт Te(1)…Cl(3)

аниона SbCl₅²⁻ и объясняется влиянием стереохимически активной неподелённой электронной пары атома сурьмы(III), занимающей *транс*-положение по отношению к короткой (аксиальной) связи Sb^{···}Cl и дополняющей окружение атома сурьмы(III) до октаэдрического [3–6]. Анион SbCl₄⁻ в соединении **4** имеет искажённую тригонально-бипирамидальную геометрию с неподелённой электронной парой в экваториальном положении. Как и следовало ожидать, экваториальные связи Sb^{···}Cl значительно короче аксиальных [7–10]. В соединении **4** анионы SbCl₄⁻ образуют центросимметричные димеры посредством μ^2 -мостикового атома хлора Cl(3) с расстоянием до второго атома сурьмы Cl^{···}Sb [1–*x*, –*y*, 1–*z*] 3.037(3) Å.

Вследствие описанных выше дополнительных невалентных взаимодействий атомы теллура в обоих соединениях приобретают искажённое плоскоквадратное координационное окружение и в результате в кристаллах соединений 3 и 4 катионы и анионы выстроены в цепочки.

На основании полученных результатов по взаимодействию ди(2-пиридил)дителлурида (1) с норборненом (2) в присутствии пентахлорида сурьмы можно полагать, что при действии хлорида сурьмы(V) на дителлурид 1 происходит хлорирование последнего, а затем генерированный теллуренилхлорид 5 в виде комплексов с хлоридом сурьмы(III) – соединений типа 6 и 7 – вступает в реакции полярного циклоприсоединения по кратной связи.

Таким образом, предложена относительно простая методика синтеза конденсированных теллур-, азотсодержащих гетероциклических систем – производных 2,3-дигидро[1,3]теллуразоло[3,2-*a*]пиридиния-4.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры зарегистрированы на спектрометре Shimadzu IR-Prestige-21 в таблетках КВг. Спектры ЯМР ¹Н записаны на приборе Bruker AM 300 (300 МГц) в ДМСО-d₆, внутренний стандарт ТМС. Элементный анализ проведён на автоматическом анализаторе Carlo Erba EA1108 CHNS-O. Температуры плавления определены на приборе Boetius.

Ди(2-пиридил)дителлурид (1) синтезирован по методике [11].

Реакция системы дителлурид 1 – SbCl₅ с норборненом (2). К раствору 100 мг (0.24 ммоль) дителлурида 1 в 20 мл абс. CH₂Cl₂ при –40 °C в атмосфере сухого Ar при перемешивании прибавляют раствор 72 мг (0.24 ммоль) SbCl₅ в 20 мл CH₂Cl₂. Реакционную смесь перемешивают 15 мин, затем прибавляют по каплям раствор 45 мг (0.48 ммоль) алкена 2 в 10 мл CH₂Cl₂. Продолжают перемешивание при этой температуре ещё 15 мин. Смесь нагревают до комнатной температуры. Выпавший осадок отфильтровывают, получают 50 мг (37%) соединения 4 в виде жёлтых пластинок. Фильтрат упаривают наполовину и отфильтровывают 102 мг (45%) соединения 3, кристаллизующегося в виде оранжевых иголок.

Пентахлорантимонат(III) бис(*экзо*-9-теллуро-3-азониатетрацикло[9.2.1.0^{2,10}.0^{3,8}]тетрадека-3(8),4,6-триена) (3) (кристаллосольват с 0.5CH₂Cl₂). Т. пл. 150–151 °С. ИК спектр, v, см⁻¹: 1609 (С=N). Спектр ЯМР ¹Н, δ , м. д. (*J*, Гц): 1.34 (1H, д, ²*J* = 11.0, *син*-14-CH); 1.37–1.42 (1H, м) и 1.47–1.55 (1H, м, 12-CH₂); 1.68 (1H, д, ²*J* = 11.0, *анти*-14-CH); 1.61–1.73 (2H, м, 13-CH₂); 2.67 (1H, с, 11-CH); 2.81 (1H, с, 1-CH); 4.08 (1H, д, ³*J* = 8.4, 10-CH); 5.31 (1H, д, ³*J* = 8.4, 2-CH); 7.68 (1H, д. д, ³*J* = 7.3, ³*J* = 5.9, H-5); 7.98

Параметр	3-0.5CH ₂ Cl ₂	4
Брутто-формула	C _{24.5} H ₂₉ Cl ₆ N ₂ SbTe ₂	C ₁₂ H ₁₄ NCl ₄ SbTe
Молекулярная масса, М	941.15	563.39
T, K	100	100
Размеры кристалла, мм ³	$0.02 \times 0.02 \times 0.25$	$0.02 \times 0.20 \times 0.25$
Сингония	Триклинная	Моноклинная
Пространственная группа	<i>P</i> -1	$P2_1/c$
<i>a</i> , Å	11.7885(9)	6.9068(4)
b, Å	11.9011(9)	21.9944(11)
<i>c</i> , Å	12.8725(10)	11.2486(6)
α, град.	70.790(1)	90
β, град.	69.696(1)	103.861(1)
у, град.	66.522(1)	90
$V, Å^3$	1514.8(2)	1659.02(15)
Z	2	4
$d_{\rm BMY}, \Gamma \cdot \rm CM^{-3}$	2.063	2.256
F(000)	894	1056
μ, мм ⁻¹	3.347	4.016
20 _{тах} , град.	60	60
Число измеренных отражений	19333	20773
Число независимых отражений	8788	4801
Число отражений с $I > 2\sigma(I)$	6791	4208
Число уточняемых параметров	334	172
$R_1 (I > 2\sigma(I))$	0.048	0.040
wR_2 (все данные)	0.123	0.102
GOOF	1.005	1.006
T _{min} ; T _{max}	0.488; 0.936	0.433; 0.924

Основные кристаллографические данные и параметры уточнения для соединений 3 и 4

(1H, д. д. ${}^{3}J$ = 8.8, ${}^{3}J$ = 7.3, H-6); 8.21 (1H, д. ${}^{3}J$ = 8.8, H-7); 8.93 (1H, д. ${}^{3}J$ = 5.9, H-4). Найдено, %: С 31.12; H 3.03; N 2.91. С_{24.5}H₂₉Cl₆N₂SbTe₂. Вычислено, %: С 31.27; H 3.11; N 2.98.

Тетрахлорантимонат(III) *экзо-9-теллуро-3-азониатетрацикло*[*9.2.1.0^{2,10}.0^{3,8}*]**тетрадека-3(8),4,6-триена (4)**. Т. пл. 135–137 °С. ИК спектр, v, см⁻¹: 1609 (С=N). Спектр ЯМР ¹Н идентичен спектру соединения **3**. Найдено, %: С 25.43; Н 2.42; N 2.52. С₁₂Н₁₄Cl₄NSbTe. Вычислено, %: С 25.58; Н 2.50; N 2.49.

Рентгеноструктурное исследование соединений 3 и 4. Параметры элементарных ячеек и интенсивности отражений для соединений 3 и 4 измерены на автоматическом трёхкружном дифрактометре с двухкоординатным детектором Bruker APEX-II ССD (λМоКα-излучение, графитовый монохроматор, φ- и ω-сканирование). Основные кристаллоструктурные данные представлены в таблице.

Полные таблицы координат атомов, длин связей, значений валентных и торсионных углов и анизотропных температурных параметров депонированы в Кембриджском банке структурных данных (депоненты CCDC 827980 для соединения **3** и CCDC 827981 для соединения **4**).

СПИСОК ЛИТЕРАТУРЫ

- 1. А. В. Борисов, Ж. В. Мацулевич, В. К. Османов, Г. Н. Борисова, Г. К. Фукин, Е. В. Баранов, *XIC*, 1423 (2010). [*Chem. Heterocycl. Compd.*, **46**, 1151 (2010).]
- А. В. Борисов, Ж. В. Мацулевич, В. К. Османов, Г. Н. Борисова, Г. З. Мамедова, А. М. Магеррамов, В. Н. Хрусталев, *XГС*, 1034 (2012).
- 3. A. Derwahl, W. T. Robinson, D. A. House, Inorg. Chim. Acta, 247, 19 (1996).
- 4. M. Bujak, J. Zaleski, Acta Crystallogr., Sect. C: Cryst. Struct. Commun., C55, 1775 (1999).

- 5. M. Bujak, J. Zaleski, Z. Naturforsch., B: J. Chem. Sci., 56, 521 (2001).
- 6. M. Bujak, R. J. Angel, J. Phys. Chem. B, 110, 10322 (2006).
- 7. R. Jakubas, Z. Ciunic, G. Bator, Phys. Rev. B: Condens. Matter Mater. Phys., 67, 24103 (2003).
- 8. D. Gudat, T. Gans-Eichler, M. Nieger, Chem. Commun., 2434 (2004).
- 9. B. Kulicka, R. Jakubas, Z. Ciunik, G. Bator, W. Medycki, J. Swiergiel, J. Baran, J. Phys. Chem. Solids, 65, 871 (2004).
- 10. B. Kulicka, R. Jakubas, G. Bator, Z. Ciunik, W. Medycki, J. Phys.: Condens. Matter, 16, 8155 (2004).
- 11. L. Engman, M. P. Cava, Organometallics, 1, 470 (1982).

Нижегородский государственный технический университет им. Р. Е. Алексеева, ул. Минина, 24, Нижний Новгород 603950, Россия e-mail: avb1955@rambler.ru Поступило 11.09.2011

^а Бакинский государственный университет, ул. 3. Халилова, 23, Баку А3-1148, Азербайджан e-mail: bsu@bsu.az

⁶ Институт элементоорганических соединений им. А. Н. Несмеянова РАН, ул. Вавилова, 28, Москва 119991, Россия e-mail: vkh@xray.ineos.ac.ru

1171