С. А. Чумаченко, О. В. Шаблыкин, А. Н. Василенко, Э. Б. Русанов^а, В. С. Броварец*

ОБРАЗОВАНИЕ 2-АРИЛГИДРАЗОНО-З-АЦИЛАМИНО-3-ЦИАНО-2,3-ДИГИДРО-1*Н*-ИНДОЛОВ В РЕАКЦИИ 2-АЦИЛАМИНО-3,3-ДИХЛОРАКРИЛОНИТРИЛОВ С АРИЛГИДРАЗИНАМИ

Исследовано взаимодействие 2-ациламино-3,3-дихлоракрилонитрилов с арилгидразинами при нагревании в тетрагидрофуране, которое привело к неизвестным ранее 2-арилгидразоно-3-ациламино-3-циано-2,3-дигидро-1*H*-индолам.

Ключевые слова: арилгидразин, *N*-{[(2*Z*)-2-арилгидразоно-3-циано]-2,3дигидро-1*H*-индол-3-ил}амиды карбоновых кислот, 2-арил-5-(2-фенилгидразино)-4циано-1,3-оксазол, 2-ациламино-3,3-дихлоракрилонитрил, гетероциклизация.

Реакции *N*-ацильных производных 2-амино-3,3-дихлоракрилонитрила с арилгидразинами с успехом применяются для синтеза функционально замещённых гетероциклических соединений [1–3]. Так, соединения **1а–с** с фенилгидразином в тетрагидрофуране дают 2-метил(арил)-5-(2-фенилгидразино)-4-циано-1,3-оксазолы **2а–с**, а 2-метоксикарбониламино-3,3-дихлоракрилонитрил (**1d**) в тех же условиях образует 5-амино-4-метоксикарбониламино-1-фенил-3-фенилазопиразол (**3**) [1, 2]. В то же время соединение **1d** при взаимодействии с арилгидразинами в метаноле в присутствии триэтиламина даёт замещённые триазолоны **4a,b** [3]. Предполагается, что разное направление циклизации реагентов **1а–d** связано с пространственными эффектами, создаваемыми метоксикарбонильной группой, а также уменьшением подвижности протона в фрагменте MeOCONH по сравнению с ацетил- и ароиламиногруппами.

948

Все приведённые выше реакции проводились при комнатной температуре. Целью данной работы было изучение реакции 2-ациламино-3,3-дихлоракрилонитрилов **1а–d** с арилгидразинами при повышенной температуре, чтобы определить влияние температурного фактора на направление реакций и строение образующихся продуктов. Оказалось, что в зависимости от строения исходных акрилонитрилов **1а–d** продуктами реакции являются производные оксазола или индола.

Так, при кипячении в ТГФ фенилгидразина и одного из соединений **1b**,с выделяются уже известные 5-(2-арилгидразино)-4-циано-1,3-оксазолы **2b**,с с выходами 55–60%. Физические и спектральные характеристики полученных веществ идентичны таковым ранее синтезированных [2]. Напротив, в тех же условиях фенилгидразин и 4-метилфенилгидразин с 2-ацетил- и 2-метокси-карбониламино-3,3-дихлоракрилонитрилами **1a**,**d** образуют сложную смесь соединений, из которой не были выделены производные оксазола или пиразола (их образование не было зафиксировано даже хромато-масс-спектрометрией). Продуктами реакции в этом случае были новые 2-арилгидразоно-3-ациламино-3-циано-2,3-дигидро-1*H*-индолы **6a–d** (выходы 31–65%).

Такое направление реакции можно объяснить тем, что образование производных пиразола и оксазола из акрилонитрилов **1a**,**d** при 20–25 °C является результатом реакции в условиях кинетического контроля, а полученные при кипячении в ТГФ замещённые 2,3-дигидро-1*H*-индолы **6a**–**d** – продукты в условиях термодинамического контроля.

5, **6 a** R = Me, $R^1 = H$; **b** R = Me, $R^1 = Me$; **c** R = OMe, $R^1 = H$; **d** R = OMe, $R^1 = Me$

Возможный механизм образования 2-арилгидразоно-3-ациламино-3-циано-2,3-дигидро-1*H*-индолов, представленный на схеме, включает стадии замещения двух атомов хлора на фрагменты арилгидразина, протонирование полученных енгидразинов, [3,3]-сигматропную перегруппировку с разрывом связи N–N и образование связи C–C, циклизацию и элиминирование молекулы аммиака. Такое направление реакции находит прямую аналогию с синтезом Фишера – циклизация арилгидразонов в производные индола [4–6]. Общим для этих превращений является образование промежуточного енгидразина, который в условиях кислого катализа перегруппировывается в индол. В нашем случае кислый катализ осуществляется гидрохлоридом арилгидразина. Так как промежуточные соединения **5а–d** содержат два заместителя в положении 3 2,3-дигидро-1*H*-индольной системы, отщепление молекулы аммиака сопровождается образованием экзоциклической связи C=N в конечных продуктах **6а–d**. Образование схожих 3,3-замещённых индолов описано в литературе [7–9].

Установление структуры конечных соединений **6а–d** требовало доказательств. Хромато-масс-спектрометрическим анализом определены значения молекулярных ионов: для соединения **6с** значение молекулярного иона было на 17 Да меньше, чем для ожидаемого соединения **3**. В ИК спектрах соединений **6** в области, характерной для нитрильной группы, наблюдались полосы поглощения средней интенсивности при 2258 и 2257 см⁻¹ (соединения **6а,b**) и поглощение очень низкой интенсивности при 2255 и 2260 см⁻¹ (соединения **6с,d**). Это не позволяло однозначно утверждать о наличии нитрильной группы в составе этих двух соединений и не исключало тем самым другие изомерные структуры **I** и **II**.

Для соединений **6a** и **6d** был использован комплексный ЯМР анализ (NOESY, COSY, HSQC, HMBC). Результаты отнесения сигналов ¹H и ¹³C представлены на рис. 1, а полный перечень найденных корреляций – в таблице. При помощи двумерной ЯМР спектроскопии не удалось найти гетероядерные корреляции, которые указывали бы на порядок сочетания всех атомов в молекуле соединений **6a** и **6d**, что не исключало структур **I** и **II**. Однако этот метод позволил отнести все атомы углерода и установить наличие некоторых общих группировок, на основании чего можно с уверенностью утверждать об одинаковом строении всех четырех продуктов **6a**–d.

Для подтверждения правильности предложенного строения нами проведено рентгеноструктурное исследование соединения **6a**. Общий вид молекулы **6a** приведён на рис. 2. Центральный бициклический N(1)–C(1–8) фрагмент планарен в пределах 0.009 Å, а фенильное кольцо C(12–17) развёрнуто относительно этой плоскости на 18.4(3)°. Распределение длин связей и валентных углов свидетельствует о сопряжении НЭП атома азота N(1) в гетероцикле с π -системой двойной связи C(1)–N(2) и с π -системой фенильного кольца C(3–8). Так, связи C(1)–N(1) и C(4)–N(1) несколько укоро-

Основные корреляции и отнесение сигналов (м. д.) в спектрах H соединений **ба** (*a*) и **6d** (*b*)

чены по сравнению со стандартным значением, характерным для одинарной связи C–N (1.45 Å), а сумма валентных углов при атоме азота N(1) составляет $357(2)^{\circ}$. Аналогично наблюдается укорочение связей C(9)–N(4) и C(12)–N(3) до 1.335(3) и 1.405(3) Å, а также уплощение конфигурации атомов азота N(4) и N(3) (сумма валентных углов при этих атомах составляет 360(2) и $351(2)^{\circ}$

Таблица 1

¹ H	¹ H		¹³ C	
	COSY	NOESY	HSQC	HMBC
Соединение 6а				
6.93	7.31	7.31	110.2	121.4; 144.2
7.31	6.92; 6.93	6.92; 6.93	131.5	126.4
6.92	7.31; 7.68	7.31; 7.68	121.4	110.2
7.68	6.92	6.92	126.4	131.5
9.77	_	8.59	_	144.2
9.28	_	1.93	-	126.5; 142.3
1.93	_	9.28	22.8	170.0
8.59	-	7.01; 9.77	-	112.8; 142.3; 146.8
7.01	7.23	7.23; 8.59	112.8	112.8; 119.07
7.23	6.75; 7.01	6.75; 7.01	129.4	129.4; 146.8
6.75	7.23	7.23	119.1	112.8
Соединение 6d				
7.42	-	2.26	125.8	127.5
2.26	_	7.12; 7.42	21.0	125.8; 126.1; 132.0
7.12	6.81	2.26; 6.81	132.0	21.0, 125.8
6.81	7.12	7.12; 9.55	110.1	126.1, 127.5
9.55	-	6.81; 8.32	-	142.3
8.86	-	-	-	-
3.58	—	-	53.5	155.6
8.32	—	6.89; 9.55	-	112.9; 142.3; 144.7
6.89	7.02	7.02; 8.32	112.9	112.9; 130.4
7.02	6.89	2.21; 6.89	129.8	20.7; 129.8; 144.7
2.21	-	7.02	20.7	129.8

Корреляции, найденные в спектрах COSY, NOESY, HSQC и HMBC соединений 6а и 6d* (δ, м. д.)

* Отнесение сигналов в соединениях 6а и 6d см. на рис. 1.

Рис. 2. Общий вид молекулы соединения **6а** в представлении атомов эллипсоидами тепловых колебаний с 50% вероятностью

соответственно). Связь N(2)–N(3) 1.384(3) Å имеет характерное значение для подобных систем [10]. В кристалле соединения обнаружено образование водородных связей N(1)–H(1N)···O(1A), N(3)–H(3N)···O(1A) и N(4)–H(4N)···N(5B) со следующими параметрами: N(1)–H(1N) 0.80(2), N(1)···O(1A) 2.898(3) Å, N(1)–H(1N)–O(1A) 167(2)°, N(3)–H(3N) 0.92(3), N(3)···O(1A) 2.959(3) Å, N(3)–H(3N)–O(1A) 177(2)° и N(4)–H(4N) 0.83(3), N(4)···N(5B) 3.046(3) Å, N(4)–H(4N)–N(5B) 171(3)°. Буквами A и В обозначены атомы, связанные со следующими базовыми операциями симметрии: 1-x, 1-y, z–0.5 и 2–x, 1-y, z+0.5.

Таким образом, показано, что 2-ациламино-3,3-дихлоракрилонитрилы в зависимости от строения по-разному взаимодействуют с арилгидразинами при кипячении в ТГФ. Бензоил- и 4-метилбензоиламино-3,3-дихлоракрилонитрилы образуют 5-(2-арилгидразино)-4-циано-1,3-оксазолы, а ацетил- и 4-метоксикарбониламино-3,3-дихлоракрилонитрилы в тех же условиях дают новые 2-арилгидразоно-3-ациламино-3-циано-2,3-дигидро-1*H*-индолы.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры полученных соединений зарегистрированы на спектрометре Vertex 70 в таблетках КВг. Спектры ЯМР ¹Н и ¹³С записаны на приборе Bruker Avance DRX-500 (500 и 125 МГц соответственно) в растворе ДМСО-d₆, внутренний стандарт ТМС. Спектры COSY, NOESY, HSQC и HMBC зарегистрированы с использованием стандартных методик с градиентным выделением сигнала. Для спектров NOESY τ_{mix} 500 мс, для спектров HMBC τ_{mix} 166 мс (соединение **6a**) и τ_{mix} 125 мс (соединение **6b**). Хромато-масс-спектры записаны на хроматографе Agilent 1100 Series с масс-селективным детектором Agilent LC/MSD SL. Параметры хроматомасс-спектрометрии: колонка Zorbax SB-C18, 4.6 × 15 мм, 1.8 мкм; растворители A – ацетонитрил–вода (95:5), 0.1% трифторуксусная кислота, Б – 0.1% водная трифторуксусная кислота; поток элюента – 3 мл/мин; объём впрыскивания – 1 мкл; УФ детекторы – 215, 254, 285 нм; метод ионизации – химическая ионизация при атмосферном давлении. Температуры плавления определены на приборе Fisher-Johns.

N-[(2*Z*)-2-Арилгидразоно-3-циано-2,3-дигидро-1*H*-индол-3-ил]амиды карбоновых кислот 6а–d (общая методика). К кипящему раствору 0.030 моль фенилгидразина или 4-метилфенилгидразина в 10 мл ТГФ прибавляют по каплям раствор 0.005 моль соединений 1а,d в 10 мл ТГФ. Смесь кипятят 2 ч, охлаждают до 20–25 °С, растворитель удаляют в вакууме. Остаток растворяют в 30 мл CH₂Cl₂, экстракт промывают 1% HCl (2 × 15 мл), затем водой (2 × 5 мл), сушат над Na₂SO₄ и упаривают. Остаток обрабатывают 20 мл Et₂O, продукт отфильтровывают, промывают водой и очищают перекристаллизацией из EtOH.

N-**[(2***Z***)-2-Фенилгидразоно-3-циано-2,3-дигидро-1***Н***-индол-3-ил]ацетамид (6а). Выход 0.47 г (31%), т. пл. 247–249 °С. ИК спектр, v, см⁻¹: 1658, 1693 (С=О, С=N), 2258 (С≡N), 3254 (NH), 3306 (NH, полоса с плечом). Спектр ЯМР ¹H, δ, м. д. (***J***, Гц): 1.93 (3H, с, СН₃); 6.75 (1H, т,** *J* **= 7.0, H Ar); 6.91–6.94 (2H, м, H Ar); 7.01 (2H, д,** *J* **= 8.0, H Ar); 7.23 (2H, т,** *J* **= 7.5, H Ar); 7.31 (1H, т,** *J* **= 7.5, H Ar); 7.68 (1H, д,** *J* **= 7.5, H Ar); 8.59 (1H, с, NH); 9.28 (1H, с, NH); 9.77 (1H, с, NH). Масс-спектр,** *m/z***: 306 [M+H]⁺. Найдено, %: С 66.98; H 5.17; N 23.10. С₁₇H₁₅N₅O. Вычислено, %: С 66.87; H 4.95; N 22.94.**

N-**[(2Z)-5-Метил-2-(4-метилфенил)гидразоно-3-циано-2,3-дигидро-1***Н***-индол-3-ил]ацетамид (6b)**. Выход 0.58 г (35%), т. пл. 200–202 °С. ИК спектр, v, см⁻¹: 1665 (С=О, С=N, полоса с плечом), 2257 (С≡N), 3318 (NH, полоса с плечом). Спектр ЯМР ¹H, δ, м. д. (*J*, Гц): 1.93 (3H, с, CH₃); 2.21 (3H, с, CH₃); 2.25 (3H, с, CH₃); 6.79 (1H, д, *J* = 7.0, H Ar); 6.93 (2H, д, *J* = 7.0, H Ar); 7.02 (2H, д, *J* = 7.0, H Ar); 7.11 (1H, д, *J* = 7.0, H Ar); 7.51 (1H, с, H Ar); 8.64 (1H, с, NH); 9.22 (1H, с, NH); 9.87 (1H, с, NH). Macc-спектр, *m/z*: 334 [M+H]⁺. Найдено, %: С 68.32; H 5.60; N 21.24. C₁₉H₁₉N₅O. Вычислено, %: С 68.45; H 5.74; N 21.01.

N-[(2Z)-2-Фенилгидразоно-3-циано]-2,3-дигидро-1*Н***-индол-3-ил**]метилкарбамат (6с). Выход 0.67 г (42%), т. пл. 210–212 °С. ИК спектр, v, см⁻¹: 1660 (С=N), 1702 (С=О), 2255 (С≡N), 3157 (NH), 3289 (NH), 3358 (NH). Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 3.59 (3H, с, СН₃); 6.75 (1H, т, *J* = 7.3, H Ar); 6.93–6.96 (2H, м, H Ar); 7.00 (2H, д, *J* = 7.5, H Ar); 7.22 (2H, т, *J* = 7.5, H Ar); 7.33 (1H, т, *J* = 7.5, H Ar); 7.62 (1H, д, *J* = 7.0, H Ar); 8.56 (1H, с, NH); 8.91 (1H, с, NH); 9.74 (1H, с, NH). Масс-спектр, *m/z*: 322 [M+H]⁺. Найдено, %: С 63.71; H 4.55; N 21.93. С₁₇H₁₅N₅O₂. Вычислено, %: С 63.54; H 4.71; N 21.79.

N-[(2*Z*)-5-Метил-2-(4-метилфенил)гидразоно-3-циано-2,3-дигидро-1*H*-индол-3-ил]метилкарбамат (6d). Выход 1.14 г (65%), т. пл. 203–205 °С. ИК спектр, v, см⁻¹: 1661 (C=N), 1703 (C=O), 2260 (C≡N), 3161 (NH), 3289 (NH), 3357 (NH). Спектр ЯМР ¹H, δ , м. д. (*J*, Гп): 2.21 (3H, c, CH₃); 2.26 (3H, c, CH₃); 3.58 (3H, c, CH₃); 6.81 (1H, д, *J* = 8.0, H Ar); 6.89 (2H, д, *J* = 8.5, H Ar); 7.02 (2H, д, *J* = 8.0, H Ar); 7.12 (1H, д, *J* = 8.0, H Ar); 7.42 (1H, c, H Ar); 8.32 (1H, c, NH); 8.86 (1H, c, NH); 9.55 (1H, c, NH). Macc-спектр, *m/z*: 350 [M+H]⁺. Найдено, %: C 65.55; H 5.63; N 20.27. C₁₉H₁₉N₅O₂. Вычислено, %: C 65.32; H 5.48; N 20.04.

Рентгеноструктурное исследование монокристалла соединения 6а с линейными размерами $0.09 \times 0.12 \times 0.34$ мм проведено при комнатной температуре на дифрактометре Bruker Smart Apex II (λ Мо $K\alpha$ -излучение, графитовый монохроматор, $\theta_{\text{макс}}$ 26.3°, $-14 \le h \le 11$, $-21 \le k \le 21$, $-9 \le l \le 9$). Всего было собрано 13 439 отражений (3136 независимых отражений, R_{int} = 0.0611). Была введена коррекция поглощения по программе SADABS методом мультисканирования (отношение T_{min}/T_{max} 0.6925), а также введена поправка на изотропную экстинкцию (0.0041(9)). Кристаллы соединения 6a C₁₇H₁₅N₅O, M 305.34, ромбические, пространственная группа Pna2₁, a 11.5856(8), b 17.6344(12), c 7.7187(5) Å; V 1576.97(18) Å³; Z 4; $d_c 1.286; \mu 0.085 \text{ мм}^{-1}; F(000) 640. Структура расшифрована прямым методом и$ уточнена МНК в полноматричном анизотропном приближении с использованием комплекса программ Bruker SHELXTL [11]. Атомы водорода выявлены и уточнены изотропно, только протоны метильной группы С10 были заданы геометрически. В уточнении использовано 2241 отражение с $I > 2\sigma(I)$, (252 уточняемых параметров, число отражений на параметр 8.9, использована весовая схема $\omega = 1/(\sigma^2 (Fo^2) + \omega)$ $+(0.0446P)^{2}+0.870P)$, где $P = (Fo^{2} + 2Fc^{2})/3$, отношение максимального (среднего) сдвига к погрешности в последнем цикле 0.014(0.001)). Окончательные значения факторов расходимости $R_1(F)$ 0.0495, $wR_2(F^2)$ 0.0941 по отражениям с $I > 2\sigma(I), R_1(F)$ 0.0818, w $R_2(F^2)$ 0.1064, GOOF 1.029 по всем независимым отражениям. Абсолютная конфигурация не определена ввиду отсутствия тяжёлых атомов в молекуле. Остаточная электронная плотность из разностного ряда Фурье после последнего цикла уточнения 0.23 и $-0.31 \text{ e}/\text{Å}^3$. Результаты РСА депонированы в Кембриджском банке структурных данных (депонент ССDC 827824).

СПИСОК ЛИТЕРАТУРЫ

- 1. В. С. Броварец, С. Г. Пильо, Е. А. Романенко, Б. С. Драч, *Журн. общ. химии*, **68**, 347 (1998).
- 2. В. С. Броварец, С. Г. Пильо, А. Н. Чернега, Е. А. Романенко, Б. С. Драч, *Журн.* общ. химии, **69**, 1646 (1999).
- С. А. Чумаченко, О. В. Шаблыкин, В. С. Броварец, Журн. общ. химии, 81, 518 (2011).
- 4. E. Fischer, T. Schmitt, Ber. Dtsch. Chem. Ges., 21, 1071 (1888).
- 5. K. Cucek, B. Vercek, Synthesis, 1741 (2008).
- 6. J.-J. Li (Ed.), Name reaction in heterocyclic chemistry, Wiley, Hoboken, 2005, p. 116.
- 7. P. Grammaticakis, C. R. Hebd. Seances Acad. Sci., 210, 569 (1940).
- 8. J. Shimizu, S. Murakami, T. Oishi, Y. Ban, Chem. Pharm. Bull., 19, 2561 (1971).
- 9. J. G. Rodrigues, Y. Benito, F. Temprano, J. Heterocycl. Chem., 22, 1207 (1985).
- S. Shan, D.-J. Xu, J.-Y. Wu, M. Y. Chiang, Acta Crystallogr., Sect. E: Struct. Rep. Online, E58, 1218 (2002).
- 11. G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr., A64, 112 (2008).

Институт биоорганической химии и нефтехимии НАН Украины, ул. Мурманская, 1, Киев 02660, Украина e-mail: brovarets@bpci.kiev.ua Поступило 14.07.2011

^а Институт органической химии НАН Украины, ул. Мурманская, 5, Киев 02094, Украина e-mail: rusanov@ioch.kiev.ua