А. А. Зияев*, И. Ф. Тожиев, Х. М. Шахидоятов

5-АРИЛ-1,3,4-ОКСАДИАЗОЛИН-2(3*H*)-ТИОНЫ В РЕАКЦИЯХ С АЛКИЛОВЫМИ ЭФИРАМИ ГАЛОГЕНУКСУСНЫХ КИСЛОТ

Изучено взаимодействие 5-арил-1,3,4-оксадиазолин-2(3H)-тионов с алкиловыми эфирами галогенуксусных кислот, показано, что реакция протекает с образованием S-замещённых продуктов. Прослежено влияние природы заместителей в молекулах как тионов, так и эфиров галогенуксусных кислот на направление и выход продуктов реакции.

Ключевые слова: 5-арил-1,3,4-оксадиазолин-2(3H)-тионы, алкилирующий агент, галогенуксусные кислоты, S- и N-замещённые продукты, алкилирование, ориентация.

Ранее изучено алкилирование 5-арил-1,3,4-оксадиазолин-2(3H)-тионов алкилирующими агентами различного типа (алкил-, аллил- и бензилгалогениды, α -хлорметилалкиловые эфиры и др.) [1–4]. Для установления факторов, влияющих на направление реакции и выход продуктов, в настоящей работе мы исследовали взаимодействие 5-арил-1,3,4-оксадиазолин-2(3H)-тионов с алкиловыми эфирами галогенуксусных кислот.

Литературные данные, касающиеся реакций алкиловых эфиров α -галогеналкановых кислот с оксадиазолинтионами весьма противоречивы. Описано взаимодействие 5-арил-1,3,4-оксадиазолин-2(3H)-тионов с хлоруксусной кислотой в присутствии NaOH (K_2CO_3) в ДМФА или спирте [5, 6], с её метиловым и этиловым эфирами в присутствии КОН в различных растворителях [7]; при этом установлено, что образуются исключительно S-производные. В то же время авторы работ [8, 9], изучившие реакции 5-(2,4-дихлорфенил)-1,3,4-оксадиазолин-2-тиона с этиловым эфиром хлоруксусной кислоты, охарактеризовали полученные продукты как N-алкилпроизводные.

Протекание реакции по N-центру принимается без убедительных доказательств (чаще по данным ИК спектров или просто констатируется получение соединений данного строения).

Мы тщательно исследовали взаимодействие 5-арил-1,3,4-оксадиазолин-2(3H)-тионов **1—4** (арил = фенил, 2,4-дихлорфенил, 4-метилфенил и α -пиридил) с алкиловыми эфирами галогенуксусных кислот **5a—f**. Наиболее подробно изучена реакция с алкиловыми (C_1 — C_4) эфирами хлоруксусной кислоты (схема).

Реакцию проводили при кипячении эквимолярных количеств тиона, эфира галогенуксусной кислоты и поташа в ацетоне, ход реакции контролировали методом ТСХ. Полученные результаты приведены в табл. 1 и 2.

Анализ продуктов (ЯМР 1 Н, УФ спектры) показал, что во всех реакциях образуется *S*-производные (полосы поглощения 270–286 нм в УФ спектре, отсутствие сигнала протонов N–CH₂ и наличие S–CH₂ в ЯМР 1 Н спектре).

$$R \xrightarrow{N-N} S + X \xrightarrow{O} R^{1} \xrightarrow{Na_{2}CO_{3}} R \xrightarrow{N-N} O \xrightarrow{N-N} S \xrightarrow{O-R^{1}} S \xrightarrow{O-R^$$

1, 6a-d R = Ph; 2, 7a,b R = 4-MeC₆H₄; 3, 8a-f R = 2-пиридил; 4, 9a-d R = 2,4-Cl₂C₆H₃; 5a, 6a, 7a, 8a, 9a R¹ = Me; 5b, 6b, 7b, 8b, 9b R¹ = Et; 5c, 8c R¹ = Pr; 5d, 8d R¹ = Bu; 5e, 6c, 8e, 9c R¹ = i-Pr; 5f, 6d, 8f, 9d R¹ = PhCH₂; 5a-e X= Cl, f X = Br

Как видно по табл. 1, реакции идут хорошо, и основное количество тиона расходуется в течение 7–10 ч, выходы продуктов высокие. Сравнение результатов реакций различных тионов с одними и теми же эфирами показало, что заместители в ароматическом цикле тиона заметного влияния на выход продуктов не оказывают.

Проведено несколько реакций бензилового эфира бромуксусной кислоты **5f** с тионами **1**, **3** и **4** в аналогичных условиях, где также получены *S*-производные с сопоставимыми выходами.

Таким образом, взаимодействие 5-арил-1,3,4-оксадиазолин-2(3*H*)-тионов с алкиловыми эфирами галогенуксусных кислот протекает исключительно с образованием *S*-производных и природа галогена в данных реакциях сушественного влияния на выход продуктов не оказывает.

 $T\ a\ б\ \pi\ u\ ц\ a\ 1$ Физико-химические характеристики синтезированных соединений 6–9

Соеди-	Брутто-	Найдено N, %		Выход,
нение	формула	Вычислено N, %	Т. пл., °С	%
6a	$C_{11}H_{10}N_2O_3S$	10.41	83–84	97
oa	C111110112030	11.19	03 01	,
6b	$C_{12}H_{12}N_2O_3S$	10.38	82-83	91
	- 12122 - 3	10.60	<u> </u>	, -
6c	$C_{13}H_{14}N_2O_3S$	10.34	76–77	92
	13 14 2 3	10.06		
6d	$C_{17}H_{14}N_2O_3S$	<u>8.82</u>	93–94	88
	1, 11 2 3	8.58		
7a	$C_{12}H_{12}N_2O_3S$	10.39	77–79	96
		10.60		
7b	$C_{13}H_{14}N_2O_3S$	<u>10.26</u>	68-70	92
		10.06		
8a	$C_{10}H_9N_3O_3S$	<u>17.03</u>	78–80	88
		16.72		
8b	$C_{11}H_{11}N_3O_3S$	<u>16.21</u>	37–39	81
		15.84		
8c	$C_{12}H_{13}N_3O_3S$	<u>14.78</u>	38–40	79
		15.04		
8d	$C_{13}H_{15}N_3O_3S$	<u>13.98</u>	Масло	80
		14.32		
8e	$C_{12}H_{13}N_3O_3S$	<u>15.28</u>	66–68	82
		15.04		
8f	$C_{16}H_{13}N_3O_3S$	<u>13.17</u>	82–84	90
		12.84		
9a	$C_{11}H_8Cl_2N_2O_3S$	8.98	85–86	94
	G 77 GLV 0 G	8.78		0.4
9b	$C_{12}H_{10}Cl_2N_2O_3S$	8.12	66–67	84
ο.	C H CINOS	8.41	06.00	0.6
9c	$C_{13}H_{12}Cl_2N_2O_3S$	<u>7.76</u>	96–98	86
0.1	C H CINOS	8.07	106 107	02
9d	$C_{17}H_{12}Cl_2N_2O_3S$	<u>7.34</u>	106–107	92
		7.09		

. Таблица 2 Спектральные характеристики синтезированных соединений 6–9

	спектральные характеристики сиптезированных соединения	10-7
Соеди-	Спектр ЯМР 1 Н, δ , м. д. $(J, \Gamma$ ц)	УФ спектр, λ_{max} , нм (lg ϵ)
6a	7.94 (2H, д. т, J = 7.9, J = 1.4, H-2',6'); 7.40–7.50 (3H, м, H-3',4',5'); 4.06 (2H, c, SCH ₂); 3.75 (3H, c, OCH ₃)	273 (4.00)
6b	7.94 (2H, π , π , $J = 7.9$, $J = 1.4$, H-2',6'); 7.40–7.50 (3H, π , H-3',4',5'); 4.05 (2H, π , SCH ₂); 4.20 (2H, π , $J = 7.0$, CH ₂ CH ₃); 1.24 (3H, π , $J = 7.0$, CH ₂ CH ₃)	278 (3.86)
6c	7.94 (2H, д. т, J = 7.9, J = 1.4, H-2',6'); 7.40–7.50 (3H, м, H-3',4',5'); 5.03 (1H, септет, J = 6.3, С \underline{H} (CH ₃) ₂); 4.02 (2H, c, SCH ₂); 1.21 (6H, д, J = 6.3, CH(С \underline{H} ₃) ₂)	276 (3.42)
6d	7.91 (2H, д. т, <i>J</i> = 8.1, <i>J</i> = 1.6, H-2',6'); 7.40–7.48 (3H, м, H-3',4',5'); 7.23–7.29 (5H, м, H Ph); 5.16 (2H, с, CH ₂ Ph); 4.09 (2H, с, SCH ₂)	280 (3.88)
7a	7.30 (2H, д. т, J = 8.0, J = 2.0, H-2',6'); 7.10 (2H, д. т, J = 8.0, J = 2.0, H-3',5'); 4.10 (2H, с, SCH ₂); 3.74 (3H, с, COOCH ₃); 2.31 (3H, с, C ₆ H ₄ C <u>H₃</u>)	274 (3.94)
7b	7.30 (2H, π . τ , J = 8.1, J = 2.1, H-2',6'); 7.12 (2H, π . τ , J = 8.1, J = 2.1, H-3',5'); 4.16 (2H, κ , J = 7.1, $C_{\frac{H}{2}}C_{\frac{H}{3}}$); 4.08 (2H, ϵ , ϵ , ϵ); 2.31 (3H, ϵ , ϵ	280 (3.86)
8a	8.62 (1H, π . π . π , J = 4.8, J = 1.8, J = 1.0, H-6'); 8.13 (1H, π . π , J = 7.9, J = 1.0, H-3'); 7.78 (1H, π . π , J = 7.9, J = 1.8, H-4'); 7.33 (1H, π . π . π , J = 7.9, J = 4.8, J = 1.0, H-5'); 4.07 (2H, c, SCH ₂); 3.741 (3H, c, COOCH ₃)	286 (3.70)
8b	8.70 (1H, \pm , \pm , \pm , \pm); 7.82 (H, \pm , \pm , \pm); 4.20 (2H, \pm , \pm , \pm); 7.40 (1H, \pm , \pm , \pm); 4.09 (2H, c, SCH ₂); 1.24 (3H, \pm , \pm) 7.4, CH ₂ CH ₃); 4.09	286 (3.84)
8c	8.62 (1H, π . π . π , J = 4.8, J = 1.8, J = 1.0, H-6'); 8.13 (1H, π . π , J = 7.9, J = 1.0, H-3'); 7.78 (1H, π . π , J = 7.9, J = 1.8, H-4'); 7.33 (H, π . π . π , J = 7.9, J = 4.8, J = 1.0, H-5'); 4.08 (2H, π , J = 6.6, OCH ₂); 4.06 (2H, c, SCH ₂); 1.65 (2H, секстет, J = 7.3, CH ₂ CH ₂ CH ₃); 0.92 (3H, π , J = 7.3, CH ₂ CH ₃)	286 (3.74)
8d	8.70 (1H, д. д. д, J = 4.8, J = 1.9, J = 1.1, H-6'); 8.13 (1H, д. т, J = 7.7, J = 1.1, H-3'); 7.83 (1H, т. д, J = 7.7, J = 1.9, H-4'); 7.40 (1H, д. д. д. д. J = 7.7, J = 4.8, J = 1.1, H-5'); 4.14 (2H, т. J = 6.6, COOCH ₂); 4.10 (2H, c, SCH ₂); 1.58 (2H, кв, J = 7.7, CH ₂ CH ₂ CH ₂); 1.31 (2H, секстет, J = 7.4, CH ₂ CH ₃); 0.85 (3H, т. J = 7.4, CH ₂ CH ₃)	286 (3.77)
8e	8.69 (1H, д. д. д, J = 4.8, J = 1.7, J = 1.0, H-6'); 8.12 (1H, д. т, J = 7.8, J = 1.0, H-3'); 7.80 (1H, т. д, J = 7.8, J = 1.7, H-4'); 7.38 (1H, д. д. д. д. J = 7.7, J = 4.8, J = 1.0, H-5'); 5.02 (1H, септет, J = 6.2, С \underline{H} (CH ₃) ₂); 4.05 (2H, c, SCH ₂); 1.20 (6H, д, J = 6.2, CH(C \underline{H} ₃) ₂)	286 (4.21)
8f	8.70 (1H, д. д. д, J = 4.8, J = 1.8, J = 1.1, H-6'); 8.12 (1H, д. т, J = 7.7, J = 1.1, H-3'); 7.82 (1H, т. д, J = 7.7, J = 1.8, H-4'); 7.40 (1H, д. д. д, J = 7.7, J = 4.8, J = 1.1, H-5'); 7.22–7.32 (5H, м, CH ₂ C ₆ H ₅); 5.16 (2H, c, COOCH ₂); 4.13 (2H, c, SCH ₂)	286 (4.07)
9a	7.83 (1H, д, <i>J</i> = 8.3, H-6'); 7.50 (1H, д, <i>J</i> = 2.0, H-3'); 7.32 (1H, д. д, <i>J</i> = 8.3, <i>J</i> = 2.0, H-5'); 4.05 (2H, с, SCH ₂); 3.74 (3H, с, COOCH ₃)	280 (3.64)
9b	7.83 (1H, д, J = 8.3, H-6'); 7.50 (1H, д, J = 2.0, H-3'); 7.32 (1H, д. д, $(J$ = 8.3, J = 2.0, H-5'); 4.20 (2H, κ , J = 7.2, $C\underline{H}_2CH_3$); 4.05 (2H, κ , SCH ₂); 1.24 (3H, τ , J = 7.2, $C\underline{H}_2CH_3$)	280 (3.48)
9с	7.84 (1H, д, J = 8.3, H-6'); 7.50 (1H, д, J = 2.0, H-3'); 7.32 (1H, д. д, J = 8.3, J = 2.0, H-5'); 4.15–4.25 (1H, септет, J = 6.3, С \underline{H} (С \underline{H} ₃) ₂); 4.02 (2H, c, SC \underline{H} ₂); 1.21 (6H, д, J = 6.3, С \underline{H} (С \underline{H} ₃) ₂)	276 (3.53)
9d	7.80 (1H, д, <i>J</i> = 8.6, H-6'); 7.50 (1H, д, <i>J</i> = 2.0, H-3'); 7.31 (1H, д. д, <i>J</i> = 8.6, <i>J</i> = 2.0, H-5'); 7.23–7.29 (5H, м, H Ph); 5.16 (2H, c, CH ₂ Ph); 4.09 (2H, c, SCH ₂)	274 (3.84)

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

УФ спектры зарегистрированы на спектрометре EPS-3T Hitachi в этаноле. Спектры ЯМР 1 Н записаны на приборе Tesla BS-567 (100 МГц) (соединения **7а,b**) и Unity +400 (400 МГц) (остальные соединения) при 20–25 $^{\circ}$ С в CDCl₃, внутренний стандарт ГМДС (δ 0.05 м. д.). Контроль за ходом реакции и индивидуальностью синтезированных соединений осуществляли методом TCX на пластинах Silufol UV-254 в системе CHCl₃–EtOH, 20:1, проявитель – пары иода.

Алкиловые эфиры (5-арил-1,3,4-оксадиазолилтио) уксусных кислот 6–9 (общая методика). Смесь 5 ммоль 5-арил-1,3,4-оксадиазолин-2(3*H*)-тиона 1–4, 5 ммоль алкилового эфира галогенуксусной кислоты 5а–f и 5 ммоль поташа в 20 мл сухого ацетона кипятят в течение 7–10 ч. После удаления растворителя остаток в виде кристаллов промывают раствором NaOH для удаления непрореагировавшего тиона, затем холодной водой до нейтральной реакции. В случае маслообразных продуктов их экстрагируют CHCl₃ и промывают также раствором щёлочи и водой. Полученные кристаллические соединения перекристаллизовывают из EtOH (соединения 6а–d, 7а,b), водного EtOH (соединения 9а–d) или циклогексана (соединения 8а–f).

СПИСОК ЛИТЕРАТУРЫ

- 1. А. А. Зияев, Г. Г. Галустьян, К. Сабиров, С. Насиров, Б. Ташходжаев, М. Р. Ягудаев, *Журн. орган. химии*, **28**, 1538 (1992).
- 2. A. A. Зияев, Г. Г. Галустьян, К. Сабиров, Узб. хим. журн., **5**, 45 (1993).
- 3. А. А. Зияев, Г. Г. Галустьян, *XГС*, 1268 (1997). [Chem. Heterocycl. Compd., **33**, 1109 (1997).]
- 4. А. А. Зияев, Г. Г. Галустьян, *XГС*, 1249 (1999). [Chem. Heterocycl. Compd., **35**, 1104 (1999).]
- 5. A. Sengupta, M. Garg, *Bokin Bobai*, **9**, 397 (1981).
- 6. T. Ramalingam, A. A. Deshmukh, P. B. Sattur, U. K. Sheth, S. R. Naik, *J. Indian Chem. Soc.*, **58**, 269 (1981).
- 7. А. С. Авакян, С. О. Вартанян, Э. А. Маркарян, О. М. Мартиросян, О. М. Авакян, *Хим.-фарм. журн.*, **22**, 683 (1988).
- 8. B. N. Goswami, J. C. S. Kataky, J. N. Baruah, S. C. Nath, *J. Heterocycl. Chem.*, 21, 205 (1984).
- 9. B. N. Goswami, J. C. S. Kataky, J. N. Baruah, Indian J. Chem., 23, 796 (1984).

Институт химии растительных веществ им. академика С. Ю. Юнусова АН Узбекистана, пр. Мирзо Улугбека, 77, Ташкент 100170, Узбекистан e-mail: ziyaev05@rambler.ru

Поступило 8.02.2011 После доработки 9.09.2011