Н. А. Данилкина*, Л. Е. Михайлов, Б. А. Ивин^а

ВЗАИМОДЕЙСТВИЕ ЭФИРОВ АЦЕТИЛЕНКАРБОНОВЫХ КИСЛОТ С 4,5-ДИГИДРО-1*Н*-ПИРАЗОЛ-1-КАРБОТИОАМИДАМИ И 3,4,5,6-ТЕТРАГИДРО-2*H*-1,2,4-ТРИАЗЕПИН-3-ТИОНАМИ

Реакции диметилацетилендикарбоксилата с 3,4,5,6-тетрагидро-2*H*-1,2,4-триазепин-3-тионами и 4,5-дигидро-1*H*-пиразол-1-карботиоамидами являются удобными методами синтеза производных 7,8-дигидротиазоло[3,2-*b*][1,2,4]триазепин-3-онов и метиловых эфиров (2*Z*)-[2-(4,5-дигидро-1*H*-пиразол-1-ил)-4-оксо-1,3-тиазол-5(4*H*)-илиден]уксусных кислот соответственно. При взаимодействии метилпропиноатов с 4,5-дигидро-1*H*-пиразол-1-карботиоамидами или с 5,5,7-триметил-2,4,5,6-тетрагидро-3*H*-1,2,4-триазепин-3-тионом образуются 2-(4,5-дигидро-1*H*пиразол-1-ил)-4*H*-1,3-тиазин-4-оны.

Ключевые слова: 4,5-дигидро-1*H*-пиразол-1-карботиоамиды, 2,4,5,6-тетрагидро-3*H*-1,2,4-триазепин-3-тионы, 1,3-тиазин-4-оны, 1,3-тиазол-4-оны, тиазоло-[3,2-*b*][1,2,4]триазепин-3-оны, эфиры ацетиленкарбоновых кислот, КССВ С–Н.

Взаимодействие тиоамидов с эфирами ацетиленкарбоновых кислот является удобным методом синтеза тиазолов и тиазинов [1]. О реакциях пиразолкарботиоамидов и триазепинтионов с алкилпропиноатами не сообщалось, в то время как этот тип реакций должен открывать удобный подход к получению новых производных пиразолина и триазепина, содержащих тиазольный и тиазиновый циклы. В последнее время производные пиразолинкарботиоамидов привлекают все большее внимание в связи с обнаружением среди них соединений с гипотензивной [2], антидепрессантной [3], противовоспалительной [4] активностью, ингибиторов холинэстеразы [5], моноаминоксидазы А [3] и В [3, 5], а также веществ с противоамёбным [6-8] действием. Интерес к бициклическим соединениям, содержащим азепиновые циклы, обусловлен обнаружением иммуносупрессивной и противоопухолевой активности у природных соединений этого типа – коформицина [9–11], пентостатина [12–15], и их синтетических аналогов [16-19]. Поэтому разработка методов синтеза новых производных пиразолина и азепинов представляется актуальной.

Цель нашей работы – исследование реакций пиразолкарботиоамидов и триазепинтионов с эфирами ацетиленкарбоновых кислот и разработка на их основе методов синтеза новых производных пиразолина и триазепина, содержащих тиазольный и тиазиновый циклы.

При взаимодействии 4,5-дигидро-1*H*-пиразол-1-карботиоамидов **1а**-с с эфирами ацетиленмонокарбоновых кислот **2а**-с были выделены 2-(4,5-дигидро-1*H*-пиразол-1-ил)-4*H*-1,3-тиазин-4-оны **3а**-f*.

1a, 3a-c, 4a $R = R^1 = Me$; 1b, 3d,e, 4b R = Ph, $R^1 = H$; 1c, 3f, 4c R = 4-MeOC₆H₄, $R^1 = H$; 2a, 3c,e,f $R^2 = H$; 2b, 3a,d $R^2 = Ph$; 2c, 3b $R^2 = 4$ -MeOC₆H₄

Их строение подтверждено спектральными методами (табл. 1–4), а соединения **3d** – и данными РСА (табл. 5–7, рис. 1).

Поскольку в молекуле диметилацетилендикарбоксилата (ДМАД) (2d) присутствует вторая сложноэфирная группа, при его взаимодействии с тиоамидами 1а-с можно было ожидать образования не только метиловых эфиров 2-(3-метил-4,5-дигидро-1*H*-пиразол-1-ил)-4-оксо-4*H*-1,3-тиазин-6-карбоновых кислот 5а-с, но и производных 2-[2-(3-метил-4,5-дигидро-1*H*-пиразол-1-ил)-4-оксо-1,3-тиазол-5(4*H*)-илиден]уксусной кислоты 4а-с.

Для установления размера образовавшегося цикла нами был испольован метод [20], основанный на анализе КССВ ${}^{n}J_{C-H}$ между атомом H-5 и экзо- C(10) и эндоциклическим C(4) карбонильными атомами углерода. Для однозначного отнесения сигналов интересующих нас атомов углерода и определения скалярных констант $J_{C(4)-H(5)}$ и $J_{C(10)-H(5)}$ были зарегистрированы спектры ЯМР ¹³С полученных соединений без широкополосной развязки от протонов и с селективной развязкой от протонов H-5, 7-H₃C, C(8)H₂, 9-(H₃C)₂ и H₃CO (табл. 3). Так как для полученных соединений $J_{C(4)-H(5)} = 5.0$, а $J_{C(10)-H(5)} = 1.6$ Гц (табл. 3), число связей, разделяющих атом H-5 и атомы C(4) и C(10), равно 3 и 2 соответственно. Это согласуется со структурой тиазолидинов **4а–с**, но не 1,3-тиазинов **5а–с** [20].

^{*} Здесь и далее нумерация атомов выбрана для удобства обсуждения спектров ЯМР и не соответствует нумерации, принятой номенклатурой IUPAC.

Таким образом, эта реакция протекает с образованием только пиразолилтиазолидинов **4а–с**. Кроме того, значение константы ${}^{3}J_{C(4)-H(5)} = 5.0$ Гц свидетельствует о (*Z*)-конфигурации экзоциклической двойной связи в соединениях **4а–с**, что соответствует известному механизму *транс*присоединения группы SH к тройной связи ДМАД [1].

Ранее сообщалось, что взаимодействие 5,7-диарил-2,4,5,6-тетрагидро-3*H*-1,2,4-триазепин-3-тионов с такими электрофильными агентами как α -галогенкетоны [21] и этилбромацетат [22] приводит к тиазолотриазепинам. Однако о реакциях производных 2,4,5,6-тетрагидро-3*H*-1,2,4-триазепин-3-тионов с эфирами ацетиленкарбоновых кислот не сообщалось. В то же время, можно было ожидать, что реакция триазепинтиона **6a** с эфиром **2b** будет удобным методом синтеза неописанных ранее тиазинотриазепинов **8** или **9**. Однако оказалось, что взаимодействие 5,5,7-триметил-2,4,5,6-тетрагидро-3*H*-1,2,4-триазепин-3-тиона (**6a**) с метилфенилпропиноатом (**2b**) в присутствии метилата натрия приводит только к аддукту Михаэля **7** (причём конверсия триазепинтиона **6a** составляет лишь 35%), который не циклизуется в тиазинотриазепины **8** или **9** ни в уксусной кислоте (1 ч, 118 °C), ни в пиридине (3 ч, 120 °C), ни в диглиме (1 ч, 161 °C).

При попытке получить производные тиазинотриазепинов взаимодействием триазепинтиона **6a** с эфирами **2b**,**e**,**f** в кипящей уксусной кислоте нами впервые было обнаружено, что в этих условиях происходят раскрытие триазепинового цикла и его рециклизация в пиразолиновый, в результате чего образуются 2-(3,5,5-триметил-4,5-дигидро-1*H*-пиразол-1-ил)-4*H*-1,3-тиазин-4-оны **3a**,**g**,**h**.

Подтверждением структуры продуктов этой реакции является тождественность полученного здесь препарата соединения **3a** и описанного выше продукта взаимодействия пиразолинкарботиоамида **1a** и метил(фенил)пропиноата **2b**.

Соеди- нение	Брутто- формула	Найдено, <u>m/z [M+H]</u> ⁺ Вычислено, т ([M+11] ⁺	R_f	Т. пл., ℃*	Выхо по ме (время ре	од, % етоду еакции, ч)
		m/z [M+H]			А	Б
3a	$C_{16}H_{17}N_3OS$	<u>300.1169</u> 300.1171	0.34	172–174	43 (8)	29 (15)
3b	$C_{17}H_{19}N_3O_2S$	<u>330.1271</u> 330.1276	0.29	159–161	40 (7)	
3c	$C_{10}H_{13}N_3OS$	<u>447.1627</u> ** 447.1637	0.24	160–162	55 (4)	
3d	$C_{20}H_{17}N_3OS$	<u>348.1180</u> 348.1171	0.31	182–184	39 (10)	
3e	$C_{14}H_{13}N_3OS$	<u>272.0856</u> 272.0858	0.20	250-252	83 (2)	
3f	$C_{15}H_{15}N_{3}O_{2}S$	<u>302.0961</u> 302.0963	0.16	225-228	53 (2)	
3g	C ₁₁ H ₁₅ N ₃ OS	<u>238.1020</u> 238.1014	0.25	184–186		27 (15)
3h	C ₁₇ H ₁₉ N ₃ OS	<u>314.1328</u> 314.1327	0.36	194–196		33 (15)
4a	$C_{12}H_{15}N_3O_3S$	<u>282.0917</u> 282.0912	0.39	173–176	63	
4 b	$C_{16}H_{15}N_3O_3S$	<u>330.0917</u> 330.0912	0.33	187–190	40	
4c	$C_{17}H_{17}N_3O_4S$	<u>360.1019</u> 360.1018	0.36	198–200	38	45
11a	$C_{12}H_{15}N_3O_3S$	<u>282.0915</u> 282.0912	0.47	183–185	40	
11b	$C_{14}H_{17}N_3O_3S$	<u>308.1065</u> 308.1069	0.56	82–85	38	

Характеристики соединений За-h, 4а-с и 11а,b

****** Сигнал [2М+H]⁺.

^{*} Растворители: хлороформ-гексан, ~ 1:10, затем бензол-гексан, ~ 1:5 (соединения **3a,c,e,f**); этанол (соединения **3d**, **11a,b**); метанол-вода, ~ 1:10, затем бензол-гексан, \sim 1:5 (соединения **3b**, **4a**); хлороформ-гексан, \sim 1:10 (соединения **3g**,**h**); бензол-гексан, \sim 1:5, затем этанол (соединение **4b**); бутан-1-ол (соединение **4c**).

		en	ектры жени несединении са	in ia e, 11a,6 (ez e.,	
Соеди-			Химические сдвиги, б	, м. д. (Ј, Гц)		
нение	R	\mathbb{R}^1	R^2	CH ₃ (3H, c)	H-5 (1H)	H-8
3a	1.75 (6H, c	, 2CH ₃)	7.43–7.57 (5Н, м, Н Рh)	2.11	6.75 (c)	2.88 (2H, c)
3b	1.70 (6H, c	, 2CH ₃)	3.79 (3H, с, OCH ₃); 6.90 (2H, д, <i>J</i> = 8.0, H Ar); 7.47 (2H, д, <i>J</i> = 8.0, H Ar)	2.07	6.65 (c)	2.84 (2H, c)
3c	1.68 (6H, c	, 2CH ₃)	7.30 (1H, д, <i>J</i> = 10.3, H Ar)	2.06	6.50 (д, J=10.3)	2.84 (2H, c)
3d	7.21–7.32 (5Н, м, Н Рh)	5.78 (1Н, д. д, J=4.2 и J=11.2)	7.41–7.57 (5Н, м, Н Рh)	2.17	6.70 (c)	2.85 (1Н, д. д, <i>J</i> = 4.2 и <i>J</i> = 18.2); 3.50 (1Н, д. д, <i>J</i> = 11.2 и <i>J</i> = 18.2)
3e	7.18–7.30 (5Н, м, Н Рh)	5.73 (1Н, д. д, J=4.1 и J=11.5)	7.28 (1Н, д, J = 10.6)	2.16	6.48 (д, Ј = 10.6)	2.83 (1Н, д. д, <i>J</i> = 4.1 и <i>J</i> = 18.3); 3.48 (1Н, д. д, <i>J</i> = 11.5 и <i>J</i> = 18.3)
3f	3.65 (3H, с, OCH ₃); 6.72 (2H, д, <i>J</i> = 8.1, H Ar); 7.04 (2H, д, <i>J</i> = 8.1, H Ar)	5.51 (1Н, д. д, J = 2.5 и J = 11.4)	7.17 (1Н, д, J = 10.0)	2.07	6.36 (д, J=10.0)	2.73 (1Н, д. д, <i>J</i> = 2.5 и <i>J</i> = 18.4); 3.35 (1Н, д. д, <i>J</i> = 11.4 и <i>J</i> = 18.4)
3g	1.70 (6H, c	, 2CH ₃)	2.20 (3H, c, CH ₃)	2.09	6.34 (c-	2.86 (2H, c)
3h	1.76 (6H, c	, 2CH ₃)	2.40 (3H, c, CH ₃); 7.25 (2H, д, <i>J</i> = 8.0, H Ar); 7.48 (2H, д, <i>J</i> = 8.0, H Ar)	2.13	6.76 (c)	2.90 (2H, c)
4a	1.68 (6H, c	, 2CH ₃)	3.79 (3H, c, OCH ₃)*	2.10	6.86 (c)	2.95 (2H, c)
4b	7.15–7.31 (5H, м, H Ph)	5.70 (1Н, д. д, J = 3.5 и J = 10.5)	3.82 (3H, c, OCH ₃)*	2.20	6.86 (c)	2.95 (1Н, д. д, <i>J</i> = 3.5 и <i>J</i> = 18.2); 3.60 (1Н, д. д, <i>J</i> = 10.5 и <i>J</i> = 18.2)
4c	3.75 (3H, с, ОСН ₃); 6.81 (2H, д, <i>J</i> = 8.5, H Ar); 7.10 (2H, д. <i>J</i> = 8.5, H Ar)	5.62 (1Н, д. д, J = 3.3 и J = 10.6)	3.80 (3H, c, OCH ₃)*	2.20	6.84 (c)	2.94 (1Н, д. д. <i>J</i> = 3.3, <i>J</i> = 18.7); 3.57 (1Н, д. д, <i>J</i> = 10.6, <i>J</i> = 18.7)
11a	1.32 (6H, c,	2CH ₃)**	3.79 (3H, c, OCH ₃)*	2.24	6.87 (c)	2.73 (2H, c)
11b	1.17 (3Н, с, СН ₃) и 1	.30 (3H, c, CH ₃)**	3.80 (3H, c, OCH ₃)*	_***	6.90 (c)	2.96 (1Н, т, <i>J</i> = 8.1)

* Сигнал группы СООСН₃.
** Сигналы групп СН₃ при атоме С-9.
*** Мультиплеты атомов водорода группировки (СН₂)₃: 1.65 (2Н), 1.98 (1Н), 2.13 (1Н), 2.52 (1Н), 2.75 (1Н).

Таблица З

Соеди-	Химические сдвиги, б, м. д. (<i>J</i> , Гц)									
нение	$R; R^1$	R ²	7-CH ₃	C-2	C-4	C-5	C-6	C-7	C-8	C-9
3 a	25.8	126.5; 129.1; 130.6; 136.0	16.3	160.6	171.3 $(^{2}J_{C(4)-H(5)} = 0.8)$	115.7	149.5	158.6	52.2	67.0
3b	25.5	55.1; 114.2; 127.4; 127.9; 161.3	15.9	160.2	171.2	113.8	148.8	158.3	53.8	66.6
3c	25.7	_	16.2	160.2 $({}^{3}J_{C(2)-H(6)} = 8.5)$	169.0 ${}^{(2)}_{C(4)-H(5)} = 1.1,$ ${}^{3}_{J_{C(4)-H(6)}} = 8.9)$	$118.8 (^2 J_{\rm C(5)-H(6)} = 0.9)$	$135.8 (^2 J_{\rm C(6)-H(5)} = 4.1)$	158.8	54.2	66.8
3d	125.7; 127.9; 128.9; 140.3	126.4; 129.1; 130.7; 135.6	16.2	160.6	$171.1 (^2 J_{C(4)-H(5)} = 0.9)$	116.2	148.5	160.1	46.5	61.9
3e	125.7; 127.9; 128.9; 140.1	-	16.3	$160.1 ({}^{3}J_{\rm C(2)-H(6)} = 8.5)$	168.9 ${}^{(2)}_{C(4)-H(5)} = 1.2,$ ${}^{3}_{J_{C(4)-H(6)}} = 9.2)$	$119.6 (^2 J_{\rm C(5)-H(6)} = 1.1)$	$134.4 (^2 J_{\rm C(6)-H(5)} = 4.7)$	160.1	46.6	61.6
3f	55.2; 114.2; 127.2; 132.3; 160.0	-	16.2	159.2	168.7	119.6	134.2	160.0	46.4	61.2
3g	26.2	22.8	16.6	161.1	171.5 $(^{2}J_{C(4)-H(5)} = 1.2)$	116.9	148.0	158.9	54.6	67.2
3h	26.3	21.8; 126.7; 130.2; 133.5; 141.5	16.7	161.1	172.0 $({}^{2}J_{C(4)-H(5)} = 1.2)$	115.3	150.0	159.1	54.6	67.4

Спектры ЯМР ¹³С соединений 3а-h и 4а-с, 11а,b (CDCl₃)*

1084

4a	26.0	52.3; 166.9** ${}^{3}J_{C(10)-H3CO} = 3.9,$ ${}^{2}J_{C(10)}$, $u_{CO} = 1.6)$	16.1	172.3	179.4 (${}^{3}J_{C(4)-H(5)} = 5.0$)	116.4	$146.9 \\ (^2 J_{\rm C(6)-H(5)} = 1.7)$	162.6 $\binom{^{2}J_{C(7)-H3C} = 6.4}{^{2}J_{C(7)-H3C} = 7.3}$	54.2	67.4
4b	125.6, 128.4; 129.1, 139.1	$52.4; 166.8^{**}$ $({}^{3}J_{C(10)-H3CO} = 3.9, {}^{2}J_{C(10)-H3CO} = 1.6)$	16.1	173.0	178.7 (${}^{3}J_{C(4)-H(5)} = 4.9$)	117.2	$146.9 (^2 J_{\rm C(6)-H(5)} = 1.8)$	163.5	47.5	63.5
4c	55.3; 114.4; 127.2; 131.2; 159.6	52.4; 166.8	16.2	172.8	178.8	117.0	147.0	163.7	47.4	63.2
11a	30.7***	52.3; 166.4** ${}^{3}J_{C(10)-H3CO} = 3.9,$ ${}^{2}J_{C(10)-H(5)} = 1.4)$	27.2	141.4	$163.2 ({}^{3}J_{C(4)-H(5)} = 5.7)$	115.3	$141.5 (^2 J_{\rm C(6)-H(5)} = 1.1)$	$167.9 {}^{2}J_{C(7)-H3C} = 5.0, {}^{2}J_{C(7)-H2C} = 6.5) $	48.0	58.0
11b	29.7; 30.0***	52.3; 166.5** ${}^{3}J_{C(10)-H3CO} = 4.1,$ ${}^{2}J_{C(10)-H(5)} = 1.2)$	_4*	141.10	$162.8 ({}^{3}J_{C(4)-H(5)} = 5.7)$	115.4	$141.4 (^2 J_{C(6)-H(5)} = 0.9)$	175.4	55.4	60.3

* Для соединений **3b**,**f**, **4c** константы J_{C-H} не измерялись; константы ${}^{2}J_{C(7)-H3C}$ и ${}^{2}J_{C(7)-H2C}$ измерены только для соединений **4a** и **11a**; константы ${}^{2}J_{C(6)-H(5)}$ – только для соединений **3c**,**e**, **4a**,**b**, **11a**,**b**; для соединений **3g**,**h** были измерены только константы ${}^{2}J_{C(4)-H(5)}$.

** Сигналы группы СООСН3.

*** Сигналы группа Соосну. *** Сигналы групп СН₃ при атоме С(9). ⁴* Химические сдвиги атомов С группировки (СН₂)₃: 23.8, 24.8, 36.5 м. д.

Соеди- нение	ИК спектр, v , см ⁻¹	УФ спектр, λ _{max} , нм (ε×10 ⁻⁴ л•моль ⁻¹ •см ⁻¹)
3a	3095, 2915, 1646, 1624, 1607, 1522, 1449, 1298, 857, 779	205 (1.4), 268 (2.6), 320 (0.8)
3b	3060, 2970, 2918, 2838, 1620, 1602, 1524, 1507, 1447, 1314, 1302, 1254, 1181, 1032, 846	205 (1.5), 270 (2.8), 328 (1.5)
3c	3024, 2968, 2933, 1620, 1593, 1493, 1350, 1315, 1284, 1245, 1155, 1106	258 (2.0), 302 (0.7)
3d	3060, 3032, 1625, 1595, 1572, 1504, 1429, 1304, 1289, 860, 771, 757, 697	206 (2.1), 268 (2.6), 318 (0.8)
3e	3033, 1624, 1594, 1492, 1420, 1358, 1296, 1211, 1115, 892	207 (0.7), 258 (2.4), 300 (0.8)
3f	3035, 2992, 2930, 1626, 1594, 1514, 1492, 1353, 1294, 1251, 1176, 1034, 893, 835	204 (0.7), 231 (0.9), 259 (1.8), 300 (0.6)
3g	3035, 3007, 1631, 1504, 1444, 1412, 1380, 1373, 1302, 1158, 1128, 1102, 1010, 932, 852, 753, 705	240 (2.91), 267 (1.2)
3h	3025, 2979, 2916, 1628, 1598, 1516, 1502, 1412, 1379,1317, 1299,1283, 1256, 1238, 1198, 1160, 962	210 (1.7), 239 (1.2), 270 (2.9), 334 (0.9)
4 a	3064, 2988, 1945, 2921, 1691, 1637, 1556, 1366, 1327, 1269, 1241, 1184, 1155, 1005, 877, 770, 715, 576	207 (1.8), 222 (2.1), 256 (2.6), 319 (1.6)
4b	2974, 2952, 2929, 1706, 1695, 1562, 1373,1318, 1234, 1197, 1175, 1004, 767	210 (1.0), 245 (0.3), 327 (1.8)
4c	3070, 2997, 2951, 2840, 1693, 1555, 1515, 1368, 1324, 1246, 1232, 1203, 1170, 1031, 905, 771, 575	205 (0.9), 311 (1.7)
11a	2959, 1738, 1706, 1648, 1603, 1424, 1379, 1325, 1294, 1260, 1198, 1177, 1131, 849, 752, 725, 703, 620	205 (0.7), 225 (0.7), 326 (1.4)
11b	2965, 1730, 1702, 1640, 1613, 1424, 1421, 1305, 1291, 1288, 1173, 1101, 1053, 1020, 902, 843, 730, 710	208 (0.4), 227 (0.6), 334 (1.4)

ИК и УФ спектры соединений За–h, 4а–с и 11а,b

Рис. 1. Строение молекулы 2-(3-метил-5-фенил-4,5-дигидро-1*H*-пиразол-1-ил)-6-фенил-4*H*-1,3-тиазин-4-она (**3d**), по данным РСА

		• •	
Связь	l, Å	Связь	l, Å
S(1)-C(6)	1.7453(18)	C(65)–C(66)	1.380(2)
S(1)–C(2)	1.7655(19)	N(7)–N(8)	1.3977(18)
C(2)–N(3)	1.293(2)	N(7)–C(11)	1.480(2)
C(2)–N(7)	1.337(2)	N(8)–C(9)	1.2692(19)
N(3)–C(4)	1.384(2)	C(9)–C(13)	1.486(2)
C(4)–O(12)	1.230(2)	C(9)–C(10)	1.494(2)
C(4)–C(5)	1.463(3)	C(10)-C(11)	1.537(2)
C(5)–C(6)	1.327(2)	C(11)–C(111)	1.505(2)
C(6)–C(61)	1.477(2)	C(111)-C(116)	1.367(2)
C(61)-C(62)	1.385(2)	C(111)–C(112)	1.388(2)
C(61)–C(66)	1.386(2)	C(112)–C(113)	1.379(2)
C(62)–C(63)	1.374(3)	C(113)-C(114)	1.361(3)
C(63)-C(64)	1.364(3)	C(114)–C(115)	1.382(2)
C(64)-C(65)	1.378(2)	C(115)-C(116)	1.390(2)
	1	u 1	

Длины связей (*l*) в молекуле пиразолилтиазинона 3d

Таблица б

Валентные у	углы (ω) I	в молекуле	пиразолилтиазинона За	l
Janen inbie	углы (<i>w</i>) і	вмолскулс	inpasonin'i nasinona se	L

Угол	ω, град.	Угол	ω, град.
C(6)-S(1)-C(2)	99.80(11)	C(2)-N(7)-N(8)	119.83(17)
N(3)-C(2)-N(7)	118.67(18)	C(2)-N(7)-C(11)	124.81(17)
N(3)-C(2)-S(1)	129.11(16)	N(8)–N(7)–C(11)	114.26(14)
N(7)-C(2)-S(1)	112.22(15)	C(9)–N(8)–N(7)	106.91(16)
C(2)-N(3)-C(4)	121.98(19)	N(8)-C(9)-C(13)	123.29(18)
O(12)–C(4)–N(3)	119.2(2)	N(8)-C(9)-C(10)	115.08(18)
O(12)–C(4)–C(5)	120.8(2)	C(13)-C(9)-C(10)	121.63(17)
N(3)-C(4)-C(5)	120.0(2)	C(9)-C(10)-C(11)	103.59(15)
C(6)-C(5)-C(4)	127.5(2)	N(7)-C(11)-C(111)	110.72(15)
C(5)–C(6)–C(61)	124.69(19)	N(7)-C(11)-C(10)	99.95(14)
C(5)-C(6)-S(1)	121.43(18)	C(111)-C(11)-C(10)	114.46(15)
C(61)-C(6)-S(1)	113.88(15)	C(116)–C(111)–C(112)	118.98(19)
C(62)–C(61)–C(66)	117.2(2)	C(116)–C(111)–C(11)	120.6(2)
C(62)–C(61)–C(6)	120.1(2)	C(112)–C(111)–C(11)	120.42(19)
C(66)–C(61)–C(6)	122.67(19)	C(113)–C(112)–C(111)	120.5(2)
C(63)–C(62)–C(61)	120.8(2)	C(114)–C(113)–C(112)	120.3(2)
C(64)–C(63)–C(62)	121.4(2)	C(113)-C(114)-C(115)	119.9(2)
C(63)–C(64)–C(65)	119.2(2)	C(114)-C(115)-C(116)	119.8(2)
C(64)-C(65)-C(66)	119.5(2)	C(111)-C(116)-C(115)	120.5(2)
C(65)-C(66)-C(61)	122.0(2)		

Угол	ф, град.	Угол	ф, град.
C(6)-S(1)-C(2)-N(3)	2.9(2)	N(3)-C(2)-N(7)-C(11)	-3.0(3)
C(6)-S(1)-C(2)-N(7)	-176.43(13)	S(1)-C(2)-N(7)-C(11)	176.37(13)
N(7)-C(2)-N(3)-C(4)	179.91(17)	C(2)-N(7)-N(8)-C(9)	-163.93(17)
S(1)-C(2)-N(3)-C(4)	0.6(3)	C(11)–N(7)–N(8)–C(9)	4.7(2)
C(2)-N(3)-C(4)-O(12)	174.7(2)	N(7)-N(8)-C(9)-C(13)	177.84(16)
C(2)-N(3)-C(4)-C(5)	-4.0(3)	N(7)-N(8)-C(9)-C(10)	-2.7(2)
O(12)-C(4)-C(5)-C(6)	-175.6(2)	N(8)-C(9)-C(10)-C(11)	-0.1(2)
N(3)-C(4)-C(5)-C(6)	3.1(3)	C(13)-C(9)-C(10)-C(11)	179.41(16)
C(4)-C(5)-C(6)-C(61)	-178.97(18)	C(2)–N(7)–C(11)–C(111)	-75.5(2)
C(4)-C(5)-C(6)-S(1)	1.2(3)	N(8)–N(7)–C(11)–C(111)	116.58(17)
C(2)-S(1)-C(6)-C(5)	-3.53(19)	C(2)-N(7)-C(11)-C(10)	163.50(17)
C(2)–S(1)–C(6)–C(61)	176.62(13)	N(8)-N(7)-C(11)-C(10)	-4.47(19)
C(5)-C(6)-C(61)-C(62)	23.5(3)	C(9)–C(10)–C(11)–N(7)	2.58(18)
S(1)-C(6)-C(61)-C(62)	-156.62(14)	C(9)–C(10)–C(11)–C(111)	-115.74(18)
C(5)-C(6)-C(61)-C(66)	-155.5(2)	N(7)-C(11)-C(111)-C(116)	120.17(18)
S(1)-C(6)-C(61)-C(66)	24.4(2)	C(10)-C(11)-C(111)-C(116)	-127.80(18)
C(66)-C(61)-C(62)-C(63)	1.9(3)	N(7)-C(11)-C(111)-C(112)	-60.6(2)
C(6)-C(61)-C(62)-C(63)	-177.14(19)	C(10)-C(11)-C(111)-C(112)	51.4(2)
C(61)-C(62)-C(63)-C(64)	-0.7(3)	C(116)–C(111)–C(112)–C(113)	-0.3(3)
C(62)-C(63)-C(64)-C(65)	-0.9(3)	C(11)-C(111)-C(112)-C(113)	-179.54(17)
C(63)-C(64)-C(65)-C(66)	1.3(3)	C(111)–C(112)–C(113)–C(114)	0.6(3)
C(64)-C(65)-C(66)-C(61)	-0.1(3)	C(112)–C(113)–C(114)–C(115)	-0.2(3)
C(62)-C(61)-C(66)-C(65)	-1.5(3)	C(113)–C(114)–C(115)–C(116)	-0.4(3)
C(6)-C(61)-C(66)-C(65)	177.53(17)	C(112)-C(111)-C(116)-C(115)	-0.3(3)
N(3)-C(2)-N(7)-N(8)	164.32(16)	C(11)–C(111)–C(116)–C(115)	178.93(16)
S(1)-C(2)-N(7)-N(8)	-16.3(2)	C(114)-C(115)-C(116)-C(111)	0.7(3)

Торсионные углы (ф) в молекуле пиразолилтиазинона 3d

1088

Рис. 2. Корреляции в спектрах NOESY и COLOC таутомерной формы **A** соединения **10**. Показанные корреляции одинаковы для обеих таутомерных форм **A** и **B**

При нагревании триазепинтиона **6a** с эфиром **2b** в уксусной кислоте только до 100 °C нам удалось выделить промежуточно образующийся продукт раскрытия семичленного цикла, тиазинон **10**, существующий в растворе в одной из таутомерных форм **A** или **B**, который, по данным TCX, при кипячении в уксусной кислоте превращается в пиразолилтиазинон **3a**. Образование тиазинона **10** говорит о том, что разрыв триазепинового цикла происходит по связи N(4)–C(5), а замыкание пиразолинового – с образованием связи N(2)–C(5). В то же время, в отсутствие эфира **2b** раскрытие цикла триазепинтиона **6a** в кипящей уксусной кислоте не происходит.

В спектрах ЯМР ¹Н и ¹³С тиазинона **10** характеристичными являются сигналы трёх метильных групп и атомов H-8 и C(8). Корреляции, присутствующие в его спектрах NOESY и COLOC (рис. 2), позволяют провести однозначное отнесение сигналов всех протонов и атомов углерода (корреляции между атомами бензольного кольца на рисунке не указаны).

Отдельно следует отметить, что кросс-пик для атомов H-5 и C(4) в спектре COLOC отсутствует, что может быть следствием малого значения КССВ ${}^{2}J_{C(4)-H(5)}$, характерного для 1,3-тиазин-4-онов (табл. 2 [23]). Поэтому отнесение сигналов атомов C(4) и C(2) было сделано на основании того, что сигналы атомов C(4) производных 1,3-тиазин-4-онов всегда наблюдаются в более слабом поле, чем сигналы атомов C(2) (табл. 2 [23]).

Так как в спектрах NOESY и COLOC корреляции для атома водорода группы NH отсутствуют, то на основании имеющихся данных нельзя однозначно говорить о том, какая из таутомерных форм (**A** или **B**) реализуется для тиазина **10** в растворе. Кроме этого, они не дают ответа на вопрос о конфигурации экзоциклической связи C=N. Однако отметим, что замыкание пиразолинового цикла возможно лишь при её (Z)-конфигурации, что и отражено в структуре соединения **10**.

Вместе с тем, при замене эфиров ацетиленмонокарбоновых кислот на ДМАД 2d нам удалось получить бициклические конденсированные системы, содержащие триазепиновый цикл. Так, взаимодействие триазепинтионов 6a,b с ДМАД 2d протекает по атому N(2) по типу 5-экзо-диг циклизации, и из четырёх возможных продуктов этой реакции 11–14 образуются лишь тиазолотриазепины 11a,b.

Такое течение реакции подтверждается данными PCA соединения **11а** (табл. 8–10, рис. 3).

Отдельно следует отметить, что спектры ЯМР ¹Н и ¹³С изомерных тиазолотриазепина **11a** и *N*-тиазолилпиразолидина **4a** весьма схожи. Единственным существенным различием спектров этих соединений является положение сигнала атома C(2) (табл. 3) в спектрах ЯМР ¹³С. Так, для тиазолотриазепина **11a** он наблюдается при 141.4, а в спектре его изомера **4a** – на ~30 м. д. в более слабом поле (172.3 м. д.). Такое слабо-польное смещение сигнала атома C(2) производных пиразолина **3a**–h, **4a–c** относительно сигнала этого же атома в спектрах производных триазепина **11** является общим и может использоваться для доказательства структуры этих гетероциклов.

Рис. 3. Строение молекулы метил(6,8,8-триметил-3-оксо-7,8-дигидро[1,3]тиазоло-[3,2-*b*][1,2,4]триазепин-2-(3*H*)илиден)ацетата (**11а**), по данным РСА

Таким образом, нами впервые обнаружено, что конденсация 5,5,7-триметил-2,4,5,6-тетрагидро-3*H*-1,2,4-триазепин-3-тиона с метилпропиноатами сопровождается раскрытием триазепинового цикла и его рециклизацией в пиразолиновый, приводя к 2-пиразолинил-1,3-тиазинам. Взаимодействие триазепинтионов с ДМАД, в отличие от реакций с метилпропиноатами, протекает с сохранением семичленного цикла и может служить методом синтеза новых производных тиазолотриазепина. Реакция пиразолинкарботиоамидов с эфирами ацетиленмонокарбоновых кислот является удобным методом синтеза 2-пиразолинил-1,3-тиазинов, а взаимодействие с ДМАД – *N*-тиазолилпиразолидинов.

Таблица 8

Связь	l, Å	Связь	l, Å
S(1)–C(2)	1.715(5)	C(6)–C(7)	1.552(5)
S(1)-C(9a)	1.785(5)	C(7)–C(8)	1.516(11)
C(2)–C(10)	1.334(7)	C(8)–N(9)	1.469(7)
C(2)–C(3)	1.500(7)	C(8)–C(8b)	1.527(5)
C(3)–O(15)	1.190(6)	C(8)–C(8a)	1.539(5)
C(3)–N(4)	1.398(6)	N(9)-C(9a)	1.265(7)
N(4)–C(9a)	1.395(7)	C(10)–C(11)	1.507(9)
N(4)–N(5)	1.396(6)	C(11)–O(12)	1.190(4)
N(5)–C(6)	1.243(7)	C(11)–O(13)	1.318(7)
C(6)–C(6a)	1.488(8)	O(13)–C(14)	1.470(10)

Длины связей (*l*) в молекуле тиазолотриазепина 11а

Угол Угол ω, град. ω, град. C(2)-S(1)-C(9a) 92.4(2) N(9)-C(8)-C(7) 111.8(6) C(10)-C(2)-C(3) 121.8(5) N(9)-C(8)-C(8b) 103.5(6) 117.6(11) C(10)-C(2)-S(1) 126.7(4) C(7)-C(8)-C(8b) C(3)-C(2)-S(1)111.4(3) N(9)-C(8)-C(8a) 111.4(8) 111.6(7) O(15)-C(3)-N(4) 125.5(5) C(7)-C(8)-C(8a) O(15)-C(3)-C(2) 124.5(5) C(8b)-C(8)-C(8a) 100.2(14) N(4)-C(3)-C(2) 109.9(4) C(9a)-N(9)-C(8) 122.4(5) C(9a)-N(4)-N(5) 129.7(4) N(9)-C(9a)-N(4) 134.7(5) C(9a)-N(4)-C(3)116.0(4) N(9)-C(9a)-S(1)114.9(4) N(5)-N(4)-C(3) 110.2(4)114.0(4) N(4)-C(9a)-S(1)C(6)-N(5)-N(4)122.5(5) C(2)-C(10)-C(11) 118.3(5) N(5)-C(6)-C(6a) 118.1(6) O(12)-C(11)-O(13) 124.3(6) N(5)-C(6)-C(7)121.3(7) O(12)-C(11)-C(10) 123.5(5) C(6a)-C(6)-C(7) 113.6(7) O(13)-C(11)-C(10) 111.8(5) C(8)-C(7)-C(6)108.4(7)C(11)-O(13)-C(14) 111.6(6)

Валентные углы (ω) в молекуле тиазолотриазепина 11а

Таблица 9

Угол	ф, град.	Угол	ф, град.
C(9a)-S(1)-C(2)-C(10)	-176.9(12)	C(6)-C(7)-C(8)-C(8a)	-47.0(7)
C(9a)-S(1)-C(2)-C(3)	0.1(10)	C(7)-C(8)-N(9)-C(9a)	-40.8(14)
C(10)-C(2)-C(3)-O(15)	-5(2)	C(8b)-C(8)-N(9)-C(9a)	-168.4(17)
S(1)-C(2)-C(3)-O(15)	178.1(13)	C(8a)-C(8)-N(9)-C(9a)	84.8(13)
C(10)-C(2)-C(3)-N(4)	179.3(11)	C(8)-N(9)-C(9a)-N(4)	7(2)
S(1)-C(2)-C(3)-N(4)	2.1(14)	C(8)-N(9)-C(9a)-S(1)	-179.2(8)
O(15)-C(3)-N(4)-C(9a)	179.9(14)	N(5)-N(4)-C(9a)-N(9)	-9(2)
C(2)-C(3)-N(4)-C(9a)	-4.1(15)	C(3)-N(4)-C(9a)-N(9)	178.1(14)
O(15)-C(3)-N(4)-N(5)	6(2)	N(5)-N(4)-C(9a)-S(1)	177.4(9)
C(2)-C(3)-N(4)-N(5)	-178.4(9)	C(3)-N(4)-C(9a)-S(1)	4.2(12)
C(9a)-N(4)-N(5)-C(6)	9.6(19)	C(2)-S(1)-C(9a)-N(9)	-177.6(10)
C(3)-N(4)-N(5)-C(6)	-177.1(12)	C(2)-S(1)-C(9a)-N(4)	-2.3(8)
N(4)-N(5)-C(6)-C(6a)	178.3(10)	C(3)-C(2)-C(10)-C(11)	179.3(11)
N(4)-N(5)-C(6)-C(7)	29.3(18)	S(1)-C(2)-C(10)-C(11)	-4(2)
N(5)-C(6)-C(7)-C(8)	-78.3(12)	C(2)-C(10)-C(11)-O(12)	9(2)
C(6a)-C(6)-C(7)-C(8)	131.5(8)	C(2)-C(10)-C(11)-O(13)	-177.7(12)
C(6)-C(7)-C(8)-N(9)	78.4(8)	O(12)-C(11)-O(13)-C(14)	-10(2)
C(6)-C(7)-C(8)-C(8b)	-162.0(11)	C(10)-C(11)-O(13)-C(14)	176.6(12)

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры зарегистрированы на приборе ФСМ 1201 в таблетках КВг. Электронные спектры записаны на спектрофотометре СФ-2000 для растворов в этано-ле. Спектры ЯМР ¹Н и ¹³С получены на спектрометре Bruker AM 500 (500 и 125 МГц соответственно) в ДМСО-d₆ (соединения **6b**, **7**) или CDCl₃ (соединение **10**). Химические сдвиги приведены относительно сигналов остаточных протонов (δ 7.28 и 2.50 м. д.) или атомов углерода (δ 77.16 и 39.52 м. д. соответственно) растворителей. Спектр COLOC, оптимизированный на константу $J_{C-H} = 8$ Гц, раствора 1,3-тиазина **10** в CDCl₃ и спектр NOESY (время смешивания 0.6 с) этого 1092

же раствора получены на спектрометре Bruker DPX 300 (75 и 300 МГц соответственно). Масс-спектры высокого разрешения с ионизацией методом электроспрея (ЭСИ) зарегистрированы на приборе Bruker MicrOTOF в режиме регистрации положительных ионов (растворитель – метанол, ионизирующая добавка – муравьиная кислота, напряжение на капилляре – 4500 В). Контроль хода реакций и чистоты полученных продуктов осуществлялся методом TCX на пластинах "Sorbfil" в системе гексан–ацетон–хлороформ–этанол, 10:5:5:1.

3-Метил-4,5-дигидро-1Н-пиразол-1-карботиоамиды **1а-с** [24, 25], метиловые эфиры пропиновых кислот **2b,c,e,f** [26] и 5,5,7-триметил-2,4,5,6-тетрагидро-3*H*-1,2,4-триазепин-3-тион **6a** [22] получены известными методами. Метилпропиноат **2a** и ДМАД **2d** фирмы Sigma-Aldrich использовались без дополнительной очистки.

РСА монокристаллов соединений 3d, 11a, выращенных из растворов в этаноле, выполнен на дифрактометре Bruker SMART 1000 CCD (МоК α -излучение). Кристалл соединения 3d ($C_{20}H_{17}N_3OS$) относится к моноклинной сингонии, пространственная группа $P_{2_1/n}$, a = 9.082(2), b = 10.811(2), c = 17.789(4), $\beta = 104.58(3)^\circ$, Z = 4, $D_x = 1.365$ г/см³, $R_1 = 0.0353$ ($I \ge 2\sigma I$), $wR_2 = 0.0471$, 3712 ненулевых независимых отражений. Кристалл соединения 11a ($C_{12}H_{15}N_3O_3S$) относится к орторомбической сингонии, пространственная группа Pn_{2_1a} , a = 15.012(3), b = 6.7740(10), c = 13.627(3), Z = 4, $D_x = 1.348$ г/см³, $R_1 = 0.0949$ [$I \ge 2\sigma (I$]], $wR_2 = 0.2273$, 2516 ненулевых независимых отражений. Полный набор рентгеноструктурных данных (депоненты CCDB 762050 и 762051 соответственно).

2-(4,5-Дигидро-1*Н***-пиразол-1-ил)-4***H***-1,3-тиазин-4-оны За-h.** А. К раствору 3 ммоль 4,5-дигидропиразол-1-карботиоамида **1а-с** в 15 мл ледяной уксусной кислоты добавляют 3 ммоль эфира **2а-с**. Смесь кипятят, окончание реакции определяют методом ТСХ по исчезновению исходных соединений. Уксусную кислоту удаляют при пониженном давлении, остаток дважды перекристаллизовывают и получают соединения **3a-f**.

Б. К раствору 513 мг (3 ммоль) соединения **6a** в 15 мл уксусной кислоты прибавляют 3 ммоль эфира **2b**,**e**,**f**. Смесь кипятят 15 ч. Уксусную кислоту удаляют при пониженном давлении. Остаток хроматографируют на силикагеле; элюент дихлорметан–метанол, 30:1, выделенные продукты перекристаллизо-вывают и получают соединения **3a**,**g**,**h**.

Метиловые эфиры (2Z)-[2-(3-метил-4,5-дигидро-1*H*-пиразол-1-ил)-4-оксо-1,3-тиазол-5(4*H*)-илиден]уксусных кислот 4а-с. А. К раствору 2 ммоль 4,5-дигидропиразол-1-карботиоамида 1а-с в смеси 20 мл хлороформа и 0.28 мл (2 ммоль) триэтиламина при перемешивании прибавляют раствор 284 мг (2 ммоль) ДМАД 2d в 5 мл хлороформа. Реакционную смесь выдерживают 48 ч при комнатной температуре. Растворитель удаляют при пониженном давлении. Остаток перекристаллизовывают.

Б. К раствору 498 мг (2 ммоль) 4,5-дигидропиразол-1-карботиоамида **1с** в 20 мл уксусной кислоты при перемешивании прибавляют раствор 284 мг (2 ммоль) эфира **2d** в 5 мл уксусной кислоты. Реакционную смесь выдерживают 48 ч при комнатной температуре. Растворитель удаляют при пониженном давлении. Полученный осадок промывают этиловым спиртом (2 × 5 мл) и перекристаллизовывают из бутан-1-ола.

5,5-Диметил-4,4,5а,6,7,8-гексагидроциклопента[*f*][1,2,4]триазепин-3(2*H*)тион (6b). К 1.24 г (10 ммоль) 2-(1-метилэтилиден)циклопентанона [27] при 15 °C добавляют при перемешивании раствор 0.50 г (5 ммоль, 0.27 мл) конц. H₂SO₄ в 1 мл воды. К полученной смеси прибавляют раствор 0.76 г (10 ммоль) тиоцианата аммония в 2 мл воды. Реакционную смесь перемешивают 2 ч при комнатной температуре, верхний слой выделившегося масла отделяют, водный экстрагируют этилацетатом, объединённые органические фракции промывают водой до нейтрального значения pH, сушат Na₂SO₄, растворитель удаляют при пониженном давлении. Получают 1.24 г (68%) 2-(1-изотиоцианато-1-метилэтил)циклопентанона, который используют без дальнейшей очистки.

К хорошо перемешиваемой смеси 1.24 г (6.8 ммоль) 2-(1-изотиоцианато-1-метилэтил)циклопентанона и 0.34 г (0.33 мл, 6.8 ммоль) гидразингидрата в 10 мл воды прибавляют 2.5 мл 10% раствора NaOH. Реакционную смесь перемешивают 10 ч при комнатной температуре, образовавшийся осадок отфильтровывают и перекристаллизовывают из метанола. Выход ранее не описанного в литературе триазепинтиона **6b** 0.54 г (40%). Т. пл. 225–228 °C. R_f 0.53. ИК спектр, v, см⁻¹: 3222, 3183, 3139, 3099, 2989, 2957, 1688, 1566, 1545, 1477, 1384, 1367, 1288, 1238, 1198, 1147, 1116, 1007, 766, 677. Спектр ЯМР ¹Н, δ , м. д.: 1.05 (3H, с, CH₃); 1.20 (3H, с, CH₃); 1.53 (2H, м, CH₂); 1.77 (1H, м) и 1.97 (1H, м, CH₂); 2.34 (2H, м, CH₂); 2.72 (1H, м, CH); 8.29 (1H, с, NH); 10.26 (1H, с, NH). Спектр ЯМР ¹³С, δ , м. д.: 23.1; 24.4; 27.5; 28.5; 34.5; 52.9; 57.7; 165.9; 175.3. Найдено: *m/z* 198.1069 [M+H]⁺. C₉H₁₆N₃S. Вычислено: *m/z* 198.1065.

Метиловый эфир (*Z*)-3-[(5,5,7-триметил-5,6-дигидро-2*H*-1,2,4-триазепин-3-ил)сульфанил]-3-фенилакриловой кислоты (7). К суспензии 171 мг (1 ммоль) 1,2,4-триазепин-3-тиона **6a** в смеси 20 мл метанола и 0.1 мл 1 М раствора МеОNа в МеОН прибавляют 0.16 г (1 ммоль) метилфенилпропиноата (**2b**) и кипятят 10 ч. Растворитель удаляют при пониженном давлении до половины первоначального объёма. Образовавшийся осадок отфильтровывают и перекристаллизовывают из этанола. Выход 109 мг (33%). Т. пл. 167–170 °С. R_f 0.59. ИК спектр, v, см⁻¹: 3198, 3022, 2977, 2950, 1721, 1714, 1634, 1534, 1453, 1428, 1274, 1265, 1192, 1164, 942, 853, 769. УФ спектр, λ_{max} , нм ($\varepsilon \times 10^{-4}$ л[•]моль⁻¹·см⁻¹): 206 (1.0), 222 (0.6), 276 (1.3). Спектр ЯМР ¹Н, δ, м. д.: 1.35 (6H, с, 2CH₃); 2.02 (3H, с, CH₃); 2.49 (2H, с, CH₂); 3.67 (3H, с, OCH₃); 6.40 (1H, с, CH); 7.38 (3H, м, H Ar); 7.58 (2H, м, H Ar); 8.25 (1H, с, NH). Спектр ЯМР ¹³С, δ, м. д.: 25.2; 29.2; 42.4; 51.1; 61.6; 113.6; 127.5; 128.1; 129.4; 135.2; 153.6; 163.9; 168.0; 177.9. Найдено: *m/z* 332.1436 [M+H]⁺. C₁₇H₂₂N₃O₂S. Вычислено: *m/z* 332.1433.

2-[2-(1,3-Диметилбут-2-ен-1-илиден)гидразино]-6-фенил-4*H***-1,3-тиазин-4-он (10).** К раствору 1.71 г (10 ммоль) 1,2,4-триазепин-3-тиона **6а** в 50 мл уксусной кислоты прибавляют 1.76 г (11 ммоль) эфира **2b**. Смесь выдерживают 8 ч при 97–100 °С, растворитель удаляют при пониженном давлении, остаток перекристаллизовывают из 5 мл этанола. Выход 0.9 г (30%). Т. пл. 158–159 °С. *R*_f 0.65. ИК спектр, v, см⁻¹: 3118, 3023, 2957, 2829, 1645, 1630, 1581, 1570, 1549, 1489, 1372, 1301, 1239, 1226, 841, 762, 700. Спектр ЯМР ¹H, δ, м. д.: 1.93 (3H, с, 9-CH₃(B)); 2.12 (3H, с, 9-CH₃(A)); 2.15 (3H, с, 7-CH₃); 5.85 (1H, с, H-8); 6.52 (1H, с, H-5); 7.47–7.61 (5H, м, H Ph); 9.48 (1H, с, NH). Спектр ЯМР ¹³С, δ, м. д.: 19.4 (7-CH₃); 21.9 (9-CH₃(B)); 28.4 (9-CH₃(A)); 114.7 (C-5); 124.5 (C-8); 126.8 и 129.3 (С-*o*,*m*); 131.6 (C-*p*); 136.0 (C-*i*); 144.9 (C-9); 152.8 (C-6); 153.3 (C-2); 163.5 (C-4); 163.5 (C-7). Найдено: *m/z* 300.1173 [M+H]⁺. С₁₆H₁₈N₃OS. Вычислено: *m/z* 300.1171.

Метиловые эфиры (2Z)-(8,8-диметил-3-оксо-7,8-дигидро[1,3]тиазоло[3,2-b]-[1,2,4]триазепин-2(3H)-илиден)уксусных кислот 11а,b. К раствору 2 ммоль 1,2,4-триазепин-3-тиона 6а,b в смеси 20 мл хлороформа и 0.28 мл (2 ммоль) триэтиламина прибавляют раствор 0.284 г (2 ммоль) ДМАД 2d в 5 мл хлороформа. Хорошо перемешиваемую реакционную смесь выдерживают 48 ч при комнатной температуре. Растворитель удаляют при пониженном давлении. Остаток перекристаллизовывают из этанола.

СПИСОК ЛИТЕРАТУРЫ

- 1. Н. А. Данилкина, Л. Е. Михайлов, Б. А. Ивин, *ЖОрХ*, **42**, 807 (2006).
- G. Turan-Zitouni, P. Chevallet, F. S. Kilic, K. Erol, *Eur. J. Med. Chem.*, 35, 635 (2000).
- N. Gokhan, A. Yesilada, G. Ucar, K. Erol, A. A. Bilgin, Arch. Pharm., 336, 362 (2003).
- 4. M. N. A. Nasr, S. A. Said, Arch. Pharm., 336, 551 (2003).
- 5. G. Ucar, N. Gokhan, A. Yesilada, A. A. Bilgin, Neurosci. Lett., 382, 327 (2005).
- 6. M. Abid, A. Azam, Bioorg. Med. Chem., 13, 2213 (2005)
- 7. M. Abid, A. Azam, Bioorg. Med. Chem. Lett., 16, 2812 (2006).
- 8. A. Budakoti, M. Abid, A. Azam, Eur. J. Med. Chem., 41, 63 (2006).
- 9. L. D. Hawkins, J. C. Hanvey, F. L. Boyd, D. C. Baker, H. H. Showalter, *Nucleosides, Nucleotides, Nucleic Acids*, **2**, 479 (1983).
- H. Nakamura, G. Koyama, Y. Iitaka, M. Ohno, N. Yagisawa, S. Kondo, K. Maeda, H. Umezawa, *J. Am. Chem. Soc.*, **96**, 4327 (1974).
- 11. M. Ohno, N. Yagisawa, S. Shibahara, S. Kondo, K. Maeda, H. Umezawa, J. Am. Chem. Soc., 96, 4326 (1974).
- 12. D. C. Baker, S. R. Putt, J. Am. Chem. Soc., 101, 6127 (1979).
- 13. E. Chan, S. R. Putt, H. D. H. Showalter, D. C. Baker, J. Org. Chem., 47, 3457 (1982).
- 14. T. V. Truong, H. Rapoport, J. Org. Chem. 58, 6090 (1993).
- 15. P. W. K. Woo, H. W. Dion, S. M. Lange, L. F. Dahl, L. J. Durham, J. Heterocycl. Chem., 11, 641 (1974).
- 16. O. L. Acevedo, S. H. Krawczyk, L. B. Townsend, Tetrahedron Lett., 24, 4789 (1983).
- 17. O. L. Acevedo, S. H. Krawczyk, L. B. Townsend, J. Heterocycl. Chem., 22, 349 (1985).
- 18. O. L. Acevedo, S. H. Krawczyk, L. B. Townsend, J. Org. Chem., 51, 1050 (1986).
- 19. A. Reayi, R. S. Hosmane, Nucleosides, Nucleotides, Nucleic Acids, 23, 263 (2004).
- U. Vögeli, W. von Philipsborn, K. Nagarajan, M. D. Nair, *Helv. Chim. Acta*, 61, 607 (1978).
- 21. B. Rezessy, Z. Zubovics, J. Kovacs, G. Toth, Tetrahedron, 55, 5909 (1999).
- 22. R. Neidlein, W.-D. Ober, Monatsh. Chem., 107, 1251 (1976).
- 23. Н. А. Данилкина, С. И. Селиванов, Л. Е. Михайлов, Б. А. Ивин, *ЖОрХ*, **43**, 1351 (2007).
- 24. А. Н. Кост, Г. А. Голубева, ЖОХ, 33, 248 (1963).
- 25. W. Seebacher, G. Michl, F. Belaj, R. Brun, R. Saf, R. Weis, *Tetrahedron*, **59**, 2811 (2003).
- 26. G. Märkl, Chem. Ber., 94, 3005 (1961).
- 27. R. Cornubert, C. Borrell, Bull. Soc. Chim. Fr., 47, 958 (1935).

Санкт-Петербургский государственный университет, Университетский пр., 26, Санкт-Петербург 198504, Россия e-mail: danilkina.natalia@gmail.com Поступило 28.01.2011

^аСанкт-Петербургская государственная химико-фармацевтическая академия, ул. проф. Попова, 14, Санкт-Петербург 197022, Россия e-mail: boris.ivin@mail.ru