И. Поторочина, М. Ворона, И. Шестакова, И. Домрачева, Э. Лиепиньш, Г. Вейнберг*

СИНТЕЗ И БИОЛОГИЧЕСКАЯ АКТИВНОСТЬ АЛКИЛИДЕНЗАМЕЩЁННЫХ ЦЕФЕМОВ И ПЕНАМОВ

Конденсацией *трет*-бутиловых эфиров 3-метил-7-оксоцеф-3-ем-4-карбоновой и 6-оксопенициллановой кислот с рядом 2-оксо-1-формилалкилиден(трифенил)фосфоранов синтезированы *трет*-бутиловые эфиры новых алкилидензамещённых в β-лактамном цикле аналогов цефалоспорина и пенициллина. Большинство полученных продуктов окислено *мета*-хлорпербензойной кислотой до соответствующих сульфонов. Синтезированные цефемы и пенамы (в том числе продукты окисления) проявили высокую цитотоксичность в отношении раковых клеток *in vitro*. Отдельные алкилидензамещённые цефемы в виде свободных кислот подобно тазобактаму ингибировали каталитическую активность пенициллиназы *Enterobacter cloacae*.

Ключевые слова: *трет*-бутиловые эфиры (6*Z*)-алкилиден-1,1-диоксопенициллановых кислот, *трет*-бутиловые эфиры (7*Z*)-алкилиден-3-метил-1,1диоксоцеф-3-ем-4-карбоновых кислот, (6*Z*)-(N-метил-N-метоксикарбамоилметилиден)-1,1-диоксопенициллановая кислота, 3-метил-(7*Z*)-(N-метил-N-метоксикарбамоилметилиден)-1,1-диоксоцеф-3-ем-4-карбоновая кислота, циклические сульфоны, конденсация, окисление *т*-хлорпербензойной кислотой.

В продолжение изучения взаимосвязи между строением и биологической активностью производных цефалоспорина и пенициллина [1] в настоящей работе нами синтезированы новые аналоги указанных антибиотиков с алкилиденовым заместителем в β-лактамном цикле, а также их 1,1-диоксопроизводные и изучена противораковая активность полученных соединений *in vitro*. Выявлено влияние *трет*-бутильной защиты карбоксильной группы на способность некоторых полученных аналогов цефалоспорина и пенициллина ингибировать β-лактамазу.

Целевые *трет*-бутиловые эфиры 7-алкилидензамещённых 3-метил-1,1диоксоцеф-3-ем-4-карбоновых кислот **3а-с** были синтезированы конденсацией *трет*-бутилового эфира 7-оксо-3-метилцеф-3-ем-4-карбоновой кислоты (1) с N-метил-N-метоксикарбамоилметилиден- (**2a**), 2-оксо-3-этоксикарбонилпропилиден- (**2b**) и 2-оксо-2-(2-фурил)этилиден(трифенил)фосфораном (**2c**) соответственно. Полученные продукты **3а-с** были окислены *мета*-хлорпербензойной кислотой (МХПБК) в соответствующие сульфоны **4а-с**.

2–4 а R = N(OMe)Me, **b** R = CH₂COOEt, **c** R = 2-фурил

Данные спектров ЯМР ¹Н соединеий **За,с** и **4а,с** свидетельствуют о том, что их алкилиденовый заместитель имеет (7*Z*)-конфигурацию: синглетный сигнал протона H-9 этих соединений находится в области 6.6–7.2 м. д., характерной для (7*Z*)-метилидензамещённых цефалоспоринов [2, 3]. Сигналы протонов алкилиденового заместителя соединений **3b**, **4b** (способного к кетоенольной таутомеризации) имеют вид трёх однопротонных синглетов в области 5.4–5.5, 6.4–6.6 и 11.7–11.8 м. д.; сигнал протонов группы 11-CH₂ отсутствует, а сигнал протона H-9 сдвинут по сравнению с аналогичным сигналом в спектрах **За,с, 4а,с** в сильное поле. Отмеченные особенности указывают на преимущественно енольную форму рассматриваемого заместителя в растворе CDCl₃.

Конденсация эфира 1 с 1-формилметилиден- (5а) и 1-формилэтилиден-(трифенил)фосфораном (5b) протекала не столь стереоспецифично: продукты реакции – *трет*-бутиловые эфиры 3-метил-7-(1-формилметилиден)- (6а) и 3-метил-7-(1-формил-1-этилиден)цеф-3-ем-4-карбоновой кислот (6b) были получены в виде смеси (7*Z*)- и (7*E*)-изомеров в соотношение 3:2 по данным ЯМР ¹Н, разделённой с помощью препаративной колоночной хроматографии.

Характерным отличием спектров ЯМР ¹Н (7*E*)-изомеров **6а**,**b** является положение сигнала альдегидного протона H-10: благодаря наличию водородной связи между ним и группой C=O лактамного цикла он сдвинут в более слабое поле по сравнению с аналогичным сигналом (*Z*)-изомеров (на 0.51 в случае эфира **6а** и на 0.63 м. д. в случае эфира **6b**).

Конденсация *трет*-бутилового эфира 6-оксопенициллановой кислоты (7) с фосфоранами **2a,b** привела к образованию *трет*-бутиловых эфиров 6-алкилиденпеницилланатов **8a,b** с преимущественно (*Z*)-конфигурацией алкилиденового заместителя и его енольной формой в продукте **8b**. Окислением этих продуктов с помощью МХПБК получены соответствующие сульфоны **9a,b**.

Обнаруженная стереоспецифичность конденсации цефема 1 и пенама 7 с фосфоранами 2a-c и её отсутствие в случае аналогичных реакций цефема 1 с фосфоранами 5a,b обусловлены, очевидно, различиями структуры этих фосфоранов и возникающими в связи с этим различными взаимодействиями образующихся, согласно механизму реакции Виттига [4], промежуточных продуктов [2+2]-циклоприсоединения в теоретически возможных формах **A**, **B** (в случае фосфоранов 2a-c) или **C**, **D** (в случае фосфоранов 5a,b), которые определяют конфигурацию конечных продуктов.

Так, практически количественное образование цефемов **3а–с** и пенамов **8а,b** в (7*Z*)-изомерной форме можно объяснить преимущественным образованием формы **A** из-за взаимного отталкивания заместителя C=O в оксафосфоэтановом цикле и группы C=O лактамного цикла в форме **B**.

Образование 7-(1-формилметилиден)цефемов **6а,b** в виде смеси (7*Z*)и (7*E*)-изомеров в соотношении 3:2 по данным ЯМР ¹Н свидетельствует о конкурирующем влиянии водородных связей между карбонилом формильной группы и протоном H-6 2-азетидинового цикла в форме **C**, а также протоном формильной группы и β -лактамным карбонилом в форме **D**.

Расщеплением сложноэфирной связи с помощью трифторуксусной кислоты в цефеме 4а и пенаме 9а получены кислоты 10 и 11 соответственно.

Попытки использования раствора ZnBr₂ в дихлорметане [5] для аналогичного расщепления эфиров **4a** и **9a** привели к образованию смеси неидентифицированных продуктов.

Соеди- нение									
	HT-1080			MG-22A			3T3	LD ₅₀ , мг/кг	
	CV	MTT	TG	CV	MTT	TG	NR		
3 a	3	3	100	3	3	100	19	425	
3b	2	3	67	3	3	50	15	343	
4 a	2	2	100	2	3	100	14	383	
4b	4	4	250	3	3	250	10	331	
4c	2	4	46	3	3	41	18	395	
(7 <i>Z</i>)-6a	1	9	83	3	3	43	4	177	
(7 <i>E</i>)-6a	2	2	100	1	1	60	4	177	
(7 <i>Z</i>)-6b	3	3	40	3	3	100	10	278	
(7 <i>E</i>) -6b	3	3	67	3	3	100	17	371	

Цитотоксические свойства трет-бутиловых эфиров алкилидензамещённых цефемов

* IC₅₀ – концентрация, обеспечивающая гибель 50% клеток; CV – окрашивание кристаллическим фиолетовым; МТТ – окрашивание бромидом 3-(4,5-диметилтиазол-2-ил)-2,5-дифенил-2H-тетразолия; TG – специфическая NO генерирующая активность соединения; NR – окрашивание нейтральным красным; LD₅₀ – вычисленные значения ожидаемой токсичности.

Оценка цитотоксической активности синтезированных цефемов *in vitro* включала ее определение в отношении монослойных линий раковых клеток HT-1080 (фибросаркома человека) и MG-22A (мышиная гепатома) в сравнении с аналогичной активностью в отношении нормальных клеток 3T3 (эмбриональные фибробласты мыши). Окрашивание фибробластов 3T3 нейтральным красным позволило с помощью корреляционного уравнения, разработанного в Национальном институте здоровья США, вычислить значения ожидаемой токсичности LD₅₀ для тестированных соединений, не прибегая к экспериментам *in vitro* на начальной стадии биологического тестирования [6].

Данные скрининга цефемов **3a,b**, **4a**–с, (7*Z*)- и (7*E*)-**6b** (табл. 1) свидетельствуют о том, что они обладают высокой и практически одинаковой цитотоксичностью в отношении раковых клеток (независимо от строения алкилиденового фрагмента, его конфигурации и степени окисления атома серы), а также способностью генерировать в клеточной среде радикалы NO, ингибирующие деление раковых клеток (в результате химического взаимодействия с их белками и нуклеиновыми кислотами [7]). Для цефема **3a**, его сульфона **4a** и сульфона **4c** выявлена умеренная токсичность, а для (7*Z*)- и (7*E*)-изомеров цефема **6a** – одинаково высокая токсичность.

Для оценки ингибирующих свойств синтезированных алкилидензамещённых цефемов и пенамов с эстерифицированной и свободной карбоксильной группой, а также описанных в литературе 2-оксопропилидензамещённых пенамов **12а,b** и цефемов **13а,b**, [1, 8, 9] были использованы два типа бактериальных β-лактамаз *Bacillus cereus* и *Enterobacter cloacae*.

Пенициллиназу перед добавлением стандартного субстрата – Нитроцефина инкубировали с тестируемым соединением в течение 10 мин. Ингибирующее действие соединений и эталонного ингибитора Тазобактама оценивалось спектрофотометрически по изменению интенсивности абсорбции при 486 нм в течение 5 мин в сравнении с контролем (раствор Нитроцефина и β-лактамазы).

Тестирование синтезированных соединений показало, что все они характеризуются отсутствием ингибирующих свойств в отношении пенициллиназы *Bacillus cereus* в отличие от Тазобактама, который снижал каталитическую активность этого фермента на 50% в концентрации 0.36 мкМ.

Данные скрининга в отношении пенициллиназы *Enterobacter cloacae*, приведённые в табл. 2, свидетельствуют о том, что кислоты 10 и 13а, в отличие от их *трет*-бутиловых эфиров 4а и 13b, в два раза снижают каталитическую активность указанного фермента в концентрациях 14.4 и 8.2 мкг/мл, сопоставимых с концентрацией Тазобактама (3.3 мкг/мл).

Таблица 2

Ингибирующая активности	алкилиден-	замещенных	цефемов	и пенамов в	з отношении
Ê	-лактамазы	Enterobacter	cloacae		

Конц., мкг/мл*	Ингибирование каталитической активности фермента, %								
	4 a	10	13b	1 3 a	9a	11	12b	12a	Тазо- бактам
200	-15±0	82±4	-1±1	87±2	48±3	31±7	-9±5	13±3	100±3
50	-20 ± 9	84±7	2±1	74±3	28±3	13±4	3±4	0±5	96±6
12.5	12±1	51±3	10±4	56±2	8±1	1±2	2±4	3±0	89±1
3.13	0±10	36±5	9±7	30±6	0±10	-9±10	1±3	3±3	44±3
0.78	4±3	23±3	4±7	18±3	-10 ± 4	-8 ± 5	2±3	7±9	12±1
0.2	7±1	29±11	9±1	6±2	-17±2	4±1	2±1	3±0	4±1
IC ₅₀ *	-	14.4	-	8.2	200	>200	-	-	3.3

* IC₅₀* – концентрация, обеспечивающая 50% ингибирование каталитической активности фермента .

Соответственно (6Z)-(N-метил-N-метоксикарбамоилметилиден)-1,1-диоксопенициллановая кислота 11 и её *трет*-бутиловый эфир 9а проявили слабый ингибирующий эффект только в концентрациях 200 мкг, *трет*-бутиловые эфиры алкилидензамещённых цефалоспоранатов 4b, (7Z)-6b, (7E)-6b и пеницилланатов 9a, 12b, а также пенициллановая кислота 12a характеризовались отсутствием ингибирующего эффекта.

Результаты проведённого исследования свидетельствуют о том, что *трет*-бутиловые эфиры 7-алкилиден-3-метил-1,1-диоксоцеф-3-ем-4-карбоновых кислот, обладающие противораковой активностью, в результате деэстерификации могут быть трансформированы в ингибиторы β-лактамазы.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н зарегистрированы на приборе Varian Mercury-400 (400 МГц) в CDCl₃ (соединения **4а–с**, **6а,b**, **9а,b**) и в ДМСО-d₆ (соединения **10**, **11**), внутренний стандарт ГМДС. Масс-спектры ESI-MS получены на приборе Micromass Quatro MicroTM API в растворе MeCN. Контроль за ходом реакции осуществлялся методом TCX на пластинках Merck Kieselgel, проявлением в УФ свете. Для препаративной колоночной хроматографии (КХ) применялся силикагель марки Merck Kieselgel (0.060–0.200 мм), элюент – смеси этилацетата (ЭА) и петролейного эфира (ПЭ). Использовались реагенты и материалы фирмы Acros и Aldrich.

Оптическая плотность в биологических тестах, проводимых на 96-луночных панелях, определялась горизонтальным спектрофотометром Tetretek Multiscan MC C/340.

тилиден)-1,1-диоксоцеф-3-ем-4-карбоновой кислоты ((7Z)-4а). К раствору 330 мг (1.22 ммоль) эфира 1 в 20 мл дихлорметана при 0 °С добавляют 445 мг (1.22 ммоль) трифенилфосфорана 2а. Смесь перемешивают 2 ч при 0 °С, далее упаривают при пониженном давлении. Из остатка КХ (ЭА–ПЭ, 1:5) выделяют 198 мг (46%) *трет*-бутилового эфира 3-метил-(7Z)-(N-метил-N-метокси-карбамоилметилиден)цеф-3-ем-4-карбоновой кислоты ((7Z)-3а). Масло. R_f 0.40 (ЭА–ПЭ, 1:1). Спектр ЯМР ¹Н, δ , м. д. (J, Γ ц): 1.55 (9H, с, $C(CH_3)_3$); 2.09 (3H, с, CH₃); 3.17 и 3.56 (2H, два д, AB-система, ²J = 18.6, SCH₂); 3.28 (3H, с, NCH₃); 3.75 (3H, с, OCH₃); 5.51 (1H, с, H-6); 6.97 (1H, с, H-9). Масс-спектр (ESI-MS). Найдено: m/z 377. $C_{16}H_{22}N_2O_5S$. Вычислено: M = 354. [M + Na]⁺ = 377.

К раствору 195 мг (0.55 ммоль) полученного продукта (7*Z*)-**3**а в 20 мл дихлорметана при перемешивании и 0 °С добавляют 238 мг (1.38 ммоль) 70% МХПБК. Смесь перемешивают при комнатной температуре 16 ч, разбавляют 20 мл дихлорметана, промывают 50 мл 5% раствора Na₂SO₃, 5% раствором Na₂CO₃ (2 × 50 мл) и сушат безводным Na₂SO₄. Растворитель упаривают при пониженном давлении, из остатка КХ (ЭА–ПЭ, 1:5) выделяют 165 мг (78%) целевого эфира (7*Z*)-**4**а, R_f 0.15 (ЭА–ПЭ, 1:1). Спектр ЯМР ¹Н, δ , м. д. (*J*, Гц): 1.53 (9H, с, С(С<u>Н</u>₃)₃); 2.11 (3H, с, СН₃); 3.28 (3H, с, NCH₃); 3.76 (3H, с, OCH₃); 3.69 и 3.99 (2H, два д, AB-система, ²*J* = 17.6, SCH₂); 5.70 (1H, с, H-6); 7.19 (1H, с, H-9). Масс-спектр (ESI-MS). Найдено: *m/z* 386. С₁₆H₂₂N₂O₇S. Вычислено: М = 386. Найдено, %: С 49.92; H 5.49; N 6.87. С₁₆H₂₂N₂O₇S. Вычислено, %: С 49.73; H 5.74; N 7.25.

трет-Бутиловый эфир (72)-(2-гидрокси-3-этоксикарбонилпроп-2-енилиден)-3-метил-1,1-диоксоцеф-3-ем-4-карбоновой кислоты ((72)-4b). К раствору 317 мг (0.743 ммоль) хлорида 2-оксо-3-этоксикарбонилпропилиден(трифенил)фосфония в 10 мл дихлорметана при 0 °С добавляют при перемешивании раствор 30 мг (0.75 ммоль) NaOH в 5 мл H₂O. Раствор перемешивают 30 мин при 10 °С, органическую фазу, содержащую фосфоран **2b**, отделяют и сушат Na₂SO₄. Затем её добавляют к раствору 200 мг (0.743 ммоль) эфира **1** в 20 мл дихлорметана. Реакционную смесь перемешивают 2 ч при 0 °С и упаривают при пониженном давлении. Из остатка КХ (ЭА–ПЭ, 1:5) выделяют 225 мг (80%) *трет*-бутилового эфира (7*Z*)-(2-гидрокси-3-этоксикарбонилпроп-2-енилиден)-3-метилцеф-3-ем-4-карбоновой кислоты ((*Z*)-3b), масло. R_f 0.65 (ЭА–ПЭ, 1:3). Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 1.30 (3H, т, *J* = 7.1, CH₂CH₃); 1.55 (9H, с, C(CH₃)₃); 2.07 (3H, с, CH₃); 3.16 и 3.55 (2H, два д, AB-система, ²*J* = 19.0, SCH₂); 4.24 (2H, к, *J* = 7.1, CH₂CH₃); 5.32 (1H, с, H-6); 5.44 (1H, с, H-9); 6.39 (1H, с, H-11); 11.76 (1H, с, OH). Масс-спектр (ESI-MS). Найдено: *m/z* 404. C₁₈H₂₃NO₆S. Вычислено: M = 381. [M + Na]⁺ = 404.

По методике синтеза соединения (7*Z*)-**4**а раствор 225 мг (0.59 ммоль) полученного эфира (7*Z*)-**3**b в 20 мл дихлорметана окисляют 255 мг (1.48 ммоль) 70% МХПБК в течение 4 ч. После обработки реакционной смеси из остатка КХ (ЭА–ПЭ, 1:4) выделяют 112 мг (46%) продукта (7*Z*)-**4**b, R_f 0.36 (ЭА–ПЭ, 1:2), т. пл. 136–140 °C. Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 1.30 (3H, т, *J* = 7.1, CH₃CH₂); 1.53 (9H, с, C(CH₃)₃); 2.10 (3H, с, CH₃); 3.68 и 3.90 (2H, два д, AB-система, ²*J* = 17.4, SCH₂); 4.24 (2H, к, *J* = 7.1, CH₂CH₃); 5.37 (1H, с, H-6); 5.51 (1H, с, H-9); 6.62 (1H, с, H-11); 11.67 (1H, с, OH). Найдено, %: С 49.94; Н 5.66; N 3.52. C₁₈H₂₃NO₈S·H₂O. Вычислено, %: C 50.10; H 5.84; N 3.25.

трет-Бутиловый эфир 3-метил-1,1-диоксо-(7Z)-[2-оксо-2-(2-фурил)этилиден]цеф-3-ем-4-карбоновой кислоты ((7Z)-4c). К раствору 3.25 г (7.2 ммоль) бромида 2-оксо-2-(2-фурил)этилиден(трифенил)фосфония в 20 мл дихлорметана при 0 °С и перемешивании добавляют раствор 3 г (7.5 ммоль) NaOH в 20 мл H₂O. Раствор перемешивают 30 мин при 10 °C, далее экстрагируют этилацетатом. Высушенный Na₂SO₄ экстракт, содержащий фосфоран 2c, упаривают, остаток растворяют в 10 мл дихлорметана и добавляют при 0 °С к раствору 1.94 г (7.2 ммоль) эфира 1 в 20 мл дихлорметана. Реакционную смесь перемешивают 2 ч при 0 °С, далее упаривают. Из остатка КХ (ЭА-ПЭ, 1:5) выделяют маслообразный продукт с Rf 0.31 (ЭА-ПЭ, 1:3), который растворяют в 20 мл дихлорметана. К полученному раствору при перемешивании добавляют 4.4 г (18 ммоль) 70% МХПБК. Реакцию и обработку реакционной массы проводят как описано выше для соединения 4b. Из остатка после упаривания КХ (ЭА-ПЭ, 1:3) выделяют 1.24 г (44%) аморфного продукта (7Z)-4c, Rf 0.30 (ЭА-ПЭ, 1:1). Спектр ЯМР ¹Н, б, м. д. (*J*, Гц): 1.54 (9Н, с, С(С<u>Н</u>₃)₃); 2.13 (3Н, с, СН₃); 3.70 и 3.95 (2Н, два д, АВ-система, ²J = 17.6, SCH₂); 5.69 (1Н, уш. с, Н-6); 6.61–6.67 (1Н, м, Н-9); 7.42 (1Н, д, ³*J* = 4.4, Н фурил); 7.56 (1Н, д, ³*J* = 1.5, Н фурил); 7.70 (1Н, м, Н фурил). Массспектр (ESI-MS). Найдено: m/z 394. Вычислено: M = 393. [M + H]⁺ = 394. Найдено, %: С 54.77; H 4.88; N 3.71. С₁₈Н₁₉NO₇S. Вычислено, %: С 54.95; H 4.87; N 3.56.

трет-Бутиловый эфир 3-метил-(7*E*)-(1-формилметилиден)цеф-3-ем-4карбоновой кислоты ((7*E*)-6а) и *трет*-бутиловый эфир 3-метил-(7*Z*)-(1-формилметилиден)цеф-3-ем-4-карбоновой кислоты ((7*Z*)-6а). По методике синтеза соединения (7*Z*)-4b раствор 222 мг (0.65 ммоль) хлорида 1-формилметилиден(трифенил)фосфония в 10 мл дихлорметана обрабатывают раствором 26 мг (0.65 ммоль) NaOH в 5 мл H₂O; полученный фосфоран **5a** в 10 мл дихлорметана добавляют к 175 мг (0.65 ммоль) эфира **1** в 20 мл дихлорметана. Из остатка после упаривания обработанной реакционной массы КХ (ЭА–ПЭ, 1:5) выделяют 142 мг (74%) смеси (7*E*)- и (7*Z*)-изомеров продукта **6a** в виде аморфного вещества, R_f 0.57 (ЭА–ПЭ, 1:2). Найдено, %: С 56.73; Н 5.83; N 4.71. С₁₄H₁₇NO₄S. Вычислено, %: С 56.93; Н 5.80; N 4.74.

Полученную смесь изомеров разделяют с помощью КХ (ЭА–ПЭ, 1:20), выделяют 49 мг (25%) (7*E*)-изомера **6а** и 71 мг (37%) (7*Z*)-изомера **6а**.

Соединение (7*E*)-**6а** – кристаллическое вещество, R_f 0.54 (ЭА–ПЭ, 1:2), т. пл. 102–122 °С. Спектр ЯМР ¹Н, δ , м. д. (*J*, Гц): 1.56 (9H, c, C(С<u>H</u>₃)₃); 2.11 (3H, c, CH₃); 3.22 и 3.55 (2H, два д, AB-система, ²*J* = 18.2, SCH₂); 5.27 (1H, c, H-6); 6.22 (1H, д, ³*J* = 7.9, H-9); 10.31 (1H, д, ³*J* = 7.9, CHO).

Соединение (7*Z*)-**6а** – кристаллическое вещество, R_f 0.57 (ЭА–ПЭ, 1:2), т. пл. 82–99 °С. Спектр ЯМР ¹Н, δ , м. д. (*J*, Гц): 1.55 (9H, c, C(С<u>Н</u>₃)₃); 2.12 (3H, c, CH₃); 3.23 и 3.60 (2H, два д, АВ-система, ²*J* = 18.2, SCH₂); 5.46 (1H, c, H-6); 6.55 (1H, д, ³*J* = 6.4, H-9); 9.80 (1H, д, ³*J* = 6.4, CHO).

трет-Бутиловый эфир 3-метил-(7*E*)-(1-формилэтилиден)цеф-3-ем-4-карбоновой кислоты ((7*E*)-6b) и *трет*-бутиловый эфир 3-метил-7*Z*-(1-формилэтилиден)цеф-3-ем-4-карбоновой кислоты ((7*Z*)-6b). По методике синтеза соединения (7*Z*)-4а из 174 мг (0.647 ммоль) эфира 1 в 25 мл дихлорметана и 206 мг (0.647 ммоль) 1-формилэтилиден(трифенил)фосфорана (5b) после упаривания реакционной массы получают остаток, из которого КХ (ЭА–ПЭ, 1:6) выделяют 195 мг (98%) смеси (7*E*)- и (7*Z*)-изомеров соединения 6b. Найдено, %: С 57.85; Н 5.98; N 4.44. $C_{15}H_{19}NO_4S$. Вычислено, %: С 58.23; Н 6.19; N 4.53. Полученную смесь изомеров разделяют КХ (ЭА–ПЭ, 1:20). Из фракции с R_f 0.49 (ЭА–ПЭ, 1:3) получают 70 мг (35%) (*E*)-изомера (7*E*)-6b, т. пл. 146–150 °С. Спектр ЯМР ¹Н, δ , м. д. (*J*, Гц): 1.56 (9H, с, С(С<u>Н</u>₃)₃); 1.92 (3H, с, 3-CH₃); 2.09 (3H, с, 9-CH₃); 3.21 и 3.56 (2H, два д, АВ-система, ²*J* = 18.3, SCH₂); 5.29 (1H, с, H-6); 10.36 (1H, с, CHO). Масс-спектр (ESI-MS). Найдено: *m*/*z* 332. $C_{15}H_{19}NO_4S$. Вычислено: M = 309. [M + Na]⁺ = 332.

Из фракции с $R_f 0.51$ (ЭА–ПЭ, 1:3) получают 102 мг (51%) (*Z*)-изомера (7*Z*)-**6b**, т. пл. 132–152 °С. Спектр ЯМР ¹Н, б, м. д. (*J*, Гц): 1.57 (9H, с, С(С<u>Н</u>₃)₃); 2.10 (3H, с, 3-CH₃); 2.13 (3H, с, 9-CH₃); 3.21 и 3.59 (2H, два д, АВ-система, ²*J* = 18.5, SCH₂); 5.41 (1H, с, H-6); 9.73 (1H, с, CHO). Масс-спектр (ESI-MS). Найдено: *m/z* 310. C₁₅H₁₉NO₄S. Вычислено: M = 309. [M + H]⁺ = 310.

трет-Бутиловый эфир (6*Z*)-(N-метил-N-метоксикарбамоилметилиден)-1,1-диоксопенициллановой кислоты (9а). К раствору 271 мг (1.0 ммоль) *трет*-бутилового эфира 6-оксопенициллановой кислоты (7) в 20 мл дихлорметана при 0 °С добавляют 363 мг (1.0 ммоль) трифенилфосфорана 2а. Полученную смесь перемешивают 2 ч при 0 °С, выдерживают 16 ч при –20 °С. Далее смесь упаривают при пониженном давлении. Из остатка КХ (ЭА–ПЭ, 1:8) выделяют 350 мг (98%) *трет*-бутилового эфира (6*Z*)-(N-метил-N-метоксикарбамоилметилиден)пенициллановой кислоты (8а), R_f 0.29 (ЭА–ПЭ, 1:2). Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 1.50 (9H, с, С(С<u>H₃</u>)₃); 1.52 (3H, с, 2-CH₃); 1.57 (3H, с, 2-CH₃); 3.26 (3H, с, NCH₃); 3.73 (3H, с, OCH₃); 4.42 (1H, с, H-3); 6.04 (1H, с, H-5); 6.85 (1H, с, H-8).

По описанной выше методике для соединения (7*Z*)-4а раствор 350 мг (0.98 ммоль) полученного эфира 8а в 20 мл дихлорметана окисляют 530 мг (2.45 ммоль) 70% МХПБК в течение 16 ч. После обработки реакционной смеси из неё КХ (ЭА–ПЭ, 1:5) выделяют 201 мг (53%) продукта 9а, R_f 0.29 (ЭА–ПЭ, 1:1), т. пл. 133–135 °C. Спектр ЯМР ¹Н, δ , м. д. (*J*, Гц): 1.47 (3H, с, 2-CH₃); 1.52 (9H, с, C(C<u>H₃</u>)₃); 1.59 (3H, с, 2-CH₃); 3.30 (3H, с, NCH₃); 3.76 (3H, с, OCH₃); 4.36 (1H, с, H-3); 5.56 (1H, с, H-5); 7.18 (1H, с, H-8). Найдено, %: С 49.63; H 6.16; N 7.05. C₁₆H₂₄N₂O₇S. Вычислено, %: С 49.47; H 6.23; N 7.21.

трет-Бутиловый эфир (62)-(2-гидрокси-3-этоксикарбонилпроп-2-енилиден)-1,1-диоксопенициллановой кислоты (9b). По описанной выше методике (см. соединение (7Z)-4b) из 426 мг (1.0 ммоль) хлорида 2-оксо-3-этоксикарбонилпропилиден(трифенил)фосфония действием 40 мг NaOH в 5 мл H₂O получают фосфоран 2b, который без очистки растворяют в 10 мл дихлорметана и полученный раствор добавляют к 271 мг (1.0 ммоль) эфира 7 в 20 мл дихлорметана. Полученную смесь перемешивают 2 ч при 0 °С, выдерживают 16 ч при -20 °С и упаривают при пониженном давлении. Из остатка КХ (ЭА–ПЭ, 1:10) выделяют 92 мг (24%) **трет-бутилового эфира (6***Z***)-(2-гидрокси-3-этокси-карбонилпроп-2-енилиден)пенициллановой кислоты (8b)** в виде аморфного продукта с R_f 0.71 (ЭА–ПЭ, 1:2). Спектр ЯМР ¹Н, δ , м. д. (J, Гц): 1.29 (3H, т, J = 7.4, CH₂CH₃); 1.49 (3H, с, 2-CH₃); 1.50 (9H, с, C(CH₃)₃); 1.53 (3H, с, 2-CH₃); 4.23 (2H, к, J = 7.4, CH₂CH₃), 4.42 (1H, с, H-3); 5.29 (1H, с, H-5); 6.03 (1H, с, H-8); 6.27 (1H, с, H-10); 11.66 (1H, с, OH).

По описанной выше методике для соединения (7*Z*)-4а 91 мг (0.237 ммоль) полученного эфира 8b окисляют 102.4 мг (0.593 ммоль) 70% МХПБК. После обработки реакционной смеси из нее КХ (ЭА–ПЭ, 1:5) выделяют 36.8 мг (37%) продукта 9b, R_f 0.50 (ЭА–ПЭ, 1:2), т. пл. 136–140 °C. Спектр ЯМР ¹Н, δ , м. д. (*J*, Гц): 1.30 (ЗН, т, *J* = 7.4, CH₂CH₃); 1.46 (ЗН, с, 2-CH₃); 1.52 (9H, с, C(CH₃)₃); 1.58 (ЗН, с, 2-CH₃); 4.24 (2H, к, *J* = 7.4, CH₂CH₃); 4.34 (1H, с, H-3); 5.38 (1H, с, H-5); 5.46 (1H, с, H-8); 6.62 (1H, с, H-10); 11.69 (1H, с, OH). Найдено, %: C 52.18; H 6.25; N 3.37. C₁₈H₂₅NO₈S. Вычислено, %: C 52.04; H 6.07; N 3.37.

3-Метил-(7*Z***)-(N-метил-N-метоксикарбамоилметилиден)-1,1-диоксоцеф-3-ем-4-карбоновая кислота (10)**. К раствору 113.5 мг (0.294 ммоль) эфира **4**а в 15 мл дихлорметана добавляют 1.5 мл трифторуксусной кислоты. Реакционную смесь перемешивают при комнатной температуре 24 ч, упаривают при пониженном давлении. Из остатка КХ (ЭА–ПЭ, 3:1) выделяют 54.5 мг (56%) кислоты **10**, R_f 0.22 (ЭА–ПЭ, 3:1). Спектр ЯМР ¹Н, δ , м. д. (*J*, Гц): 1.96 (3H, с, CH₃); 3.19 (3H, с, NCH₃); 3.74 (3H, с, OCH₃); 4.16 и 4.31 (2H, два д, АВ-система, ²*J* = 19.2, SO₂CH₂); 6.07 (1H, с, H-6); 7.17 (1H, с, H-9); 13.67 (1H, уш. с, CO₂H). Найдено, %: С 43.38; H 4.25; N 8.39. C₁₂H₁₄N₂O₇S. Вычислено, %: С 43.63; H 4.27; N 8.48.

(62)-(N-Метил-N-метоксикарбамоилметилиден)-1,1-диоксопенициллановая кислота (11). К раствору 70 мг (0.18 ммоль) эфира **9а** в 15 мл дихлорметана добавляют 1.5 мл трифторуксусной кислоты. Реакционную смесь перемешивают при комнатной температуре 120 ч и упаривают при пониженном давлении. Получают 53 мг (82%) кислоты **11**, R_f 0.20 (ЭА–ПЭ, 3:1). Спектр ЯМР ¹Н, δ , м. д. (J, Γ ц): 1.45 (3H, с, 2-CH₃); 1.70 (3H, с, 2-CH₃); 3.21 (3H, с, NCH₃); 3.75 (3H, с, OCH₃); 5.08 (1H, с, H-3); 6.87 (1H, с, H-5); 7.31 (1H, с, H-8); 13.53 (1H, уш. с, CO₂H). Найдено, %: С 43.18; Н 4.65; N 8.19. С₁₂Н₁₆N₂O₇S. Вычислено, %: С 43.37; H 4.85; N 8.43.

Определение цитотоксической активности алкилидензамещенных цефемов in vitro. Цитотоксические свойства синтезированных веществ в отношении культур монослойных раковых и нормальных клеток при $c = (2-5) \cdot 10^4$ клеток/мл: HT-1080 (фибросаркома человека), MG-22A (мышиная гепатома), 3T3 (эмбриональные фибробласты мыши), определяли на 96-луночных пластиковых панелях с использованием окрашивания CV, MTT, NR в соответствии с методиками [10].

Генерация клетками NO радикалов. Определение концентрации радикалов оксида азота в клеточной среде по Грейсу [11] для алкилидензамещенных цефемов проводили на 96-луночных пластиковых панелях (объём лунки 200 мкл, концентрация тестируемого вещества 50 мкг/мл). Концентрации (нмоль) NO радикалов в культуральной среде с выжившими после инкубации клетками в присутствии тестируемого вещества в течение 72 ч использовали для вычисления значений специфической NO генерирующей активности соединений (TG):

 $TG = G \ 100 / C \ (нмоль/мкл),$

где: *G* – концентрация NO (нмоль) в культуральной среде объёмом 200 мкл с выжившими клетками; *C* – процент выживших клеток, определенный при их окрашивании CV.

Спектрофотометрическое определение ингибирующих свойств алкилидензамещенных цефемов и пенамов в отношении β-лактамазы. Общий объём реакционной смеси в каждой лунке 96-луночной панели составлял 200 мкл. Для его получения лунку заполняли 20 мкл раствора в 0.1 М фосфатном буфере (pH 7.0) β-лактамазы *Bacillus cereus* (Sigma, P0389) (конечная концентрация в реакционной смеси 0.8 Е) или β-лактамазы *Enterobacter cloacae* (Sigma, P4524) (конечная концентрация в реакционной смеси 0.3 Е). К этому раствору добавляли 160 мкл 0.1 М фосфатного буфера (pH 7.0), содержащего тестируемое соединение или тазобактам в количествах, обеспечивающих достижение концентрации 0.2, 0.78, 3.13, 12.5, 50, 200 мкМ. Смесь инкубировали в течение 10 мин, после чего к ней добавляли 20 мкл 0.97 мкМ (конечная концентрация в реакционной смеси 0.097 мкМ) раствора нитроцефина в смеси (1:19) ДМСО и 0.1 М фосфатного буфера (pH 7.0). Измерение оптической плотности при 486 нм проводили в течение 5 мин, полученный результат сравнивали с результатом контрольного опыта, который проводился без добавления тестируемого вещества и тазобактама к раствору пенициллиназы и нитроцефина. Значения IC₅₀, характеризующие концентрацию ингибитора, снижающую каталитическую активность фермента на 50%, вычисляли с помощью программы Graph Pad Prism[®].

СПИСОК ЛИТЕРАТУРЫ

- И. Поторочина, М. Ворона, Г. Вейнберг, И. Шестакова, И. Канепе, М. Петрова, Э. Лиепиныш, Э. Лукевиц, XTC, 284 (2009). [Chem. Heterocycl. Comp., 44, 228 (2009)].
- J. D. Buynak, A. S. Rao, G. P. Ford, C. Carver, G. Adam, B. Geng, B. Bachmann, S. Shobassy, S. Lackey, *J. Med. Chem.*, 40, 3423 (1997).
- G. Veinberg, M. Vorona, I. Shestakova, I. Kanepe, O. Zharkova, R. Mezapuke, I. Turovskis, I. Kalvinsh, E. Lukevics, *Bioorg. Med. Chem.*, 8, 1033 (2000).
- 4. E. Vedejs, C. F. Marth, R. Ruggeri, J. Am. Chem. Soc., 110, 3940 (1988).
- Y.-g. Wu, D. C. Limburg, D. E. Wilkinson, M. J. Vaal, G. S. Hamilton, *Tetrahedron Lett.*, 41, 2847 (2000).
- 6. Guidance Document on Using *In Vitro* Data to Estimate *In Vivo* Starting Doses for Acute Toxicity by Interagency Coordinating Committee on the Validation of Alternative Methods, Research Triangle Park, NC: National Toxicology Program, US Dept. of Health and Human Services, Public Health Service, National Institutes of Health; 2001. http://www.epa.gov/hpv/pubs/general/nih2001b
- 7. J. F. Kerwin Jr., J. R. Lancaster, P. L. Feldman, J. Med. Chem., 38, 4343 (1995).
- 8. G. Veinberg, I. Shestakova, M. Vorona, I. Kanepe, E. Lukevics, *Bioorg. Med. Chem. Lett.*, 14, 1007 (2004).
- М. Ворона, Г. Вейнберг, С. Беляков, М. Петрова, Э. Лиепиньш, Э. Лукевиц, XГС, 618 (2008). [Chem. Heterocycl. Comp., 44, 486 (2008)].
- P. J. Freshney, in: Culture of Animal Cells (A Manual of Basic Technique), Wiley-Liss, New York, 1994, p. 296.
- 11. D. J. Fast, R. C. Lynch, R. W. Leu, J. Leukocyte Biol., 52, 255 (1992).

Латвийский институт органического синтеза, ул. Айзкрауклес, 21, Рига LV-1006, Латвия e-mail: veinberg@osi.lv Поступило 03.02.2011 После доработки 11.04.2011