Е. Н. Шепеленко^{1*}, Н. И. Макарова², О. Г. Карамов², А. Д. Дубоносов¹, В. А. Подшибякин², А. В. Метелица², В. А. Брень², В. И. Минкин^{1,2}

СИНТЕЗ И ФОТОХРОМНЫЕ СВОЙСТВА НЕСИММЕТРИЧНЫХ ДИГЕТАРИЛЭТЕНОВ НА ОСНОВЕ 1,2-ДИМЕТИЛ-5-МЕТОКСИИНДОЛА И 5-(4-БРОМФЕНИЛ)-2-МЕТИЛТИОФЕНА

Синтезированы новые несимметричные дигетарилэтены — 4-[5-(4-бромфенил)-2-метилтиофен-3-ил]-3-(1,2-диметил-5-метокси-1*H*-индол-3-ил)фуран-2,5-дион и 1-алкил(фенил)-3-(1,2-диметил-5-метокси-1*H*-индол-3-ил)-4-[5-(4-бромфенил)-2-метилтиофен-3-ил]-1*H*-пиррол-2,5-дионы, проявляющие фотохромные и флуоресцентные свойства в растворе. Дигетарилэтены на основе 1,2-диметил-5-метоксииндола и 5-(4-бромфенил)-2-метилтиофена, в отличие от их структурных аналогов на основе 1,2-диметил-5-метоксииндола и незамещённого тиофена, демонстрируют термическую устойчивость фотоиндуцированных циклических изомеров. Замена тиофенового фрагмента дигетарилэтенов на 5-(4-бромфенил)-2-метилтиофеновый приводит к появлению фотохромных свойств производных фуран-2,5-диона.

Ключевые слова: дигетарилэтен, индол, пиррол-2,5-дион, тиофен, фуран-2,5-дион, флуоресценция, фотохромизм.

Фотохромные гетероциклические соединения являются объектами всестороннего исследования в связи с возможностью создания на их основе новых полифункциональных материалов для молекулярной электроники, оптической молекулярной памяти, фотодинамических хемосенсоров и биосенсоров [1, 2].

Особый интерес в этом ряду представляют дигетарилэтены, обладающие высокой термической стабильностью изомерных форм и устойчивостью к фотодеградации. Детально разработанные методы синтеза дигетарилэтенов, содержащих в виде мостиков малеиновый ангидрид или малеимид, позволяют получать серии молекулярных структур с широко варьируемым диапазоном спектрально-кинетических характеристик [3–4]. Введение различных заместителей открывает возможность создания полифункциональных фотохромных молекулярных систем, обладающих флуоресцентными [5–7], магнитными [8] и комплексообразующими [9–10] свойствами. Известны симметричные дигетарилэтены с циклоалкеновыми [11–13] или перфторциклоалкеновыми [14] мостиками, содержащие тиофеновые фрагменты с 5-арильными заместителями. Несимметричные дигетарилэтены чаще всего включают цикл незамещённого либо 5-алкилзамещённого тиофена [15–19].

В продолжение исследований по синтезу фотохромных дигетарилэтенов [17–23] как потенциальных молекулярных переключателей с флуоресцентной сигнальной функцией нами синтезированы несимметричные этены (фуран- и пирролдионы), включающие в качестве гетарильных фрагментов индольный и 5-арилзамещённый тиофеновый циклы.

4-[5-(4-Бромфенил)-2-метилтиофен-3-ил]-3-(1,2-диметил-5-метокси-1<math>H-индол-3-ил)фуран(пиррол)-2,5-дионы 7, **8a-d**, содержащие 4-бромфенильный заместитель в положении 5 тиофена, получены по следующей схеме.

Ar = 4-BrC₆H₄; **8 a** R = *i*-Pr, **b** R = $\mu u \kappa \pi o$ -C₅H₉, **c** R = Bn, **d** R = Ph

При взаимодействии 3-(4-бромфенил)-3-хлорпропеналя (1) с сульфидом натрия и хлоруксусным альдегидом был получен 5-(4-бромфенил)тиофен-2-карбальдегид (2), восстановлением которого гидразингидратом по Кижнеру—Вольфу [24] был выделен 2-метил-5-(4-бромфенил)тиофен (3), который этим способом получен впервые. Ацилированием тиофена 3 синтезирован неизвестный ранее 1-[5-(4-бромфенил)-2-метилтиофен-3-ил]этанон (4), реакцией которого по Вильгеродту—Киндлеру [25] с серой и морфолином получена [5-(4-бромфенил)-2-метилтиофен-3-ил]уксусная кислота (5). Ацилированием 1,2-диметил-5-метоксииндола оксалилхлоридом получен хлорангидрид 6, а его последующая обработка раствором тиенилуксусной кислоты 5 в присутствии триэтиламина привела к 4-[5-(4-бромфенил)-2-метилтиофен-3-ил]-3-(1,2-диметил-5-метокси-1*H*-индол-3-ил)фуран-2,5-диону (7). Действием алкиламинов или анилина на производное 7 синтезированы 1-алкил(фенил)-3-(1-бензил-2-метил-5-метокси-1*H*-индол-3-ил)-4-(3-тиенил)-1*H*-пиррол-2,5-дионы 8а—d.

Строение полученных соединений подтверждено методами ИК и ЯМР 1 Н и 13 С спектроскопии.

В спектре ЯМР ¹Н соединения **3** в CDCl₃ в сильном поле регистрируются трёхпротонный синглетный сигнал 2-метильной группы при 2.51 м. д., синглетные сигналы двух протонов тиофенового фрагмента при 6.72 и 7.08 м. д., а также мультиплет четырёх протонов *пара*-бромфенильного заместителя. В спектре ЯМР ¹Н соединений **4** и **5** в растворе CDCl₃, в отличие от спектра соединения **3**, синглетный сигнал тиофенового протона при 6.72 м. д. отсутствует (при сохранении остальных сигналов), что подтверждает факт ацилирования по положению 3 тиофена.

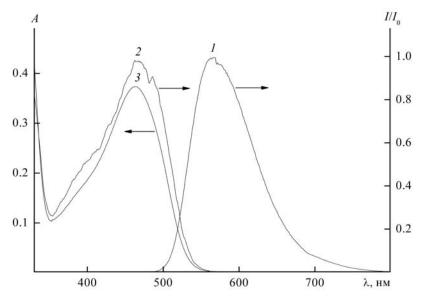
В спектрах ЯМР ¹Н соединений **7** и **8а–d** в CDCl₃ в сильном поле регистрируются четыре трёхпротонных сигнала (преимущественно синглеты)

при 1.69-1.82 (2-CH₃ индол), 2.36-2.44 (2-CH₃ тиофен), 3.40-3.46 (ОСН₃) и 3.65-3.72 м. д. (NCH₃). В слабом поле в области 6.71-7.50 м. д. наблюдаются сигналы трёх ароматических протонов индольного цикла и четырёх протонов бромфенильной группы, а при 6.30-6.40 м. д. – сигнал протона H-4 тиофенового цикла.

Спектральные и фотохромные свойства соединений **7**, **8а**–**d** изучали в толуоле при 293 K, результаты исследований представлены в таблице.

Электронные спектры поглощения (ЭСП) открытых форм **A** дигетарилэтенов **7**, **8a**—**d** характеризуются сходными по форме и положению длинноволновыми полосами поглощения (далее по тексту – полосами поглощения) с максимумами в диапазоне 458—468 нм и молярными коэффициентами экстинкции 7750—13300 л·моль $^{-1}$ ·см $^{-1}$ (таблица). При переходе от 1-алкилзамещённых пирролдионов **8a**—**c** к 1-фенилзамещённому производному **8d** наблюдается незначительное батохромное смещение максимумов полос поглощения (5–10 нм).

Растворы дигетарилэтенов 7 и **8a**–**d** флуоресцируют в видимой области спектра: максимумы полос флуоресценции исследованных соединений в толуоле лежат в интервале 560–573 нм, причём они также смещаются батохромно (7–13 нм) в ряду **8a–d** (таблица, рис. 1).


Эффективность флуоресценции пирролдионов **8a-d** в 4-6 раз выше, чем фурандиона **7**, для которого квантовый выход флуоресценции составляет 0.01 (таблица).

Отмеченные корреляции между структурой и абсорбционными и флуоресцентными свойствами несимметричных дигетарилэтенов 7, 8а-d на основе

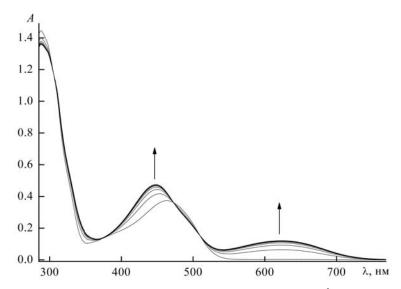
Спектрально-абсорбционные и флуоресцентные характеристики изомерных форм дигетарилэтенов 7, 8a-d в толуоле*, T 293 K

Соеди-	Исходная форма А			Фотоиндуцированная форма В	
	Поглощение	Флуоресценция		Поглощение	
	λ^{abs} , нм (ϵ · 10^{-3})	λ^{em} , нм (λ^{ex} , нм)	φ	λ ^{abs} , нм	A
7	463 (13.3)	560 (463)	0.01	677	0.078
8a	458 (7.75)	560 (459)	0.05	622	0.101
8b	460 (8.95)	562 (462)	0.06	622	0.110
8c	463 (9.35)	566 (463)	0.05	623	0.121
8d	468 (10.48)	573 (469)	0.04	635	0.105

 $[\]lambda^{abs}$, λ^{em} и λ^{ex} — максимумы полос поглощения, флуоресценции и возбуждения флуоресценции соответственно; A — величина оптической плотности в максимуме полосы поглощения фотоиндуцированной формы \mathbf{B} в фотостационарном состоянии при облучении светом 436 нм; ϕ — квантовый выход флуоресценции.

Рис. 1. Спектры флуоресценции (1), возбуждения флуоресценции (2) и поглощения (3) раствора соединения **8c** в толуоле ($c \cdot 4 \cdot 10^{-5}$ M, $l \cdot 1$ см, $T \cdot 293$ K)

1,2-диметил-5-метоксииндола и 5-(4-бромфенил)-2-метилтиофена совпадают с установленными нами ранее [17] для аналогичных дигетарилэтенов на основе 1,2-диметил-5-метоксииндола и незамещённого тиофена. Следует отметить, что дигетарилэтены на основе 5-(4-бромфенил)-2-метилтиофена обладают более длинноволновым поглощением (5–10 нм) и флуоресценцией (20–30 нм) по сравнению с их структурными аналогами на основе незамещённого тиофена, однако уступают им в 2–4 раза по эффективности флуоресценции [17].


В отличие от исследованного ранее [17] фотохимически неактивного 3-(1,2-диметил-5-метокси-1H-индол-3-ил)-4-(3-тиенил)фуран-2,5-диона, все исследованные в данной работе дигетарилэтены, включая 4-[5-(4-бромфенил)-2-метилтиофен-3-ил]-3-(1,2-диметил-5-метокси-1H-индол-3-ил)фуран-2,5-дион (7), обладают фотохромными свойствами в растворе.

При облучении растворов фуран(пиррол)дионов 7, **8a-d** (открытая форма **A**) в толуоле светом с длиной волны 436 нм происходит их окрашивание, связанное с появлением полос поглощения в видимой области ЭСП с максимумами при 622–677 нм (таблица, рис. 2). Такое поглощение характерно для циклических изомерных форм **B** дигетарилэтенов [2, 17–23].

Наиболее длинноволновым поглощением обладает циклическая форма **B** фурандиона **7** (677 нм). Структурная модификация дигетарилэтенов, связанная с заменой малеинангидридного фрагмента на малеимидный приводит к гипсохромному сдвигу поглощения циклической формы **B** дигетарилэтенов **8a–d** на 42–55 нм.

Влияние заместителей при атоме азота в малеинимидном фрагменте дигетарилэтенов **8a**—**d** на спектральные характеристики циклических изомеров **B** проявляется в той же мере, что и для открытых форм **A**. Так, максимумы полос флуоресценции 1-алкилзамещённых пирролдионов **8a**—**c**, по сравнению с 1-фенлпроизводным **8d**, смещены гипсохромно на 19—20 нм (таблица).

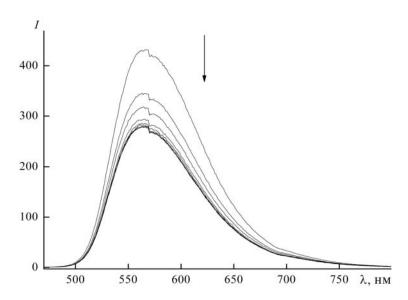

В отличие от исходных форм ${\bf A}$ фотоизомеры ${\bf B}$ флуоресценцией не обладают.

Рис. 2. Окрашивание раствора дигетарилэтена **8c** в толуоле (c 4·10⁻⁵ M, l 1см, T 293 K) при облучении светом λ 436 нм, интервал между спектрами 1 мин

Для дигетарилэтенов 7 и **8a-d** отсутствует полная фотоконверсия исходной формы **A** в циклическую форму **B**. Продолжительное облучение светом с длиной волны 436 нм приводит к установлению фотостационарного состояния, о чём свидетельствует достаточно высокий уровень относительной интенсивности флуоресценции открытых форм **A** в условиях, когда облучение уже не вызывает изменений в ЭСП (рис. 3).

Сравнительный анализ спектров поглощения соединений 7, 8a-d со спектрами возбуждения наблюдаемой флуоресценции демонстрирует их хорошее совпадение, однозначно свидетельствуя о справедливости отнесения флуоресценции к открытым изомерам A (таблица, рис. 1).

Puc. 3. Падение интенсивности флуоресценции раствора дигетарилэтена **8c** в толуоле (c 4·10⁻⁵ M, l 1см, T 293 K) при облучении светом λ 436 нм, интервал между спектрами 1 мин

При облучении предварительно окрашенных растворов дигетарилэтенов светом с длиной волны 578 нм происходит их полное обесцвечивание в результате обратной фотореакции раскрытия цикла $\mathbf{B} \rightarrow \mathbf{A}$.

Дигетарилэтены 7, **8**а-**d** обладают устойчивостью к фотодеградации и выдерживают не менее 20 циклов фотоокрашивания—фотообесцвечивания без уменьшения оптической плотности растворов в максимуме полосы поглощения циклической формы **B** (таблица) в фотостационарном состоянии.

Несимметричные дигетарилэтены на основе 1,2-диметил-5-метоксииндола и 5-(4-бромфенил)-2-метилтиофена, в отличие от их структурных аналогов на основе 1,2-диметил-5-метоксииндола и тиофена [17], демонстрируют термическую устойчивость фотоиндуцированных циклических изомеров: в отсутствие облучения (в темноте) циклическая форма В дигетарилэтенов 7, 8а-d стабильна при комнатной температуре, по крайней мере, в течение 5 сут.

Таким образом, получены новые фотохромные несимметричные дигетарилэтены: 4-[5-(4-бромфенил)-2-метилтиофен-3-ил]-3-(1,2-диметил-5-метокси-1H-индол-3-ил)фуран-2,5-дион и 1-алкил(фенил)-3-(1,2-диметил-5-метокси-1H-индол-3-ил)-4-[5-(4-бромфенил)-2-метилтиофен-3-ил]-1H-пиррол-2,5-дионы, обладающие свойствами молекулярных переключателей с флуоресцентной сигнальной функцией.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Электронные спектры поглощения записаны на спектрофотометре Cary 100 (Varian). Флуоресцентные измерения проведены на спектрофлуориметре CaryEclipse (Varian). Фотолиз растворов осуществлён ртутной лампой ДРШ-250 с интерференционными светофильтрами для выделения линий ртутного спектра 436 нм (10MLF10-436 Newport) и 578 нм (10MLF10-578 Newport). Устойчивость к фотодеградации дигетарилэтенов изучена путём проведения 20 циклов фотоокрашивания (облучение светом с λ 436 нм в течение 8 мин) – фотообесцвечивания (облучение светом с λ 578 нм в течение 9 мин); при этом определяли значение оптической плотности растворов соединений 7, 8а-d в толуоле в максимуме полосы поглощения циклической формы В (таблица) в фотостационарном состоянии. Фотостационарное состояние (соответствует фотоокрашиванию) достигалось облучением растворов исследуемых дигетарилэтенов светом с λ 436 нм до тех пор, пока облучение уже не вызывало изменений в ЭСП. Квантовые выходы флуоресценции определены методом Паркера-Риса [26] с использованием 3-метоксибензантрона в толуоле (ф 0.1, λ 365 нм) в качестве стандартного люминофора [27]. Для приготовления растворов использовали толуол (Aldrich) спектральной степени чистоты. ИК спектры зарегистрированы на приборе VarianExcalibur 3100 FT-IR методом нарушенного полного внутреннего отражения. Спектры ЯМР ¹Н зарегистрированы на приборе VarianUnity-300 (300 $M\Gamma$ ц), спектры $\rm MMP$ ¹³C – на спектрометре Bruker Avance-600. Растворитель для всех спектров ЯМР – CDCl₃; внутренний стандарт для спектров ЯМР ¹Н – сигнал остаточных протонов растворителя (7.24 м. д.), для спектров ЯМР 13 С – сигнал атома углерода CDCl₃ (77.0 м. д.). Элементный анализ выполнен на CHN-анализаторе KOVO. Температуры плавления определены на нагревательном столике Boetius. Macc-спектры зарегистрированы на приборе Shimadzu GCMS-OP2010SE при прямом введении образца в ионный источник (ЭУ, 70 эВ).

5-(4-Бромфенил)тиофен-2-карбальдегид (2). К суспензии 9.3 г (33 ммоль) Na₂S·9H₂O в 40 мл свежеперегнанного ДМФА добавляют по каплям раствор 7.9 г (32 ммоль) 3-(4-бромфенил)-3-хлорпропеналя (1) в 100 мл свежеперегнанного ДМФА при 60 °C в течение 1 ч, после чего реакционную смесь нагревают при этой же температуре в течение 2 ч. Затем прикапывают 6 мл 50% водного раствора хлорацетальдегида (36 ммоль), реакционную смесь перемешивают при 60 °C в течение 3 ч, после чего добавляют раствор 8.3 г (60 ммоль) К₂CO₃ в минимальном количестве

Н₂О. Смесь нагревают ещё 30 мин и выливают в десятикратное количество H₂O. Выпавший осадок отфильтровывают и перекристаллизовывают из EtOH с добавлением активированного угля. Выход 3.2 г (37%), бледно-жёлтые кристаллы, т. пл. 110–112 °C (т. пл. 111–112 °C [28]). ИК спектр, ν , см⁻¹: 1659 (С=О), 1629 (С=С). Спектр ЯМР ¹H, δ , м. д. (J, Γ ц): 7.38 (1H, д, J = 3.9, H-4 тиофен); 7.55–7.66 (4H, м, H Ar); 7.73 (1H, д, J = 3.9, H-3 тиофен); 9.89 (1H, с, CHO). Найдено, %: С 49.10; H 2.70. С₁₁H₇BrOS. Вычислено, %: С 49.46; H 2.64.

2-Метил-5-(4-бромфенил)тиофен (3). Смесь 2.72 г (10.2 ммоль) альдегида **2**, 4.28 г (75.0 ммоль) КОН, 8 мл (135.0 ммоль) 85% $N_2H_4\cdot H_2O$ и 50 мл диэтиленгликоля кипятят в течение 3 ч. Раствор разбавляют 50 мл H_2O , выпавший продукт отфильтровывают, сушат и перекристаллизовают из EtOH. Выход 1.34 г (52%), бесцветные кристаллы, т. пл. 126–128 °C (лит. 127–128 °C [29]). Спектр ЯМР ¹H, δ , м. д.: 2.51 (3H, c, CH₃); 6.72 (1H, c, H-3 тиофен); 7.08 (1H, c, H-4 тиофен); 7.38–7.49 (4H, м, H Ar). Найдено, %: C 52.39; H 3.46. $C_{11}H_9BrS$. Вычислено, %: C 52.19; H 3.58.

1-[5-(4-Бромфенил)-2-метилтиофен-3-ил]этанон (4). 1.520 г (6.0 ммоль) тиофена **3** растворяют в 25 мл абс. PhH, охлаждают до 0–5 °C и при перемешивании добавляют 0.52 мл (0.572 г, 7.3 ммоль) AcCl. Затем к этой смеси добавляют 0.85 мл (1.890 г, 7.3 ммоль) SnCl₄. Реакционную смесь перемешивают при комнатной температуре в течение 4 ч, затем при охлаждении приливают 10 мл 10% HCl. Смесь экстрагируют CHCl₃ (3 × 20 мл), органический слой отделяют, сушат над безв. Na₂SO₄, растворитель удаляют на роторном испарителе, остаток перекристаллизовают из EtOH. Выход 1.12 г (63%), бледно-жёлтые кристаллы, т. пл. 113–114 °C. ИК спектр, v, см⁻¹: 1750 (С=C), 1800 (С=O). Спектр ЯМР 1 H, δ , м. д.: 2.54 (3H, c, 2-CH₃); 2.75 (3H, c, COCH₃); 7.40–7.45 (2H, м, H Ar); 7.50–7.60 (3H, м, H Ar). Масс-спектр, m/z: 295 [М] $^{+}$. Найдено, %: С 53.00; H 3.56. С₁₃H₁₁BrOS. Вычислено, %: С 52.89; H 3.76.

[5-(4-Бромфенил)-2-метилтиофен-3-ил]уксусная кислота (5). Смесь 0.59 г (2 ммоль) кетона 4, 0.13 г (4 ммоль) серы и 0.35 мл (4 ммоль) морфолина кипятят в течение 6 ч. Смесь охлаждают, добавляют 2 мл ЕtOH, через 1 ч выпавший осадок отфильтровают, переносят его в 1.5 мл 50% раствора КОН и прибавляют ещё 3 мл ЕtOH. Полученную смесь кипятят в течение 6 ч, добавляют 5 мл H_2O и подкисляют конц. HCl. Через 30 мин осадок отфильтровывают, промывают H_2O , сушат на воздухе и перекристаллизовают из CCl₄. Выход 0.39 г (63%), бледно-коричневые кристаллы, т. пл. 161-162 °C. ИК спектр, ν , см⁻¹: 3063, 2558, 1701. Спектр ЯМР 1 H, δ , м. д.: 2.41-2.43 (3H, м, CH₃); 3.58 (2H, c, CH₂); 7.11-7.48 (5H, м, H Ar); 10.50-11.60 (1H, уш. с, OH). Масс-спектр, m/z: 311 [M] $^+$. Найдено, %: C 50.00; H 3.56. $C_{13}H_{11}$ BrO₂S. Вычислено, %: C 50.18; H 3.56.

4-[5-(4-Бромфенил)-2-метилтиофен-3-ил]-3-(1,2-диметил-5-метокси-1*H*-индол-**3-ил)фуран-2,5-дион (7)**. К раствору 0.21 г (1.2 ммоль) 1,2-диметил-5-метоксииндола в 5 мл CH_2Cl_2 при 0 °C по каплям добавляют 0.11 мл (0.15 г, 1.2 ммоль) оксалилхлорида. Реакционную смесь выдерживают в течение 30 мин, затем растворитель отгоняют на роторном испарителе. К сухому остатку, представляющему собой (1,2-диметил-5-метоксииндол-3-ил)оксоацетилхлорид (6), приливают раствор 0.38 г (1.2 ммоль) кислоты 5 и 0.40 мл (1.5 ммоль) Еt₃N в 7 мл CH₂Cl₂, перемешивают 15 мин при 0 °C, затем в течение 2 ч при комнатной температуре. Выпавший осадок отфильтровывают, растворитель отгоняют при пониженном давлении, продукт очищают колоночной хроматографией на силикагеле (элюент CHCl₃). Выход 0.15 г (24%), красные кристаллы, т. пл. 259–260 °С. ИК спектр, v, см⁻¹: 1752 (C=O), 1616 (C=C), Спектр ЯМР ¹Н, δ, м. д.: 1.82 (3H, с. 2-CH₃ индол); 2.43 (3H, с. 2-CH₃ тиофен); 3.44 (3H, с, ОСН₃); 3.72 (3H, с, NСН₃); 6.30–6.31 (1H, м, H-4 тиофен); 6.76–6.82 (1H, м, H Ar); 7.15–7.18 (1H, м, H Ar); 7.26–7.50 (5H, м, H Ar). Спектр ЯМР ¹³С, δ, м. д.: 12.9; 15.3; 30.3; 55.3; 101.3; 102.7; 110.3; 112.9; 121.7; 124.4; 125.6; 127.1; 128.1; 129.3; 132.1; 134.5; 135.6; 140.5; 140.9; 142.5; 155.1; 165.5; 165.6. Масс-спектр, *m/z*: 523 [M]⁺. Найдено, %: С 59.75; H 4.00; N 2.52. С₂₆H₂₀BrNO₄S. Вычислено, %: С 59.78; Н 3.86; N 2.68.

1-Замещённые 4-[5-(4-бромфенил)-2-метилтиофен-3-ил]-3-(1,2-диметил-5-метокси-1*H*-индол-3-ил)-1*H*-пиррол-2,5-дионы 8а-d (общая методика). К раствору

50 мг (0.096 ммоль) соединения 7 в 5 мл n-ВиОН добавляют 0.200 ммоль соответствующего амина. Реакционную смесь кипятят в течение 3 ч, затем охлаждают, растворитель отгоняют при пониженном давлении, продукты очищают колоночной хроматографией на Al_2O_3 (элюент CHCl₃).

4-[5-(4-Бромфенил)-2-метилтиофен-3-ил]-3-(1,2-диметил-5-метокси-1*Н***-индол-3-ил)-1-изопропил-1***Н***-пиррол-2,5-дион (8a)**. Выход 39 мг (74%), оранжевые кристаллы, т. пл. 254–255 °C. ИК спектр, v, см $^{-1}$: 1696 (C=O), 1616 (C=C). Спектр ЯМР 1 Н, δ , м. д.: 1.48–1.51 (6H, м, CH(C $\underline{\text{H}}_3$)₂); 1.71 (3H, c, 2-CH₃ индол); 2.36 (3H, c, 2-CH₃ тиофен); 3.40–3.43 (3H, м, OCH₃); 3.65–3.67 (3H, м, NCH₃); 4.46–4.51 (1H, м, NC $\underline{\text{H}}$ Me₂); 6.33–6.34 (1H, м, H-4 тиофен); 6.79–6.80 (1H, м, H Ar); 7.15–7.18 (1H, м, H Ar); 7.26–7.50 (5H, м, H Ar). Спектр ЯМР 13 С, δ , м. д.: 12.9; 15.2; 20.3; 30.1; 43.3; 52.3; 101.5; 103.1; 109.7; 112.1; 121.2; 125.0; 126.0; 127.0; 128.9; 129.3; 131.9; 133.7; 139.4; 139.6; 140.9; 154.6; 170.9; 171.5. Масс-спектр, m/z: 563 [М] $^+$. Найдено, %: C 61.75; H 5.00; N 4.72. C₂₉H₂₇BrN₂O₃S. Вычислено, %: C 61.81; H 4.83; N 4.97.

4-[5-(4-Бромфенил)-2-метилтиофен-3-ил]-3-(1,2-диметил-5-метокси-1*Н***-индол-3-ил)-1-циклопентил-1***Н***-пиррол-2,5-дион (8b)**. Выход 31 мг (24%), красные кристаллы, т. пл. 236–237 °C. ИК спектр, v, см $^{-1}$: 1695 (С=O), 1616 (С=C). Спектр ЯМР 1 Н, δ , м. д.: 1.56–2.15 (11H, м, (СН $_{2}$)₄, 2-СН $_{3}$ индол); 2.37 (3H, c, 2-СН $_{3}$ тиофен); 3.43 (3H, c, OCH $_{3}$); 3.67 (3H, c, NCH $_{3}$); 4.55–4.61 (1H, м, NC $_{1}$ (СН $_{2}$)₄); 6.33–6.34 (1H, м, H-4 тиофен); 6.71–6.75 (1H, м, H Ar); 7.09–7.12 (1H, м, H Ar); 7.24–7.46 (5H, м, H Ar). Спектр ЯМР 13 С, δ , м. д.: 12.9; 15.2; 24.9; 29.6; 30.1; 51.4; 55.3; 101.4; 103.1; 109.7; 112.1; 121.2; 125.0; 126.0; 127.0; 128.9; 129.3; 131.9; 132.1; 132.9; 133.8; 139.4; 139.6; 140.9; 154.6; 171.0; 171.5. Масс-спектр, m/z: 589 [М] $^{+}$. Найдено, %: С 63.35; Н 5.00; N 4.72. С $_{31}$ H $_{29}$ BrN $_{2}$ O $_{3}$ S. Вычислено, %: С 63.16; Н 4.96; N 4.75.

1-Бензил-4-[5-(4-бромфенил)-2-метилтиофен-3-ил]-3-(1,2-диметил-5-метокси-1*Н***-индол-3-ил)-1***Н***-пиррол-2,5-дион (8c)**. Выход 54 мг (92%), красные кристаллы, т. пл. 223–224 °C. ИК спектр, v, см⁻¹: 1691 (С=О), 1616 (С=С). Спектр ЯМР ¹Н, δ, м. д.: 1.69 (3H, c, 2-CH₃ индол); 2.36 (3H, c, 2-CH₃ тиофен); 3.41 (3H, c, OCH₃); 3.66 (3H, c, NCH₃); 4.82 (2H, c, NC<u>H₂</u>Ph); 6.31–6.32 (1H, м, H-4 тиофен); 6.71–6.75 (1H, м, H Ar); 7.09–7.12 (1H, м, H Ar); 7.24–7.35 (5H, м, H Ar); 7.42–7.50 (5H, м, H Ar). Спектр ЯМР ¹³С, δ, м. д.: 12.9; 15.2; 25.4; 30.1; 42.0; 55.3; 64.4; 101.4; 103.1; 109.8; 112.2; 121.2; 124.9; 125.9; 127.0; 127.7; 128.7; 128.9; 129.2; 131.9; 132.1; 132.9; 133.9; 136.8; 139.6; 139.7; 141.1; 154.6; 170.8; 171.2. Масс-спектр, *m/z*: 611 [M]⁺. Найдено, %: С 64.75; H 4.50; N 4.42. С₃₃H₂₇BгN₂O₃S. Вычислено, %: С 64.81; H 4.45; N 4.58.

4-[5-(4-Бромфенил)-2-метилтиофен-3-ил]-3-(1,2-диметил-5-метокси-1*Н***-индол-3-ил)-1-фенил-1***Н***-пиррол-2,5-дион (8d)**. Выход 37 мг (65%), красные кристаллы, т. пл. 223–224 °C. ИК спектр, v, см⁻¹: 1700 (С=О), 1616 (С=С). Спектр ЯМР ¹Н, δ, м. д.: 1.81 (3H, c, 2-CH₃ индол); 2.44 (3H, c, 2-CH₃ тиофен); 3.46 (3H, c, OCH₃); 3.71 (3H, c, NCH₃); 6.39–6.40 (1H, м, H-4 тиофен); 6.79–6.80 (1H, м, H Ar); 7.14–7.18 (1H, м, H Ar); 7.24–7.46 (10H, м, H Ar). Спектр ЯМР ¹³С, δ, м. д.: 13.0; 15.3; 30.1; 55.3; 101.4; 103.0; 109.9; 112.3; 121.3; 125.0; 126.0; 127.0; 127.5; 128.8; 129.0; 129.1; 132.0; 132.1; 132.2; 132.3; 132.9; 134.0; 139.8; 139.9; 141.4; 154.8; 169.8; 170.2. Масс-спектр, *m/z*: 597 [М][†]. Найдено, %: С 64.55; H 4.50; N 4.42. С₃₂Н₂₅ВгN₂О₃S. Вычислено, %: С 64.32; H 4.22; N 4.69.

Авторы признательны Минобрнауки России за финансовую поддержку этой работы в рамках базовой части государственного задания в сфере научной деятельности НИИ физической и органической химии Южного федерального университета (грант 213.01-11/2014-24).

СПИСОК ЛИТЕРАТУРЫ

- 1. В. И. Минкин, Успехи химии, **82**, 1 (2013). [Russ. Chem. Rev., **82**, 1 (2013).]
- M. Irie, Chem. Rev., 100, 1685 (2000).
- 3. V. A. Barachevsky, Y. P. Strokach, Y. A. Puankov, O. I. Kobeleva, T. M. Valova, K. S. Levchenko, V. N. Yaroshenko, M. M. Krayushkin, *ARKIVOC*, ix, 70 (2009).

- 4. M. Irie, K. Uchida, Bull. Chem. Soc. Jpn., 71, 985 (1998).
- 5. В. И. Минкин, Изв. АН, Сер. хим., 673 (2008). [Russ. Chem. Bull., Int. Ed., **57**, 687 (2008).]
- 6. J. Zhang, Q. Zou, H. Tian, Adv. Mater., 25, 378 (2013).
- 7. L. Ma, Q. Wang, G. Lu, R. Chen, X. Sun, Langmuir, 26, 6702 (2010).
- 8. С. М. Алдошин, Е. А. Юрьева, Н. А. Санина, М. М. Краюшкин, Д. В. Цыганов, Ф. Е. Гостев, И. В. Шелаев, О. М. Саркисов, В. А. Надточенко, *Изв. АН, Сер. хим.*, 1093 (2011). [*Russ. Chem. Bull.*, *Int. Ed.*, **60**, 1118 (2011).]
- 9. M. Natali, S. Giordani, Chem. Soc. Rev., 41, 4010 (2012).
- 10. M. T. Indelli, S. Carli M. Ghirotti, C. Chiorboli, M. Ravaglia, M. Garavelli, F. Scandola, *J. Am. Chem. Soc.*, **130**, 7286 (2008).
- 11. S. Wang, Q. Z. Qi, C. P. Li, G. H. Ding, S. H. Kim, Dyes Pigm., 89, 188 (2011).
- 12. М. М. Краюшкин, В. З. Ширинян, Л. И. Беленький, А. А. Шимкин, А. Ю. Мартынкин, Б. М. Ужинов, *Журн. орган. химии*, **38**, 1390 (2002). [*Russ. J. Org. Chem.*, **38**, 1335 (2002).]
- 13. V. Z. Shirinian, A. G. Lvov, M. M. Krayushkin, E. D. Lubuzh, B. V. Nabatov, *J. Org. Chem.*, **79**, 3440 (2014).
- 14. S. Kobatake, M. Irie, Bull. Chem. Soc. Jpn., 77, 195 (2004).
- 15. С. В. Шорунов, М. М. Краюшкин, Ф. М. Стоянович, М. Ирие, *Журн. орган. химии*, **42**, 1504 (2006). [*Russ. J. Org. Chem.*, **42**, 1490 (2006).]
- 16. Y. Nakayama, K. Hayashi, M. Irie, Bull. Chem. Soc. Jpn., 64, 789 (1991).
- 17. Н. И. Макарова, П. В. Левченко, Е. Н. Шепеленко, А. В. Метелица, В. С. Козырев, В. П. Рыбалкин, В. А. Брень, В. И. Минкин, *Изв. АН, Сер. хим.*, 1866 (2011). [*Russ. Chem. Bull., Int. Ed.*, **60**, 1899 (2011).]
- 18. Н. И. Макарова, Е. Н. Шепеленко, А. В. Метелица, В. А. Брень, В. И. Минкин, *Изв. АН, Сер. хим.*, 2424 (2013). [*Russ. Chem. Bull., Int. Ed.*, **62**, 2424 (2013).]
- 19. Н. И. Макарова, Е. Н. Шепеленко, О. Г. Карамов, А. В. Метелица, В. А. Брень, В. И. Минкин, *Изв. АН, Сер. хим.*, 109 (2014).
- 20. А. В. Метелица, В. П. Рыбалкин, Н. И. Макарова, П. В. Левченко, В. С. Козырев, Е. Н. Шепеленко, Л. Л. Попова, В. А. Брень, В. И. Минкин, *Изв. АН, Сер. хим.*, 1596 (2010). [*Russ. Chem. Bull.*, *Int. Ed.*, **59**, 1639 (2010).]
- 21. Н. И. Макарова, П. В. Левченко, В. В. Ткачев, Е. Н. Шепеленко, А. В. Метелица, В. П. Рыбалкин, Л. Л. Попова, В. А. Брень, С. М. Алдошин, В. И. Минкин, Изв. *АН, Сер. хим.*, 1065 (2011). [*Russ. Chem. Bull., Int. Ed.*, **60**, 1090 (2011).]
- 22. Е. Н. Шепеленко, Н. И. Макарова, А. В. Метелица, В. А. Брень, В. И. Минкин, *Вестник Южного научного центра*, **9**, № 1, 29 (2013).
- 23. T. Yamaguchi, M. Matsuo, M. Irie, Bull. Chem. Soc. Jpn., 78, 1145 (2005).
- 24. D. Todd, in *Organic Reactions*, R. Adams (Ed.), John Wiley & Sons, New York, 1948, vol. 4, p. 378.
- 25. M. Carmack, M. A. Spielman, in *Organic Reactions*, R. Adams (Ed.), John Wiley & Sons, New York, 1947, vol. 3, p. 83.
- 26. С. Паркер, Фотолюминесценция растворов, Мир, Москва, 1972, с. 247.
- 27. Б. М. Красовицкий, Б. М. Болотин, Органические люминофоры, Химия, Москва, 1984, с. 292.
- C. M. Beaton, N. B. Chapman, K. Clarke, J. M. Willis, J. Chem. Soc., Perkin Trans. 1, 22, 2355 (1976).
- 29. B. Join, T. Yamamoto, K. Itami, Angew. Chem., Int. Ed., 48, 3644 (2009).

¹ Южный научный центр РАН, пр. Чехова, 41, Ростов-на-Дону 344006, Россия e-mail: dubon@ipoc.sfedu.ru Поступило 10.04.2014

² НИИ физической и органической химии Южного федерального университета, пр. Стачки, 194/2, Ростов-на-Дону 344090, Россия e-mail: photo@ipoc.sfedu.ru