Светлой памяти профессора Ревы Сафаровича Сагитуллина посвящается

А. К. Гаркушенко, Н. В. Поендаев, М. А. Воронцова, Г. П. Сагитуллина*

нитропиридины

11.* РЕЦИКЛИЗАЦИЯ ЧЕТВЕРТИЧНЫХ СОЛЕЙ НИТРОПИРИДИНИЯ В ЗАМЕЩЁННЫЕ НИТРОАНИЛИНЫ

Рециклизацией четвертичных солей нитропиридиния под действием оснований получены замещенные нитроанилины.

Ключевые слова: ангидрооснование, бифенил, замещённые нитроанилины, 3(5)-нитропиридины, 4-нитропиридин, псевдооснование, четвертичные соли пиридиния, рециклизация.

Целью настоящей работы является изучение синтетических возможностей рециклизации нитропиридиниевых солей. Впервые перегруппировка солей нитропиколина и нитролутидина в нитроанилины была выполнена в 80-х годах [2–4].

На раннем этапе исследований при написании схемы рециклизации нитропиридиниевых солей постулировалось образование ангидрооснования A и анионного σ -комплекса B в качестве интермедиатов.

В дальнейшем этот механизм был отвергнут по следующим причинам:

1. В ряде случаев (рециклизация индолизинов, соли никотириния, раскрытие солей Цинке и т. д.) образование ангидрооснования в принципе невозможно [5, 6];

^{*} Сообщение 10 см. [1].

^{2.} Соединения, ангидрооснования которых образуются легко, оказались

вообще не способными к рециклизации до тех пор, пока образование ангидрооснования не было блокировано [7].

Таким образом, логичнее постулировать в качестве интермедиатов рециклизации псевдооснования – нейтральные аналоги анионных σ-комплексов [8].

Из двух возможных вариантов раскрытия цикла псевдооснования – электроциклического (*a*) и ионного (*b*) –

следует, по-видимому, предпочесть ионный вариант, поскольку:

1. Образование раскрытых форм никогда не отмечалось для нуклеофилов, не способных к ионному раскрытию цикла (X = Cl⁻, Br⁻, I⁻, CN⁻ и т. д.).

2. Энтальпия образования иминных форм, образующихся при электроциклическом раскрытии, выше энтальпии образования енаминных форм при ионном раскрытии ($\Delta H = -14$ ккал/моль) [9].

Рециклизация солей нитропиридиния 1a-c под действием спиртового метиламина при комнатной температуре приводит к замещенным нитроанилинам 2a-c. Гидроксил-анион атакует пространственно более доступное положение 6 пиридиниевых солей 1a-c с образованием псевдооснования 1A. Ионное раскрытие псевдооснования 1A приводит к раскрытой форме 1B, циклизация которой в замещенные нитроанилины 2a-c происходит путём внутримолекулярной альдольно-кротоновой конденсации образующейся формильной группы с метильной группой.

1,2 a R = Me, b R = cyclo-Pr, c R = Ph

Продуктом перегруппировки соли 5-нитро-2-фенацилпиридиния **3** является [2-(метиламино)-5-нитрофенил](фенил)метанон (**2c**). При обработке раствора четвертичной соли пиридиния **3** основанием происходит депротонирование СН-кислотной метиленовой группы фенацильного заместителя с образованием устойчивого ангидрооснования **4**. Дальней-574 шее превращение ангидрооснования **4** в псевдооснование **A** происходит путём присоединения к нему воды. Аналогичное равновесие в системе ангидрооснование–псевдооснование было описано О. Муммом на примере рециклизации соли 3,5-дикарбэтоксиколлидиния [10].

Образование бензольного цикла соединения **2c** происходит за счёт взаимодействия образующейся формильной группы и метиленового звена фенацильной группы в раскрытой форме **4B**.

Перхлорат 5-нитро-2-фенацилпиридиния **3** был синтезирован кислотной гидратацией по Кучерову тройной связи четвертичной соли 1-метил-5-нитро-2-(фенилэтинил)пиридиния (**6**) и алкилированием 5-нитро-2-фенацилпиридина (**5**). Для замены метилсульфатного аниона на перхлоратный Таблица 1

Соели-		<u>Ha</u> Dru	йдено,	<u>%</u>		Время,	BUYOT
нение	Брутто-формула	С	Н	, 70 N	Т. пл., °С*	темпера- тура, °С	%
1a	$C_9H_{11}ClN_2O_7$	<u>36.66</u> 36.69	<u>3.67</u> 3.76	<u>9.25</u> 9.51	136–137	3/70	87
1b	$C_{11}H_{13}ClN_2O_7$	<u>41.11</u> 41.20	$\frac{4.01}{4.09}$	<u>8.62</u> 8.74	150-151	4/80	72
1c	$C_{14}H_{13}ClN_2O_7$	<u>47.37</u> 47.14	<u>3.85</u> 3.67	<u>8.02</u> 7.85	228–229	4/80	81
3	$C_{14}H_{13}ClN_2O_7$	<u>47.08</u> 47.14	<u>3.55</u> 3.67	<u>7.75</u> 7.85	202–203	2/80	64
6	$C_{14}H_{11}ClN_2O_6$	<u>49.72</u> 49.65	<u>3.36</u> 3.27	<u>8.35</u> 8.27	193–194	2/70	78
7	$C_8H_{11}ClN_2O_6$	<u>36.10</u> 36.04	<u>4.17</u> 4.16	<u>11.08</u> 10.51	231–232	8/70	81
10a	$C_{10}H_{13}CIN_2O_7$	<u>39.00</u> 38.91	<u>4.26</u> 4.25	<u>8.51</u> 9.08	145–146	48/70	82
10b	$C_{12}H_{15}FN_2O_6S$	<u>43.07</u> 43.11	<u>4.56</u> 4.52	<u>8.41</u> 8.38	132–133	120/25	83
10c	$C_8H_{10}ClN_3O_8$	<u>30.74</u> 30.83	<u>3.25</u> 3.23	<u>13.33</u> 13.48	>250 (разл.)	120/70	47
10d	$C_{15}H_{15}FN_2O_6S$	<u>48.73</u> 48.65	<u>4.06</u> 4.08	<u>7.42</u> 7.56	196–197	120/25	86
14	C7H9ClN2O6	<u>33.20</u> 33.28	<u>3.55</u> 3.59	<u>11.01</u> 11.09	124–125	5/70	76
16a	$C_8H_{13}ClN_2O_4$	$\frac{40.27}{40.60}$	<u>5.36</u> 5.54	<u>11.94</u> 11.84	183–184	72/25	52
16b	$C_9H_{15}ClN_2O_4$	<u>43.44</u> 43.12	<u>5.92</u> 6.03	<u>11.20</u> 11.18	163–164	72/25	60

Физико-химические характеристики и условия получения четвертичных солей пиридиния

^{*} Растворители для кристаллизации: этанол (соединения 1а-с, 10а,b,d, 14, 16а,b), 50% уксусная кислота (соединение 3), вода (соединение 6), пропанол (соединение 7), 10% хлорная кислота (соединение 10с).

использовали 10% раствор хлорной кислоты. Обычно применяемый для этой цели насыщенный водный раствор перхлората натрия использовать нельзя, так как основности воды достаточно для депротонирования метиленовой группы метилсульфата пиридиния и образования ангидрооснования **4**.

При перегруппировке несимметричной четвертичной соли 3-нитролутидиния 7 под действием водно-спиртового раствора гидроксида натрия образуются изомерные *o*- и *n*-нитротолуидины 8 и 9 в соотношении 2.1:1, с общим выходом 56%. Схема рециклизации соли 7 с промежуточным образованием псевдооснований 7A и 7B предполагает атаку гидроксиланиона по положениям 2 и 6 ядра. Преимущественное образование *o*-толуидина 8 указывает на преимущественную атаку гидроксил-аниона в *пара*-положение по отношению к нитрогруппе соли 7, являющееся пространственно более доступным.

Основание: 10% NaOH или MeNH₂/H₂O

При рециклизации перхлората 3-нитролутидиния 7 под действием 576

водного 41% раствора метиламина суммарный выход *о-* и *n*-нитротолуидинов **8** и **9** составил 52%, а соотношение *орто-* и *пара-*изомеров 2.5:1. При использовании 25% водного метиламина в рециклизации соли **7** суммарный выход изомеров тот же (51%), но существенно различается соотношение *орто-* и *пара-*изомеров, которое составляет 4.7:1 [4].

Аналогично рециклизуются соли 5-нитропиридиния **10а,b** под действием водного 41% метиламина с образованием изомерных нитроанилинов **11а,b** и **12а,b** с общим выходом 85–97%. По данным спектров ЯМР ¹³С, наиболее электронодефицитным является α -атом углерода в *пара*-положении к нитрогруппе, он преимущественно и атакуется основанием, что обеспечивает существенно больший выход замещенных *о*-нитроанилинов **11а,b**. В результате перегруппировки симметричной соли 3,5-динитропиридиния **10с** образуется только 2,4-динитротолуидин **11с**.

10–12 a R = Me, A = ClO_4 ; b R = *cyclo*-Pr, A = SO_3F

Перегруппировка соли **10d** приводит к образованию двух изомерных нитроанилинов **11d** и **12d** с общим выходом 55% в соотношении 1.1:1 и бифенила **13** с выходом 30%. Замыкание бензольного ядра с образованием бифенила **13** происходит с участием бензоильной группы в альдольно-кротоновой конденсации с метильной группой.

Физико-химические характеристики и условия получения нитроанилинов 577

Сое-	Брутто-	<u>На</u> Вы	айдено, с	<u>%</u>			
не- ние	формула	C	Н	N	Т. пл., °С	Метод*	Выход, %
2a	C ₉ H ₁₀ N ₂ O ₃	-	_	-	149–150 [12]	А	72
2b	$C_{11}H_{12}N_2O_3$	<u>59.86</u>	<u>5.42</u>	<u>12.64</u>	160–161	А	60
•	C H N O	59.99	5.49	12.72	1(0, 1(1, [12]		52 (1)
2c	$C_{14}H_{12}N_2O_3$	_	-	_	160–161 [13]	A F	52 (из Ic) 40 (из 3)
						Б	40 (ИЗ З) 60 (ИЗ Л)
8	C ₂ H ₁₀ N ₂ O ₂	_	_	_	73–74	Б	38
Ū	081101 1202				[14]	B	37
9	$C_8H_{10}N_2O_2$	-	-	-	92–93	Б	18
					[15]	В	15
11a	$C_{10}H_{12}N_2O_3$	<u>57.75</u>	<u>5.72</u>	<u>13.54</u>	213-214	В	58
		57.68	5.81	13.45			
11b	$C_{12}H_{14}N_2O_3$	<u>61.59</u>	<u>5.82</u>	<u>11.74</u>	148–149	В	47
		61.53	6.02	11.96			
11c	$C_8H_9N_3O_4$	<u>45.67</u>	4.28	<u>19.75</u>	171-172	В	30
		45.50	4.30	19.90			
11d	$C_{15}H_{14}N_2O_3$	<u>66.87</u>	<u>5.32</u>	<u>10.50</u>	149–150	В	30
		66.66	5.22	10.36			
12a	$C_{10}H_{12}N_2O_3$	<u>57.65</u>	<u>5.75</u>	<u>13.43</u>	167–168	В	39
	a	57.68	5.81	13.45			10
12b	$C_{12}H_{14}N_2O_3$	$\frac{61.62}{(1.52)}$	$\frac{5.98}{6.02}$	$\frac{11.93}{11.06}$	106–107	В	40
10.1	C H N O	01.55	0.02 5.10	11.90	106 107	D	25
120	$C_{15}H_{14}N_2O_3$	<u>66.60</u>	<u>5.18</u>	$\frac{10.45}{10.36}$	186-187	В	25
12	СИМО	66 74	5.22	10.30	120 140	D	20
13	$C_{15}\Pi_{14}\Pi_2O_3$	<u>00.74</u> 66.66	$\frac{3.25}{5.22}$	$\frac{10.30}{10.36}$	139–140	В	30
	I	00.00	5.44	10.50			I

* A – со спиртовым метиламином, Б – с водно-спиртовой щелочью, В – с водным метиламином.

Четвертичная соль 4-нитропиколиния **14** под действием водноспиртового раствора NaOH не рециклизуется в N-метил-3-нитроанилин, он не был обнаружен даже в следовых количествах. Гидроксил-анион атакует наиболее электронодефицитное положение 4 пиридиниевой соли, что приводит к нуклеофильному *unco*-замещению нитрогруппы [11].

Реакция идет в рамках зарядового контроля и приводит к 1,2-диметилпиридин-4(1H)-ону (15). При взаимодействии соли 4-нитропиридиния 14 со спиртовыми метиламином и диметиламином нитрогруппа замещается на метиламинную и диметиламинную, соответственно, что приводит к образованию замещенных 4-аминопиридиниевых солей 16а,b.

Данные элементного анализа и спектральные характеристики впервые синтезированных соединений представлены в табл. 1–7.

Таким образом, нами установлено принципиальное различие в поведении четвертичных солей 3-, 4- и 5-нитропиридиния под действием оснований. Нитрогруппа в положении 3 и 5 ядра соли пиридиния активирует присоединение нуклеофила в положения 2 и 6 ядра, сопровождаемое рециклизацией, а нитрогруппа в положении 4 ядра направляет атаку нуклеофила в положение 4, что приводит к нуклеофильному *unco*замещению нитрогруппы.

16 a R = H, **b** R = Me

Спектры ЯМР ¹Н пиридиниевых солей

Таблица З

Соели-		Химические сдвиги, δ , м. д. (<i>J</i> , Γ ц)*
нение	NCH ₃ (c)	Остальные протоны
1a	4.44	2.75 (3H, c, COCH ₃); 2.86 (3H, c, 2-CH ₃); 9.52 (1H, π , ⁴ <i>J</i> = 2.4, H-4); 10.21 (1H, π , ⁴ <i>J</i> = 2.4, H-6)
1b	4.44	1.27–1.35 (4H, м, 2CH ₂); 2.57–2.88 (1H, м, CH); 2.88 (3H, с, 2-CH ₃); 9.43 (1H, д, ⁴ <i>J</i> = 2.2, H-4); 10.22 (1H, д, ⁴ <i>J</i> = 2.2, H-6)
1c	4.39	2.73 (3H, c, 2-CH ₃); 7.61–7.90 (5H, M, C ₆ H ₅); 9.12 (1H, π , ⁴ <i>J</i> = 2.2, H-4); 9.68 (1H, π , ⁴ <i>J</i> = 2.2, H-6)
3	4.34	5.22 (2H, c, CH ₂); 7.58–7.73 (3H, м, C ₆ H ₅); 8.08–8.13 (2H, м, C ₆ H ₅); 8.24 (1H, д, ³ <i>J</i> = 8.8, H-3); 9.14 (1H, д. д, ³ <i>J</i> = 8.8, ⁴ <i>J</i> = 2.4, H-4); 9.69 (1H, д, ⁴ <i>J</i> = 2.4, H-6)
6	4.54	7.53–7.72 (3H, м, C ₆ H ₅); 7.83–7.88 (2H, м, C ₆ H ₅); 8.39 (1H, д, ³ <i>J</i> = 8.8, H-3); 9.10 (1H, д. д, ³ <i>J</i> = 8.8, ⁴ <i>J</i> = 1.8, H-4); 9.65 (1H, д, ⁴ <i>J</i> = 1.8, H-6)
7	4.15	2.88 (3H, c, 6-CH ₃); 2.91 (3H, c, 2-CH ₃); 8.15 (1H, π , ³ <i>J</i> = 8.7, H-5); 8.96 (1H, π , ³ <i>J</i> = 8.7, H-4)
10a	4.21	2.71 (3H, c, COCH ₃); 2.88 (3H, c, 2-CH ₃); 2.93 (3H, c, 6-CH ₃); 9.31 (1H, c, H-4)
10b	4.21	1.23–1.37 (4H, м, 2CH ₂); 2.53–2.62 (1H, м, CH); 2.89 (3H, с, 2-CH ₃); 2.94 (3H, с, 6-CH ₃); 9.23 (1H, с, H-4)
10c	4.26	3.00 (6H, c, 2,6-CH ₃); 9.28 (1H, c, H-4)
10d	4.24	2.73 (3H, с, 2-CH ₃); 2.99 (3H, с, 6-CH ₃); 7.61–7.68 (2H, м, C ₆ H ₅); 7.80–7.87 (3H, м, C ₆ H ₅); 9.20 (1H, с, H-4)
14	3.97	2.60 (3H, c, 2-CH ₃); 7.12 (1H, μ , π , $\pi^{3}J = 7.1$, $^{4}J = 2.9$, H-5); 7.19 (1H, π , $^{4}J = 2.9$, H-3); 8.55 (1H, π , $^{3}J = 7.1$, H-6)
16a	3.78	2.51 (3H, c, 2-CH ₃); 2.86 (3H, π , J = 5.0, NHC <u>H₃</u>); 6.76 (1H, π . π , ${}^{3}J$ = 7.2, ${}^{4}J$ = 2.8, H-5); 6.82 (1H, π , ${}^{4}J$ = 2.8, H-3); 8.24 (1H, π , ${}^{3}J$ = 7.2, H-6); 8.34 (1H, yu. c, N <u>H</u> CH ₃)
16b	3.83	2.53 (3H, c, 2-CH ₃); 3.16 (6H, c, N(CH ₃) ₂); 6.90 (1H, π . π , ³ J = 7.8, ⁴ J = 2.4, H-5); 6.96 (1H, π , ⁴ J = 2.4, H-3); 8.18 (1H, π , ³ J = 7.8, H-6)

* Спектры ЯМР ¹Н снимали в ДМСО-d₆ (соединения **1а-с**, **7**, **10а,b,d**, **14** и **16а,b**) и CD₃CN (соединения **3**, **6** и **10с**).

Таблица 4

Спектры ЯМР ¹³С соединений 1а-с, 10а-d, 14 и 16b

Соеди-					Химиче	ские сдвиги	(ДМСО-d ₆),	δ, м. д.*	
нение	2-CH ₃	6-CH ₃	N-CH ₃	C-2	C-3	C-4	C-5	C-6	Сигналы других групп
1 a	18.40	Ι	47.36	160.41	138.84	137.05	143.52	144.74	30.57 (COCH ₃); 197.85 (COCH ₃)
1b	18.69	I	47.27	159.94	139.37	137.06	143.70	144.66	14.18 (CH ₂) ₂ ; 22.21 (CH); 199.81 (CO)
1c	18.88	I	47.13	159.47	138.68	137.58	144.00	144.48	129.22 (C-2',6'); 130.48 (C-3',5'); 133.50 (C-4'); 134.66 (C-1'); 190.60 (<u>C</u> OPh)
7	22.27	17.92	42.08	161.22	127.18	138.80	147.45	151.97	I
10a	18.54	19.82	42.81	159.74	136.49	137.28	146.69	153.58	27.96 (COCH ₃); 196.28 (COCH ₃)
10b	18.75	20.17	42.77	159.13	137.16	137.04	147.60	153.47	14.05 (CH ₂) ₂ ; 22.15 (CH); 199.89 (<u>C</u> O- <i>c</i> -Pr)
10c	19.61	19.61	41.75	158.82	148.05	136.00	148.05	158.82	Ι
10d	18.46	20.57	42.71	158.56	136.39	137.38	147.02	153.59	129.27 (C-2',6'); 130.41 (C-3',5'); 135.49 (C-4'); 134.68 (C-1'); 190.79 (<u>C</u> OPh)
14	19.63	I	43.16	169.88	112.41	156.34	114.67	147.25	Ι
16b	19.38	I	41.48	151.48	105.97	156.05	107.73	143.70	39.48 (N(CH ₃) ₂)
*	Спектр ЯМ	Р ¹³ С соединен	ния 10с снима	ли в CD ₃ CN	-				

580

Таблица 5

		I I I I I I I I I I I I I I I I I I I	
Caamuuanua		ν, cm ⁻¹	
Соединение	NO ₂	NH	C=O
2a	1582, 1321	3301	1632, 1612
2b	1584, 1323	3241	1630, 1618
2c	1580, 1321	3281	1626, 1611
8	1580, 1330	3371	_
9	1528, 1357	3357	_
11a	1555, 1391	3366	1661, 1613
11b	1560, 1384	3373	1658, 1627
11c	1580, 1536, 1357, 1322	3359	—
11d	1562, 1351	3339	1680, 1614
12a	1566, 1348	3308	1638, 1612
12b	1567, 1345	3282	1627, 1606
12d	1552, 1352	3318	1621, 1610
13	1569, 1351	3367	1648, 1615

ИК спектры нитроанилинов

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры получены на приборе Simex FT-801 (на приставке однократного нарушенного внутреннего отражения). Спектры ЯМР ¹Н соединений **1а–с**, **2b**, **3** и **6** записаны на спектрометре Bruker AC-200 (200 МГц), внутренний стандарт ТМС, соединений **4**, **7–16** – на Bruker Advance DRX-400 (400 МГц), внутренний стандарт остаточные протоны дейтерированного растворителя. Спектры ЯМР ¹³С записаны на спектрометре Bruker Advance DRX-400 (100 МГц) с использованием растворителя в качестве внутреннего стандарта. Элементный анализ выполнен на анализаторе Perkin–Elmer CHN Analyzer. Для колоночной хроматографии использовался силикагель марки Merck 60A, 0.060–0.200 мм. Контроль за ходом реакции и чистотой полученных соединений осуществлялся методом TCX на пластинках Silufol UV-254.

Получение четвертичных солей пиридиния 1а-с, 6, 7, 10а, 14 (общая методика). Нагревают 5 ммоль смеси соответствующего пиридина (5-нитро-2-(фенилэтинил)пиридина [1], 3-ацил-2-метил-5-нитропиридина [16], 3-ацетил-2,6-диметил-5-нитропиридина [17], 2,6диметил-3-нитропиридина [18] или 2-метил-4-нитропиридина [19]) и 1.9 г (15 ммоль) диметилсульфата (условия реакции указаны в табл. 1). Реакционную смесь охлаждают, промывают (3 × 10 мл) сухим эфиром, эфир декантируют. Остаток растворяют в 5 мл воды и добавляют к нему насыщенный водный раствор 0.64 г (5.3 ммоль) перхлората натрия, выпавший перхлорат пиридиния отфильтровывают, сушат и перекристаллизовывают.

Перхлорат 1-метил-5-нитро-2-(2-оксо-2-фенилэтил)пиридиния (3). Смесь 1.69 г (5 ммоль) соли 6, 0.4 мл конц. H₂SO₄, 1.56 г (5.2 ммоль) сульфата ртути(II) в 17.5 мл 90% раствора уксусной кислоты нагревают 2 ч при 80 °C. Реакционную смесь фильтруют и добавляют при охлаждении концентрированную хлорную кислоту. Выпавшие кристаллы отфильтровывают и промывают 10% раствором хлорной кислоты.

2-(1-Метил-5-нитропиридин-2(1Н)-илиден)-1-фенилэтанон (4). Смесь 0.24 г (1 ммоль) 2-(5-нитропиридин-2-ил)-1-фенилэтанона [1] и 0.38 г (3 ммоль) диметилсульфата нагревают 6 ч при 100 °С. Смесь охлаждают, промывают (3 × 10 мл) сухим эфиром, эфир декантируют. Остаток растирают с водой и отфильтровывают выпавшие красные кристаллы. Выход 90%, т. пл. 208–209 °С (из этанола).

Спектры ЯМР ¹Н нитроанилинов

Таблица б

Coe-		Химические сдвиги (CDCl ₃), б, м. д. (<i>J</i> , Гц)
дине	N <u>H</u> CH ₃	
ние	(уш. с)	Остальные протоны
2b	9.55	1.03–1.25 (4Н, м, 2СН ₂); 2.65–2.78 (1Н, м, СН); 3.00 (3Н, д, <i>J</i> = 5.1,
		NHC <u>H</u> ₃); 6.69 (1H, \pm , ${}^{3}J = 9.3$, H-3); 8.24 (1H, \pm , ${}^{3}J = 9.3$, ${}^{4}J = 2.4$,
		H-4); 8.98 (1H, π , ${}^{4}J = 2.4$, H-6)
2c	9.30	3.10 (3H, д, $J = 5.0$, NHC <u>H</u> ₃); 6.80 (1H, д, ³ $J = 9.6$, H-3); 7.49–7.56
		(2H, м, C ₆ H ₅); 7.58–7.67 (3H, м, C ₆ H ₅); 8.29 (1H, д. д. ³ <i>J</i> = 9.6, ⁴ <i>J</i> = 2.5,
		H-4); 8.52 (1H, д, ${}^{4}J$ = 2.5, H-6)
8	8.09	2.37 (3H, с, 5-CH ₃); 3.03 (3H, д, J = 5.3, NHC <u>H₃</u>); 6.47 (1H, д. д,
		${}^{3}J = 8.7, {}^{4}J = 1.5, \text{H-4}$); 6.62 (1H, уш. с, H-6); 8.07 (1H, д, ${}^{3}J = 8.7, \text{H-3}$)
9	8.89	2.61 (3H, с, 3-CH ₃); 2.98 (3H, уш. с, NHC <u>H₃</u>); 6.96 (1H, м, H-2); 7.00
		(1H, м, H-6); 8.04 (1H, д, ³ J = 8.7, H-5)
11 a	8.34	2.59 (3H, с, 2-CH ₃); 2.64 (3H, с, СОСН ₃); 3.10 (3H, д, <i>J</i> = 5.1, NHC <u>H₃</u>);
		6.64 (1H, c, H-3); 8.72 (1H, c, H-6)
11b	8.31	1.01-1.06 (2Н, м, СН ₂); 1.17-1.22 (2Н, м, СН ₂); 2.48-2.55 (1Н, м,
		CH); 2.57 (3H, c, 2-CH ₃); 3.09 (3H, д, <i>J</i> = 5.2, NHC <u>H₃</u>); 6.65 (1H, c,
		H-3); 8.83 (1H, c, H-6)
11c	8.41	2.72 (3H, c, 5-CH ₃); 3.14 (3H, д, <i>J</i> = 5.3, NHC <u>H₃</u>); 6.70 (1H, c, H-6);
		9.11 (1H, c, H-3)
11d	8.31	2.10 (3H, c, 2-CH ₃); 3.08 (3H, д, <i>J</i> = 5.1, NHC <u>H₃</u>); 6.72 (1H, c, H-3);
		7.29–7.35 (2H, м, C ₆ H ₅); 7.42–7.47 (3H, м, C ₆ H ₅); 8.63 (1H, с, H-6)
12a	9.36	2.63 (3H, c, 4-CH ₃); 2.68 (3H, c, COCH ₃); 3.00 (3H, д, J = 5.3, NH-
		CH ₃); 6.48 (1H, c, H-3); 8.71 (1H, c, H-6)
12b	9.34	1.03–1.10 (2Н, м, СН ₂); 1.16–1.22 (2Н, м, СН ₂); 2.67–2.74 (4Н, м,
		СН, 4-СН ₃); 2.98 (3H, д, <i>J</i> = 5.1, NHC <u>H₃</u>); 6.48 (1H, с, H-3); 8.98
		(1H, c, H-6)
12d	9.10	2.72 (3H, c, 4-CH ₃); 3.06 (3H, д, <i>J</i> = 4.7, NHC <u>H₃</u>); 6.57 (1H, c, H-3);
		7.46–7.67 (5H, м, C ₆ H ₅); 8.49 (1H, с, H-6)
13	8.31	2.53 (3H, c, COCH ₃); 3.10 (3H, д, <i>J</i> = 5.3, NHC <u>H₃</u>); 6.73 (1H, c, H-3);
		7.44–7.51 (2Н, м, С ₆ Н ₅); 7.55–7.62 (1Н, м, С ₆ Н ₅); 7.73–7.78 (2Н, м,
		C_6H_5 ; 8.29 (1H, c, H-6)

ИК спектр, v, см⁻¹: 1699 (С=О), 1541, 1362 (NO₂). Спектр ЯМР ¹Н (ДМСО-d₆), δ , м. д. (*J*, Гц): 3.76 (3H, с, NCH₃); 6.10 (1H, с, =CH–); 7.44–7.54 (3H, м, C₆H₅); 7.85 (1H, д. д, ³*J* = 10.3, ⁴*J* = 2.0, H-4); 7.93–7.98 (2H, м, C₆H₅); 8.77 (1H, д, ³*J* = 10.3, H-3); 9.12 (1H, д, ⁴*J* = 2.0, H-6). Найдено, %: С 65.47; Н 4.63; N 11.15. C₁₄H₁₂N₂O₃. Вычислено, %: С 65.62; Н 4.72; N 10.93.

Получение четвертичных солей пиридиния 10b,с,d (общая методика). К раствору 5 ммоль соответствующего пиридина (2,6-диметил-5-нитро-3-(циклопропилкарбонил)пиридина [17], 3-бензоил-2,6-диметил-5-нитропиридина [17] или 2,6-диметил-3,5-динитропиридина [17]) в 15 мл 1,2-дихлорэтана при охлаждении до 0 °С прибавляют по каплям при перемешивании раствор 1.71 г (15 ммоль) метилового эфира фторсульфоновой кислоты в 3 мл 1,2-дихлорэтана. Смесь перемешивают 30 мин при охлаждении и 5 сут при комнатной температуре, разбавляют эфиром и отфильтровывают выпавший осадок.

Перхлорат 1,2,6-триметил-3,5-динитропиридиния (10с). После нагревания смесь охлаждают, промывают (3 × 20 мл) сухим эфиром, эфир декантируют. Остаток растворяют при нагревании в 10 мл 10% хлорной кислоты, охлаждают и отфильтровывают выпавшие кристаллы.

\sim	
а	
Ц	
И	
5	
0	
а	
Ε	

Спектры ЯМР¹³С (CDCl₃) нитроанилинов

Соеди-						Химь	ические сдв	ыги, д, м. д.
нение	N-CH ₃	C-1	C-2	C-3	C-4	C-5	C-6	Сигналы других групп
2a	29.65	155.44	115.87	129.87	135.22	130.03	111.11	27.74 (COCH3); 200.43 (COCH3)
$2\mathbf{b}$	29.61	155.20	116.62	129.10	135.46	129.70	110.92	11.69 (CH ₂); 17.26 (CH); 201.62 (<u>C</u> 0-c-Pr)
2c	29.79	156.05	115.54	129.96	135.24	132.24	111.00	128.53 (C-2',6'); 129.04 (C-3',5'); 131.89 (C-4'); 138.78 (C-1');
								198.47 (<u>C</u> OPh)
æ	29.62	147.81	129.97	126.68	116.89	146.34	112.91	22.14 (5-CH ₃)
6	33.63	147.06	119.98	137.20	143.46	127.52	114.92	21.51 (3-CH ₃)
11a	29.78	149.24	128.91	115.76	124.55	147.40	130.76	23.33 (5-CH ₃); 28.35 (CO <u>C</u> H ₃); 197.38 (<u>C</u> OCH ₃)
11b	29.74	148.18	129.10	115.43	126.23	147.13	129.49	11.44 (CH ₂); 18.89 (CH); 22.47 (5-CH ₃); 200.03 (<u>C</u> 0- <i>c</i> -Pr)
11c	30.06	147.50	129.18	115.82	143.13	136.87	125.98	22.46 (5-CH ₃)
11d	29.91	149.53	130.34	115.30	127.20	146.85	128.13	29.47 (5-CH ₃); 128.13 (C-2',6'); 128.58 (C-3',5'); 129.16 (C-4');
								140.19 (C-1'); 198.97 (<u>C</u> OPh)
12a	29.48	154.12	115.08	131.98	135.90	142.45	113.73	28.86 (5-CH ₃); 27.60 (CO <u>C</u> H ₃); 200.06 (<u>C</u> OCH ₃)
12b	29.48	153.95	115.80	131.26	136.11	142.13	113.62	11.54 (CH ₂); 17.11 (CH); 22.88 (5-CH ₃); 201.27 (<u>C</u> O- <i>c</i> -Pr)
12d	29.63	154.74	114.61	131.75	135.99	142.38	113.68	22.84 (5-CH ₃); 128.43 (C-2',6'); 128.98 (C-3',5'); 134.39 (C-4');
								138.90 (C-1'); 198.09 (<u>C</u> OPh)
13	29.80	148.45	128.78	115.38	125.22	138.25	130.49	21.68 (COCH3); 128.46 (C-2',6'); 129.89 (C-3',5'); 132.75 (C-4');
	_		_		_			147.09 (C-1'); 195.40 (COCH ₃)

575

Получение нитроанилинов 2а-с (общая методика). А. К раствору 3 ммоль соответствующей соли 1а-с в 2.3 мл ДМФА добавляют 30 мл 30% спиртового раствора метиламина и перемешивают 20 ч. Реакционную смесь разбавляют водой и нейтрализуют 50% раствором уксусной кислоты. Выпавший осадок отфиль- тровывают. Очищают колоночной хроматографией (элюент хлороформ). Пере- кристаллизовывают соединения 2а-с из этанола.

[2-(Метиламино)-5-нитрофенил](фенил)метанон (2с). Б. Из четвертичной соли 3. К раствору 1.07 г (3 ммоль) соли 3 в 6 мл этанола добавляют 6 мл 10% раствора гидроксида натрия. Смесь перемешивают 24 ч при комнатной температуре, разбавляют водой и нейтрализуют 50% раствором уксусной кислоты. Выпавший осадок отфильтровывают.

Б. Из ангидрооснования **4**. К раствору 0.77 г (3 ммоль) ангидрооснования **4** в 6 мл этанола добавляют 6 мл 10% раствора гидроксида натрия. Реакцию проводят аналогично предыдущему.

Метил(5-метил-2-нитрофенил)амин (8) и метил(3-метил-4-нитрофенил)амин (9). Б. К суспензии 0.54 г (2 ммоль) соли 7 в 8 мл этанола прибавляют 4 мл 10% раствора гидроксида натрия. Реакционную смесь перемешивают 48 ч при комнатной температуре, разбавляют водой и нейтрализуют 50% раствором уксусной кислоты. Выпавшее масло экстрагируют бензолом и сушат MgSO₄. После удаления растворителя разделяют колоночной хроматографией (элюент хлороформ).

В. Смесь 0.54 г (2 ммоль) соли 7 и 40 мл 41% водного раствора метиламина перемешивают 48 ч при комнатной температуре. Нейтрализуют 50% раствором уксусной кислоты, экстрагируют выпавшее масло бензолом и сушат MgSO₄. После удаления растворителя разделяют колоночной хроматографией и перекристаллизовывают из этанола.

Получение нитроанилинов 11а–d, 12а,b,d и 13 (общая методика). В. К раствору 2 ммоль соответствующей соли 10а–d в 4 мл ДМФА прибавляют 40 мл 41% водного раствора метиламина и перемешивают при комнатной температуре 2 ч. Нейтрализуют 50% раствором уксусной кислоты и отфильтровывают выпавший осадок (в случае соединения 10с после нейтрализации экстрагируют этилацетатом, сушат и после удаления растворителя очищают колоночной хроматографией (элюент хлороформ). Перекристаллизовывают из этанола.

1,2-Диметилпиридин-4-(1Н)-он (15). Смесь 0.25 г (1 ммоль) соли пиридиния **14**, 1.84 г анионита (форма OH[¬]) в 14 мл этанола кипятят 2 ч. Реакционную смесь фильтруют от анионита, фильтрат упаривают. Очищают колоночной хроматографией (элюент этанол). Выход 48%, т. пл. 50–55 °C (из толуола) (т. пл. 50–55 °C [20]). Спектр ЯМР ¹Н (ДМСО-d₆), δ , м. д. (*J*, Гц): 2.21 (3H, с, 2-CH₃); 3.52 (3H, с, NCH₃); 5.96 (1H, д. д, ³*J* = 7.5, ⁴*J* = 2.4, H-5); 6.02 (1H, д, ⁴*J* = 2.4, H-3); 7.59 (1H, д, ³*J* = 7.5, H-6). Спектр ЯМР ¹³С (ДМСО-d₆), δ , м. д.: 178.12 (C-4); 149.64 (C-2); 143.15 (C-6); 117.92 (C-5); 116.38 (C-3); 40.42 (NCH₃); 19.48 (2-CH₃).

Получение перхлоратов 4-алкиламино-1,2-диметилпиридиния 16а,b (общая методика). Раствор 0.25 г (1 ммоль) соли 14 в 30 мл 30% спиртового раствора метиламина или диметиламина, соответственно, перемешивают 3 сут. После удаления растворителя остаток перекристаллизовывают из этанола.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант 07-03-00783-а).

СПИСОК ЛИТЕРАТУРЫ

- 1. Г. П. Сагитуллина, М. А. Воронцова, А. К. Гаркушенко, Н. В. Поендаев, Р. С. Сагитуллин, *ЖОрХ*, **46**, 1820 (2010).
- 2. А. Н. Кост, Д. В. Яшунский, С. П. Громов, Р. С. Сагитуллин, *XГС*, 1268 (1980). [*Chem. Heterocycl. Comp.*, **16**, 962 (1980)].
- 3. А. Н. Кост, Р. С. Сагитуллин, С. П. Громов, *ХГС*, 98 (1979). [*Chem. Heterocycl. Comp.*, **15**, 87 (1979)].
- 4. Р. С. Сагитуллин, С. П. Громов, А. Н. Кост, ДАН, 236, 634 (1977).
- 5. А. Н. Кост, Л. Г. Юдин, Р. С. Сагитуллин, А. Муминов, *ХГС*, 1566 (1978). [*Chem. Heterocycl. Comp.*, **14**, 1278 (1978)].
- 6. А. Н. Кост, Р. С. Сагитуллин, С. П. Громов, ДАН, **230**, 1106 (1976).
- Т. В. Ступникова, Б. П. Земский, Р. С. Сагитуллин, А. Н. Кост, *ХГС*, 291 (1982). [*Chem. Heterocycl. Comp.*, 18, 217 (1982)].
- 8. J. W. Bunting, in: *Advances in Heterocyclic Chemistry*, A. R. Katritzky, A. J. Boulton (Eds.), Acad Press, New York, 1979, vol. 25, p. 2.
- 9. Е. Г. Атавин, В. О. Тихоненко, Р. С. Сагитуллин, *ХГС*, 923 (2001). [*Chem. Heterocycl. Comp.*, **37**, 850 (2001)].
- 10. O. Mumm, G. Hingst, Ber., 56, 2301 (1923).
- 11. О. Н. Чупахин, Д. Г. Береснев, Успехи химии, 71, 803 (2002).
- 12. J. F. K. Wilshire, Aust. J. Chem., 35, 2497 (1982).
- L. H. Sternbach, R. Ian Fryer, O. Keller, W. Metlesics, G. Sach, N. Steiger, J. Med. Chem., 6, 261 (1963).
- 14. O. Fischer, M. Rigaud, Ber., 35, 1258 (1902).
- 15. R. Stroermer, Ber., 31, 2523 (1898).
- 16. Г. П. Сагитуллина, А. К. Гаркушенко, Е. О. Силина, Р. С. Сагитуллин, *ХГС*, 1193 (2009). [*Chem. Heterocycl. Comp.*, **45**, 948 (2009)].
- 17. G. P. Sagitullina, A. K. Garkushenko, E. G. Atavin, R. S. Sagitullin, *Mendeleev Commun.*, **19**, 155 (2009).
- 18. E. Plazek, Ber., 72, 577 (1939).
- 19. А. Н. Кост, Р. С. Сагитуллин, С. П. Громов, *XГС*, 922 (1976). [*Chem. Heterocycl. Comp.*, **12**, 766 (1976)].
- 20. P. Patel, J. A. Joule, J. Chem. Soc., Chem. Commun., 1021 (1985).

Омский государственный университет им. Ф. М. Достоевского, кафедра органической химии, пр. Мира, 55а, Омск 644077, Россия e-mail: Sagitullina@orgchem.univer.omsk.su Поступило 06.07.2010