Е. А. Сидорова, Е. С. Костенко, И. С. Арустамова, Е. А. Кайгородова, Л. Д. Конюшкин^{а*}

ЗАМЕЩЁННЫЕ 2-АМИНОНИКОТИНАМИДЫ В СИНТЕЗЕ ПИРИДО[2,3-d]ПИРИМИДИН-4(1H)-ОНОВ, 2,3-ДИГИДРОПИРИДО-[2,3-d]ПИРИМИДИН-4(1H)-ОНОВ И 11b,12-ДИГИДРОПИРИДО-[2',3':4,5]ПИРИМИДО[2,1-a]ИЗОИНДОЛ-5,7-ДИОНОВ

Изучены реакции 2-аминоникотинамидов с триэтилортоформиатом, хлорангидридами карбоновых кислот, альдегидами и 2-формилбензойной кислотой. В результате получены пиридо[2,3-d] пиримидин-4(1H)-оны, 2,3-дигидропиридо-[2,3-d] пиримидин-4(1H)-оны и 5,7,11b,12-тетрагидропиридо[2',3':4,5] пиримидо-[2,1-a] изоиндол-5,7-дионы.

Ключевые слова: 2-аминоникотинамиды, 2,3-дигидропиридо[2,3-d]пиримидин-4(1H)-оны, пиридо[2,3-d]пиримидин-4(1H)-оны, 5,7,11b,12-тетрагидропиридо-[2',3':4,5]пиримидо[2,1-a]изоиндол-5,7-дионы, гетероциклизация.

Интерес к аннелированным пиридинам обусловлен широким спектром их практического применения. Эти соединения используются в качестве лекарственных препаратов, например, 2,3-дигидропиридо[2,3-d]пиримидин-4(1H)-оны известны как диуретические агенты [1–4]. Конденсированные пиридины также применяются в качестве средств защиты растений [5], в органическом синтезе [6]. В литературе описан синтез 2-замещенных 1-фенилпиридо[2,3-d]пиримидин-4(1H)-онов с невысокими выходами взаимодействием 2-(фениламино)никотинамидов с уксусным ангидридом [7, 8]. Настоящая работа посвящена разработке методов синтеза новых пиридо[2,3-d]пиримидин-4(1H)-онов.

Для получения 2-аминоникотинамидов $1\mathbf{a}$ — \mathbf{d} использовались соответствующие никотинонитрилы $2\mathbf{a}$ — \mathbf{d} (схема 1). Синтез нитрилов $2\mathbf{a}$ — \mathbf{c} описан в работах [9, 10], соединения $2\mathbf{d}$ — в экспериментальной части. При кипячении нитрилов $2\mathbf{a}$ — \mathbf{d} в 20% этанольном растворе КОН образуются 2-аминоникотинамиды $1\mathbf{a}$ — \mathbf{d} с выходами выше 75% (табл. 1).

Схема 1

$$\begin{array}{c|ccccc} R & & & & R & O \\ \hline & & & & & & \\ Me & & & & & \\ NH & & & & & \\ NH & & & & & \\ R^1 & & & & & \\ \mathbf{2a-d} & & & & \mathbf{1a-d} \end{array}$$

1,2 a R = Me, **b-d** R = MeOCH₂; **a,b** R¹ = PhCH₂, **c** R¹ = 4-MeOC₆H₄, **d** R¹ = 4-FC₆H₄

Соединения $1\mathbf{a}-\mathbf{d}$ — бесцветные кристаллические вещества, хорошо растворимые в полярных органических растворителях. В ИК спектрах соединений $1\mathbf{a}-\mathbf{d}$ по сравнению со спектрами исходных нитрилов $2\mathbf{a}-\mathbf{d}$ исчезают полосы поглощения нитрильной группы и появляются характерные полосы поглощения карбонильной группы амида при 1640-1630 см⁻¹ (табл. 2). В спектрах ЯМР ¹Н соединений $1\mathbf{a}-\mathbf{d}$ наблюдается расщепление сигналов атомов водорода группы NH_2 , по-видимому, обусловленное разницей пространственного окружения протонов NH-anti и NH-sin (табл. 3).

Взаимное расположение аминной и амидной групп 2-аминоникотинамидов 1 обусловливает их перспективность для построения конденсированных гетероциклических систем. Соединения 1a-d использованы для аннелирования частично гидрированного пиримидинового цикла к пиридиновому по схеме [NC₃N + C]. При этом в роли одноуглеродного компонента могут выступать хлорангидриды карбоновых кислот, триэтилортоформиат, а также альдегиды (схема 2).

Так, кипячение никотинамида **1b** в триэтилортоформиате приводит к образованию незамещенного по положению 2 пиридо[2,3-*d*]пиримидин-4(1H)-она **3a** с выходом 57%. Пиридопиримидиноны **3b-d** получены взаимодействием соединений **1b**,**c** с хлорангидридами карбоновых кислот **4a-c** при кипячении в диоксане. Выходы продуктов **3b-d** составляют 76–90% (табл. 1).

Схема 2

MeO O O MeO O O MeO NH NH R³CHO
$$6\mathbf{a}$$
- \mathbf{i} p -TsOH \mathbf{i} \mathbf{i}

 $\mathbf{5}$ а $\mathbf{R} = \mathrm{Me}$, \mathbf{b} —і $\mathbf{R} = \mathrm{MeOCH_2}$; $\mathbf{3b}$, \mathbf{c} , $\mathbf{5a}$ — \mathbf{g} $\mathbf{R}^1 = \mathrm{PhCH_2}$, $\mathbf{3d}$ $\mathbf{R}^1 = 4$ -MeOC₆H₄, $\mathbf{5h}$, i $\mathbf{R}^1 = 4$ -FC₆H₄; $\mathbf{3b}$, 4a $\mathbf{R}^2 = \mathrm{Et}$, 3c, 4b $\mathbf{R}^2 = n$ -Bu, 3d, 4c $\mathbf{R}^2 = i$ -Bu; $\mathbf{5}$, 6 a $\mathbf{R}^3 = 4$ -BrC₆H₄, b $\mathbf{R}^3 = \mathbf{1}$ -Bu; $\mathbf{5}$, 6 a $\mathbf{R}^3 = 4$ -BrC₆H₄, $\mathbf{6}$ $\mathbf{R}^3 = \mathbf{1}$ -Br $\mathbf{6}$

В ИК спектрах соединений $\bf 3a-d$ по сравнению со спектрами исходных никотинамидов $\bf 1b,c$ исчезают полосы поглощения валентных колебаний связей N–H аминной и амидной групп и появляется интенсивная полоса поглощения валентных колебаний связи C=N в области 1600-1595 см⁻¹. В спектре ЯМР ¹H соединения $\bf 3a$ сигнал протона пиримидинового цикла проявляется в виде синглета при $\bf 8.84$ м. д. В спектрах соединений $\bf 3b-d$ отсутствуют сигналы NH протонов аминной и амидной групп, имеющихся в спектрах исходных аминоникотинамидов $\bf 1b,c$, и появляются сигналы протонов заместителя $\bf R^2$ в характерных для них областях (табл. $\bf 3$).

2,3-Дигидропиридо[2,3-d]пиримидин- $4(1\mathrm{H})$ -оны $5\mathbf{a}$ - \mathbf{i} синтезированы с выходами 59-92% взаимодействием соединений $1\mathbf{a}$, \mathbf{b} , \mathbf{d} с альдегидами $6\mathbf{a}$ - \mathbf{i} в толуоле с использованием каталитических количеств p-TsOH при азеотропной отгонке воды (табл. 1).

ИК спектры 2,3-дигидропиридопиримидинонов **5** в отличие от спектров пиридопиримидинонов **3** содержат полосу поглощения группы NH в области 3190–3120 см $^{-1}$. Образование дигидропиридопиримидинового цикла соединений **5** подтверждается наличием в спектрах ЯМР 1 H сигналов метинового и NH-протонов в областях 4.37–6.63 и 8.23–9.02 м. д., соответственно, и спин-спиновым взаимодействием между ними (J=2.0–5.2 Γ ц), а также появлением сигналов протонов заместителя \mathbb{R}^{3} (табл. 3).

Логично было бы предположить, что при взаимодействии 2-аминоникотинамидов 1a,b,d с 2-формилбензойной кислотой образуются не только 2-(4-оксо-1,2,3,4-тетрапиридо[2,3-d]пиримидин-2-ил)бензойные кислоты 5j,k,l, но и продукты их гетероциклизации — 5,7,11b,12-тетрагидропиридо-[2',3':4,5]пиримидо[2,1-a]изоиндол-5,7-дионы 7a—c (схема 3). Действительно, на примере никотинамида 1b обнаружено, что при введении в реакцию с ним 2-формилбензойной кислоты в условиях, описанных выше для других альдегидов, в реакционной смеси наряду с кислотой 5j присутствует пиридопиримидоизоиндол 7b, при этом их соотношение зависит от времени проведения реакции.

Экспериментально найдены условия синтеза индивидуальных соединений **5j** и **7b**. Промежуточное соединение **5j** накапливается в реакционной смеси в достаточных для выделения количествах при кипячении в течение 5 ч.

Схема 3

5k, **7a** R = Me, **5l**, **7b**, **c** R = MeOCH₂; **5k**, **7a**, **b** R¹ = PhCH₂, **5l**, **7c** R¹ = 4-FC₆H₄

Таблица 1 Физико-химические характеристики синтезированных соединений

Соеди-	Брутто-формула	<u>Найдено,</u> % Вычислено, %			Т. пл., ℃	Выход, %
нение		С	Н	N	1. III., C	рыход, 70
1a	C ₁₅ H ₁₇ N ₃ O	70.49 70.56	<u>6.65</u> 6.71	16.61 16.46	151–152	84
1b	$C_{16}H_{19}N_3O_2$	67.27 67.35	6.78 6.71	14.78 14.73	127–128	81
1c	$C_{16}H_{19}N_3O_3$	63.81 63.77	6.37 6.36	13.99 13.94	145–146	87
1d	$C_{15}H_{16}FN_3O_2$	62.34 62.27	<u>5.59</u> 5.57	14.45 14.52	140–141	75
2d	$C_{15}H_{14}FN_3O$	66.44 66.41	5.16 5.20	15.41 15.49	123–124	81
3a	$C_{17}H_{17}N_3O_2$	69.05 69.14	5.73 5.80	14.28 14.23	157–158	57
3b	$C_{19}H_{21}N_3O_2$	70.44 70.57	6.61 6.55	13.06 12.99	134–135	76
3c	$C_{21}H_{25}N_3O_2$	72.00 71.77	7.15 7.17	12.03 11.96	148–149	90
3d	$C_{21}H_{25}N_3O_3$	68.70 68.64	6.89 6.86	11.51 11.44	148–149	80
5a	$C_{22}H_{20}BrN_3O$	62.63 62.57	4.81 4.77	9.89 9.95	203–204	59
5b	$C_{23}H_{29}N_3O_2$	72.67 72.79	7.93 7.70	11.20 11.07	180–181	92
5c	$C_{24}H_{25}N_3O_2$	74.20 74.39	6.41 6.50	10.78 10.84	167–168	90
5d	$C_{23}H_{21}Cl_2N_3O_2$	62.57 62.45	4.69 4.79	9.56 9.50	164–165	69
5e	$C_{24}H_{22}BrN_3O_4$	57.99 58.08	4.51 4.47	8.35 8.47	184–185	76
5f	$C_{22}H_{22}N_4O_2$	70.44 70.57	5.98 5.92	14.91 14.96	174–175	77
5g	$C_{22}H_{23}N_3O_3$	70.07 70.01	6.12 6.14	11.11 11.13	133–134	67
5h	$C_{22}H_{19}F_2N_3O_2$	66.78 66.83	4.81 4.84	10.71 10.63	165–166	65
5i	$C_{23}H_{22}FN_3O_3$	67.87 67.80	5.51 5.44	10.43 10.31	166–167	70
5j	$C_{24}H_{23}N_3O_4$	68.91 69.05	5.59 5.55	$\frac{10.13}{10.07}$	240–241	66
7a	$C_{23}H_{19}N_3O_2$	74.88 74.78	<u>5.15</u> 5.18	11.44 11.37	208–209	70
7b	$C_{24}H_{21}N_3O_3$	72.14 72.17	5.32 5.30	10.59 10.52	190–191	79
7c	$C_{23}H_{18}FN_3O_3$	68.55 68.48	4.52 4.50	10.37 10.42	175–176	74

 $T\ a\ б\ \pi\ u\ ц\ a\ 2$ ИК и масс-спектры синтезированных соединений

Соеди-	ИК спектр, v, см ⁻¹	Масс-спектр, m/z ($I_{\text{отн}}$, %)
1a	3400, 3200 (NH), 1635 (C=O)	255 [M] ⁺ (4.5), 238 (16), 237 (82), 236 (48), 209 (15), 132 (36), 107 (35), 106 (100), 91 (98)
1b	3400, 3375, 3185 (NH), 1630 (C=O)	285 [M] ⁺ (7.5), 253 (44), 236 (16), 208 (28), 176 (30), 133 (20), 106 (37), 91 (100)
1c	3370, 3270, 3150 (NH), 1640 (C=O)	302 (15), 301 [M] ⁺ (99), 284 (91), 283 (63), 269 (100), 268 (36), 253 (22), 252 (21), 226 (33), 107 (44)
1d	3295, 3190 (NH), 1640 (C=O)	290 (16), 289 [M] ⁺ (98), 273 (17), 272 (100), 271 (37), 258 (16), 257 (68), 214 (70), 213 (34), 95 (25)
2d	3375 (NH), 2190 (C≡N)	272 (16), 271 [M] ⁺ (100), 270 (65), 240 (58), 239 (39), 238 (34), 95 (19)
3a	1630 (C=O), 1600 (C=N)	295 [M] ⁺ (12), 280 (17), 204 (8), 91 (100)
3b	1640 (C=O), 1595 (C=N)	323 [M] ⁺ (13), 308 (12), 232 (10), 91 (100)
3c	1620 (C=O), 1600 (C=N)	351 [M] ⁺ (12), 336 (15), 260 (7), 91 (100)
3d	1620 (C=O), 1600 (C=N)	367 [M] ⁺ (20), 352 (100), 310 (21), 226 (23), 198 (15), 149 (21), 121 (16)
5a	3170 (NH), 1650 (C=O)	423, 421 [M] ⁺ (3), 209 (43), 107 (25), 91 (100)
5b	3120 (NH), 1660 (C=O)	379 [M] ⁺ (2), 297 (19), 296 (100), 91 (54)
5c	3185 (NH), 1660 (C=O)	387 [M] ⁺ (16), 355 (2), 296 (14), 210 (15), 91 (100)
5d	3185 (NH), 1655 (C=O)	443 [M] ⁺ (2), 441 [M] ⁺ (3), 210 (11), 91 (100)
5e	3165 (NH), 1660 (C=O)	497, 495 [M] ⁺ (47), 482 (32), 480 (34), 452 (20), 450 (20), 296 (67), 253 (29), 210 (37), 91 (100)
5f	3180 (NH), 1660 (C=O)	374 [M] ⁺ (16), 359 (8), 296 (13), 210 (18), 91 (100)
5g	3175 (NH), 1630 (C=O)	377 [M] ⁺ (4), 210 (9), 91 (100)
5h	3190 (NH), 1670 (C=O)	395 [M] ⁺ (18), 380 (8), 273 (16), 272 (100), 271 (27), 257 (44), 214 (50), 213 (26), 122 (24), 95 (54)
5i	3190 (NH), 1650 (C=O)	407 [M] ⁺ (28), 392 (8), 273 (18), 272 (100), 271 (25), 257 (38), 214 (35), 213 (17), 95 (10)
5 j	3205 (NH), 1670, 1620 (C=O)	417 [M] ⁺ (1), 326 (8), 133 (12), 105 (7), 91 (100)
7a	1730, 1640 (C=O)	369 [M] ⁺ (26), 238 (15), 237 (79), 210 (17), 209 (60), 107 (47), 106 (21), 91 (100)
7b	1725, 1645 (C=O)	399 [M] ⁺ (8), 267 (12), 210 (10), 91 (100)
7 c	1765, 1665 (C=O)	403 [M] ⁺ (62), 388 (50), 272 (100), 257 (50), 214 (49), 213 (29), 132 (39), 104 (38), 95 (41)

Спектры ЯМР ¹Н синтезированных соединений

Соеди-	Химические сдвиги (ДМСО- d_6), δ , м. д. (J , Γ ц)
1	2
1a	2.20 (3H, c, 6-CH ₃); 2.23 (3H, c, 4-CH ₃); 4.53 (2H, д, <i>J</i> = 5.8, NCH ₂); 6.30 (1H, т, <i>J</i> = 5.8, NH); 6.43 (1H, с, H-5); 7.20 (1H, т, <i>J</i> = 7.0, H-4 Ph); 7.28–7.35 (4H, м, H-2,3,5,6 Ph); 7.57, 7.63 (2H, два с, CONH ₂)
1b	2.27 (3H, c, CH ₃); 3.28 (3H, c, OCH ₃); 4.38 (2H, c, CH ₂ O); 4.56 (2H, д, <i>J</i> = 5.8, NCH ₂); 6.49 (1H, c, H-5); 6.60 (1H, т, <i>J</i> = 5.8, NH); 7.20 (1H, т, <i>J</i> = 7.2, H-4 Ph); 7.29 (2H, т, <i>J</i> = 7.2, H-3,5 Ph); 7.33 (2H, д, <i>J</i> = 7.2, H-2,6 Ph); 7.50, 7.66 (2H, два c, CONH ₂)
1 c	2.32 (3H, c, CH ₃); 3.32 (3H, c, OCH ₃); 3.72 (3H, c, C ₆ H ₄ OC <u>H₃</u>); 4.47 (2H, c, CH ₂ O); 6.70 (1H, c, H-5); 6.85 (2H, π , J = 9.0, H-3,5 Ar); 7.51 (2H, π , J = 9.0, H-2,6 Ar); 7.77, 7.88 (2H, π Ba c, CONH ₂); 8.32 (1H, c, NH)
1d	2.37 (3H, c, CH ₃); 3.31 (3H, c, OCH ₃); 4.46 (2H, c, CH ₂ O); 6.76 (1H, c, H-5); 7.09 (2H, т, <i>J</i> = 8.9, H-3,5 Ar); 7.64 (2H, д. д, <i>J</i> = 5.0, <i>J</i> = 8.9, H-2,6 Ar); 7.78, 7.90 (2H, два с, CONH ₂); 8.48 (1H, c, NH)
2d	2.36 (3H, c, CH ₃); 3.38 (3H, c, OCH ₃); 4.50 (2H, c, CH ₂ O); 6.85 (1H, c, H-5); 7.13 (2H, т, <i>J</i> = 8.9, H-3,5 Ar); 7.59 (2H, д. д, <i>J</i> = 5.0, <i>J</i> = 8.9, H-2,6 Ar); 9.0 (1H, c, NH)
3a	2.57 (3H, c, CH ₃); 3.46 (3H, c, OCH ₃); 4.97 (2H, c, CH ₂ O); 5.47 (2H, c, NCH ₂); 7.27 (1H, τ , J = 7.3, H-4 Ph); 7.33 (2H, τ , J = 7.3, H-3,5 Ph); 7.41 (2H, τ , J = 7.3, H-2,6 Ph); 7.49 (1H, c, H-6); 8.84 (1H, c, H-2)
3b	1.11 (3H, т, J = 7.3, CH ₂ CH ₃); 2.53 (3H, c, CH ₃); 2.75 (2H, к, J = 7.3, CH ₂ CH ₃); 3.49 (3H, c, OCH ₃); 5.05 (2H, c, CH ₂ O); 5.79 (2H, уш. c, NCH ₂); 7.13 (2H, д, J = 7.3, H-2,6 Ph); 7.27 (1H, т, J = 7.3, H-4 Ph); 7.33 (2H, т, J = 7.3, H-3,5 Ph); 7.52 (1H, c, H-6)
3c	0.79 (3H, т, J = 7.5, (CH ₂) ₃ CH ₃); 1.22–1.30 (2H, м, CH ₂ CH ₂ CH ₂ CH ₃); 1.54–1.62 (2H, м, CH ₂ CH ₂ CH ₂ CH ₃); 2.53 (3H, c, CH ₃); 2.71 (2H, т, J = 7.5, CH ₂ C ₃ H ₇); 3.49 (3H, c, OCH ₃); 5.05 (2H, c, CH ₂ O); 5.80 (2H, yiii. c, NCH ₂); 7.14 (2H, д, J = 7.4, H-2,6 Ph); 7.27 (1H, т, J = 7.4, H-4 Ph); 7.34 (2H, т, J = 7.4, H-3,5 Ph); 7.52 (1H, c, H-6)
3d	0.82 (6H, π , $J = 6.8$, 2CH ₃); 2.14 (1H, π , CH _{(CH₃)₂); 2.22 (2H, π, $J = 6.8$, CH₂CH(CH₃)₂); 2.34 (3H, c, CH₃); 3.48 (3H, c, OCH₃); 3.86 (3H, c, C₆H₄OCH₃); 5.06 (2H, c, CH₂O); 7.11 (2H, π, $J = 8.9$, H-3,5 Ar); 7.33 (2H, π, $J = 8.9$, H-2,6 Ar); 7.44 (1H, c, H-6)}
5a	2.28 (3H, c, 7-CH ₃); 2.49 (3H, c, 5-CH ₃); 4.07, 5.58 (2H, два д, <i>J</i> = 15.6, NCH ₂); 5.64 (1H, д, <i>J</i> = 4.6, H-2); 6.47 (1H, c, H-6); 7.16 (2H, д, <i>J</i> = 8.5, H-3',5' Ar); 7.26 (1H, м, H-4 Ph), 7.31–7.35 (4H, м, H-2,3,5,6 Ph); 7.55 (2H, д, <i>J</i> = 8.5, H-2',6' Ar); 8.63 (1H, д, <i>J</i> = 4.6, NH)
5b	$0.80-1.10$ (5H, м, H_{ax} -2-6 циклогексил); $1.40-1.67$ (6H, м, H_{eq} -1-6, циклогексил); 2.26 (3H, с, CH ₃); 3.37 (3H, с, OCH ₃); 4.25 , 5.54 (2H, два д, $J=15.6$, NCH ₂); 4.37 (1H, т, $J=5.2$, H-2); 4.75 , 4.88 (2H, два д, $J=16.7$, CH ₂ O); 6.69 (1H, с, H-6); 7.23 (1H, м, H-4 Ph); $7.29-7.33$ (4H, м, H-2,3,5,6 Ph); 8.23 (1H, д, $J=5.2$, NH)
5c	2.26 (3H, c, $C_6H_4C_{H_3}$); 2.33 (3H, c, C_{H_3}); 3.36 (3H, c, C_{H_3}); 4.00, 5.60 (2H, два д, $J=15.6$, $N_{C_{H_2}}$); 4.77, 4.89 (2H, два д, $J=16.8$, C_{H_2} 0); 5.58 (1H, уш. c, H-2); 6.80 (1H, c, H-6); 7.09 (2H, д, $J=8.2$ H-3',5' Ar); 7.13 (2H, д, $J=8.2$, H-2',6' Ar); 7.26 (1H, м, H-4 Ph); 7.31–7.34 (4H, м, H-2,3,5,6 Ph); 8.52 (1H, уш. c, NH)
5d	2.35 (3H, c, CH ₃); 3.36 (3H, c, OCH ₃); 4.24, 5.50 (2H, два д, J = 15.6, NCH ₂); 4.74, 4.87 (2H, два д, J = 17.0, CH ₂ O); 5.79 (1H, д, J = 4.4, H-2); 6.83 (1H, c, H-6); 7.14 (1H, д. д, J = 2.1, J = 8.4, H-6' Ar); 7.25 (1H, м, H-4 Ph); 7.30–7.34 (4H, м, H-2,3,5,6 Ph); 7.45 (1H, д, J = 2.1, H-2' Ar); 7.60 (1H, д, J = 8.4, H-5' Ar); 8.75 (1H, д, J = 4.4, NH)

1	2
5e	2.34 (3H, c, CH ₃); 3.36 (3H, c, OCH ₃); 3.96, 5.46 (2H, два д, <i>J</i> = 15.8, NCH ₂); 4.84–4.92 (2H, м, CH ₂ O); 5.95 (1H, д, <i>J</i> = 3.7, H-2); 6.05 (2H, д, <i>J</i> = 8.5, OCH ₂ O); 6.69 (1H, c, H-6); 6.84 (1H, c, H-6' Ar); 7.16 (1H, c, H-3' Ar); 7.18–7.26 (3H, м, H-2,4,6 Ph); 7.28–7.32 (2H, м, H-3,5 Ph); 8.51 (1H, уш. c, NH)
5f	2.31 (3H, c, CH ₃); 3.36 (3H, c, OCH ₃); 4.20, 5.52 (2H, два д, J = 15.6, NCH ₂); 4.75, 4.89 (2H, два д, J = 17.0, CH ₂ O); 5.82 (1H, д, J = 4.4, H-2); 6.83 (1H, c, H-6); 7.26 (1H, м, H-4 Ph); 7.30–7.35 (4H, м, H-2,3,5,6 Ph); 7.37 (1H, д. д, J = 4.8, J = 8.0, H-5' Py); 7.60 (1H, д. т, J = 2.0, J = 8.0, H-4' Py); 8.42 (1H, д, J = 2.3, H-2' Py); 8.52 (1H, д. д, J = 1.6, J = 4.8, H-6' Py); 8.77 (1H, д, J = 4.4, NH)
5g	2.16 (3H, c, CH ₃ Fur); 2.32 (3H, c, CH ₃); 3.38 (3H, c, OCH ₃); 4.19, 5.50 (2H, два д, $J=15.5$, NCH ₂); 4.79, 4.90 (2H, два д, $J=17.0$, CH ₂ O); 5.55 (1H, д, $J=4.7$, H-2); 5.96 (1H, д, $J=3.1$, H Fur); 6.03 (1H, д, $J=3.1$, H Fur); 6.83 (1H, c, H-6), 7.27 (1H, м, H-4 Ph); 7.33–7.38 (4H, м, H-2,3,5,6 Ph); 8.58 (1H, д, $J=4.7$, NH)
5h	2.28 (3H, c, CH ₃); 3.33 (3H, c, OCH ₃); 4.72, 4.92 (2H, два д, <i>J</i> = 17.0, CH ₂ O); 6.12 (1H, д, <i>J</i> = 4.4, H-2); 6.94 (1H, c, H-6); 7.12–7.33 (8H, м, H Ar); 9.02 (1H, д, <i>J</i> = 4.4, NH)
5i	2.27 (3H, c, CH ₃); 3.34 (3H, c, OCH ₃); 3.70 (3H, c, C ₆ H ₄ OC <u>H₃</u>); 4.71, 4.91 (2H, два д, J = 17.0, CH ₂ O); 6.03 (1H, д, J = 4.4, H-2); 6.87 (2H, д, J = 8.8, H-3',5' Ar); 6.94 (1H, c, H-6); 7.12–7.20 (6H, м, H-2,3,5,6,2',6' Ar); 8.96 (1H, д, J = 4.4, NH)
5j	2.37 (3H, c, CH ₃); 3.35 (3H, c, OCH ₃); 3.94, 5.58 (2H, два д, J = 15.7, NCH ₂); 4.76, 4.88 (2H, два д, J = 17.1, CH ₂ O); 6.63 (1H, д, J = 2.0, H-2); 6.70 (1H, c, H-6); 7.22–7.33 (6H, м, H-6 Ar + 5H Ph); 7.45 (1H, т, J = 7.6, H-5 Ar); 7.54 (1H, т, J = 7.6, H-4 Ar); 7.93–7.96 (2H, м, H-3 Ar + CH–N $\underline{\text{H}}$); 13.42 (1H, уш. c, COOH)
7a	2.35 (3H, c, 2-CH ₃); 2.67 (3H, c, 4-CH ₃); 5.06, 5.28 (2H, два д, <i>J</i> = 17.0, NCH ₂); 6.45 (1H, c, CH); 6.77 (1H, c, H-3); 6.91 (2H, д, <i>J</i> = 7.4, H-2,6 Ph); 7.11 (1H, т, <i>J</i> = 7.2, H-4 Ph); 7.17 (2H, т, <i>J</i> = 7.4, H-3,5 Ph); 7.65 (1H, т, <i>J</i> = 7.5, H-9); 7.70 (1H, д, <i>J</i> = 7.5, H-11); 7.73 (1H, т, <i>J</i> = 7.5, H-10); 7.83 (1H, д, <i>J</i> = 7.5, H-8)
7b	2.41 (3H, c, CH ₃); 3.46 (3H, c, OCH ₃); 4.85, 5.03 (2H, два д, J = 16.8, NCH ₂); 5.09, 5.30 (2H, два д, J = 17.1, CH ₂ O); 6.47 (1H, c, CH); 6.93 (2H, д, J = 7.2, H-2,6 Ph); 7.07 (1H, c, H-3); 7.09–7.19 (3H, м, H-3–5 Ph); 7.65 (1H, т, J = 7.6, H-9); 7.71 (1H, д, J = 7.6, H-11); 7.73 (1H, т, J = 7.6, H-10); 7.84 (1H, д, J = 7.6, H-8)
7c	2.26 (3H, c, CH ₃); 3.47 (3H, c, OCH ₃); 4.88, 5.04 (2H, два д, J = 17.0, CH ₂ O); 6.32 (1H, д, J = 7.5, H-11); 6.74 (1H, c, CH); 7.11 (1H, c, H-3); 7.26–7.32 (4H, м, H-2,3,5,6 Ph); 7.52 (1H, т, J = 7.5, H-10); 7.60 (1H, т, J = 7.5, H-9); 7.83 (1H, д, J = 7.5, H-8)

Образование соединения **7b** требует кипячения в течение 26 ч (выход 79%). Аналогично соединению **7b** при использовании в качестве исходных никотинамидов 1a,d синтезированы другие дигидропиридопиримидоизо-индолы 7a,c, при этом промежуточные продукты 5k,l в чистом виде выделить не удалось.

В ИК спектрах соединений **7а**—**c** в сравнении со спектром 2,3-дигидропиридо[2,3-d]пиримидин-4(1H)-она **5j** отсутствуют полосы поглощения валентных колебаний связи N–H дигидропиримидинового кольца и связи О–H карбоновой кислоты. Отсутствие сигналов NH- и OH-протонов в спектрах ЯМР 1 H соединений **7а**—**c**, а также синглетный сигнал метинового протона свидетельствуют об образовании тетрациклической системы линейного строения **7** (табл. 2, 3).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры регистрировали на приборе Specord IR-71 (в вазелиновом масле), спектры ЯМР 1 H — на спектрометре Bruker DRX-500 (500 МГц, внутренний стандарт ТМС). Контроль за протеканием реакций и индивидуальностью всех синтезированных соединений осуществляли методом тонкослойной хроматографии на пластинках Silufol. Элюент ацетон—гексан, 1:1, и толуол—этанол, 10:3.

6-Метил-4-метоксиметил-2-(4-фторанилино)никотинонитрил (2d). Смесь 1.97 г (0.01 моль) 6-метил-4-метоксиметил-2-хлорникотинонитрила и 1.40 мл (0.015 моль) 4-фторанилина кипятят в 15 мл бутанола в течение 5 ч. Реакционную смесь охлаждают, осадок отфильтровывают, промывают гексаном, сушат на воздухе, перекристаллизовывают из этанола и получают 2.20 г соединения **2d**.

2-Бензиламино-4,6-диметилникотинамид (1а). Смесь 2.38 г (0.01 моль) никотинонитрила **2а** кипятят в 40 мл 20% раствора КОН в 96% этаноле при перемешивании в течение 6 ч. Реакционную смесь охлаждают, разбавляют 10-кратным количеством воды. Осадок отфильтровывают, промывают водой, сушат на воздухе. Продукт перекристаллизовывают из этанола и получают 2.15 г соединения **1а**.

Соединения 1b-d получают аналогично.

1-Бензил-7-метил-5-метоксиметилпиридо[2,3-d]пиримидин-4(1H)-он (3a). Смесь 2.85 г (0.01 моль) никотинамида **1b** кипятят в 20 мл триэтилортоформиата в течение 7.5 ч. Реакционную смесь упаривают под вакуумом, охлаждают. Осадок отфильтровывают, промывают гексаном, сушат на воздухе. Продукт перекристаллизовывают из этанола и получают 1.68 г соединения **3a**.

1-Бензил-7-метил-5-метоксиметил-2-этилпиридо[2,3-d]пиримидин-4(1H)-4-он (3b). Смесь 2.85 г (0.01 моль) никотинамида **1b** и 0.87 мл (0.03 моль) хлористого пропионила **4a** кипятят 4 ч в 20 мл диоксана. Реакционную смесь охлаждают, разбавляют двухкратным количеством воды, нейтрализуют 10% раствором карбоната натрия до прекращения выделения углекислого газа. Осадок отфильтровывают, промывают водой, сушат на воздухе, перекристаллизовывают из этанола и получают 2.46 г соединения **3b**.

Соединения 3с, а получают аналогично.

1-Бензил-2-(4-бромфенил)-5,7-диметил-2,3-дигидропиридо[2,3-*d***]пиримидин-4(1H)-он (5a).** Смесь 2.55 г (0.01 моль) никотинамида **1a** и 2.04 г (0.011 моль) 4-бромбензальдегида (**6a**) в 25 мл толуола кипятят 20 ч с насадкой Дина—Старка в присутствии каталитических количеств *p*-толуолсульфокислоты. Реакционную смесь охлаждают, прибавляют 20 мл гексана. Осадок отфильтровывают, промывают гексаном, сушат на воздухе и перекристаллизовывают из этанола. Получают 2.50 г соединения **5a**.

Соединения 5b–j получают аналогично из соответствующих никотинамида и альдегида. Окончание реакции контролируют по ТСХ (элюент толуол–этанол, 10:3).

12-Бензил-2,4-диметил-11b,12-дигидропиридо[2',3':4,5]пиримидо[2,1-a]изо-индол-5,7-дион (7a). Смесь 2.85 г (0.01 моль) никотинамида **1b** и 1.80 г (0.012 моль) 2-формилбензойной кислоты в 25 мл толуола кипятят 30 ч с насадкой Дина—Старка в присутствии каталитических количеств p-толуолсульфокислоты. Смесь охлаждают, прибавляют 30 мл гексана. Осадок отфильтровывают, промывают гексаном, сушат на воздухе, перекристаллизовывают из этанола и получают 2.59 г соединения **7a**.

Соединения 7b,с получают аналогично.

СПИСОК ЛИТЕРАТУРЫ

- 1. W. P. Purcell, R. D. Gilliom, H. A. Parish, US Pat. 4361700; Chem. Abstr., 98, 89387 (1983).
- 2. M. Mohsen, J. Serb. Chem. Soc., **56**, 383 (1991); РЖХим, 4ж291 (1992).
- 3. A. Monge, V. Martinez-Merino, M. A. Simon, C. Sanmartin, J. Heterocycl. Chem., 29, 1545
- 4. H. A. Parish, R. D. Gilliom, W. P. Purcell, R. K. Browne, R. F. Spirk, H. D. White, J. Med. Chem., 25, 98 (1982).
- 5. В. Д. Стрелков, в кн. Материалы докладов международной научно-практической конференции "Биологическая защита растений – основа стабилизации агроэкосистем", Краснодар, 2004, с. 393.
- 6. V. P. Litvinov, L. A. Rodinovskaya, Yu. A. Sharanin, A. M. Shestopalov, Sulfur Rep., 13, 1 (1992).
- 7. Н. И. Шрам, М. Е. Коншин, XTC, 114 (1985). [Chem. Heterocycl. Comp., 21, 93 (1985)].
- 8. Л. М. Демина, М. Е. Коншин, XTC, 1234 (1992). [Chem. Heterocycl. Comp., 28, 1046 (1992)].
- 9. И. С Арустамова., В. Т. Пивень, XTC, 61 (1999). [Chem. Heterocycl. Comp., 35, 58 (1999)].
- 10. R. Kwork, J. Heterocycl. Chem., 15, 877 (1978).

Кубанский государственный аграрный университет, ул. Калинина, 13, Краснодар 350044, Россия e-mail: e_kaigorodova@mail.ru

^аИнститут органической химии им. Н. Д. Зелинского РАН, Ленинский проспект, 47, Москва 119991, Россия

e-mail: leonidk@chemical-block.com

Поступило 17.11.2009 После доработки 03.02.2011