Посвящается превосходному химику и замечательному человеку, профессору, заслуженному деятелю наук РФ Леониду Исааковичу Беленькому в связи с его 80-летием

А. М. Старосотников, Д. В. Хакимов, М. А. Бастраков, С. Ю. Печенкин, С. А. Шевелев, Т. С. Пивина*

ОСОБЕННОСТИ 1,3-ДИПОЛЯРНОГО ЦИКЛОПРИСОЕДИНЕНИЯ N-МЕТИЛАЗОМЕТИНИЛИДА К НИТРОБЕНЗАЗОЛАМ

Представлены синтетические подходы к 1,3-диполярному циклоприсоединению N-метилазометинилида к мононитробензазолам. Квантово-химическими методами (HF/STO-3G и B3LYP/6-31G*) изучено геометрическое и электронное строение и оценены индексы реакционной способности соединений. Показано, что 1,3-диполярное циклоприсоединение N-метилазометинилида к диполярофилам имеет полярный характер и протекает в соответствии с нормальным (неинверсионным) электронным распределением.

Ключевые слова: ароматические нитросоединения, индексы реакционной способности, квантово-химические расчёты, методы HF/STO-3G и B3LYP/6-31G*, механизм 1,3-диполярного циклоприсоединения, [3+2]циклоприсоединение.

1,3-Диполярное циклоприсоединение (1,3-ДЦП) азометинилидов к алкенам широко используется в современном органическом синтезе, так как является одним из наиболее эффективных методов построения пирролидинового, пирролинового и пиррольного циклов [1]. Множество разнообразных азотсодержащих гетероциклов, полициклических и природных соединений синтезировано в последнее время на основе этой методологии [2–6]. Следует отметить, что использование хиральных катализаторов позволяет получать целевые продукты с высокой стереоселективностью [7–10].

Недавно [11] мы сообщали о первом примере реакций 1,3-ДЦП азометинилидов с нитроаренами. В результате двойного циклоприсоединения нестабилизированного N-метилазометинилида 1 к *м*-динитробензазолам **2a–d**, а также к 6,8-динитрохинолину **2e** были получены производные декагидропирроло[3,4-*e*]изоиндола **3а–e** (схема 1) с хорошими выходами. Оба фрагмента С–С–NO₂ бициклических систем **2a–e** выступали в качестве диполярофилов, подобно сопряжённым нитроалкенам, которые легко дают аддукты с азометинилидами [9, 10, 12, 13].

Схема 1

В продолжение наших исследований [14] мы изучили реакции 1,3-ДЦП нестабилизированного N-метилазометинилида с мононитробензазолами. В качестве диполярофилов использовали π -дефицитные бензогетероциклы с sp^2 -гибридизованным атомом азота, связанным с бензольным циклом, – мононитропроизводные бензофуразана, бензотиадиазола и бензо[*c*]-изоксазола (4а–е) [15–18]. Азометинилид 1 генерировали *in situ* при кипячении саркозина и параформа в толуоле в присутствии нитросоединений 4а–е [12] (схема 2, табл. 1).

Схема 2

Таблица

Соеди- нение	Х	Y	R	R^1	Длительность реакции, ч	Продукт	Выход, %
4 a	0	Ν	Н	NO ₂	0.2	5a	75
4b	S	Ν	Н	NO_2	12	5b	42
4c	0	СН	NO ₂	Н	2	5c	40
4d	0	Ν	NO ₂	Н	0.2	5d	98
4e	S	Ν	NO_2	Н	1	5e	64

1,3-Диполярное циклоприсоединение соединения 1 к мононитробензазолам 4а-е

Таблица 2

Сульфон	Х	R	\mathbb{R}^1	Длительность реакции, ч	Про- дукт	Выход, %
6a	NPh	Н	Ph	6	8a	30
6b	NPh	Н	CH ₂ Ph	11	8b	32
6c	NPh	CO ₂ Et	CH ₂ Ph	16	8c	54
6d	NPh	CONHC ₆ H ₄ OMe-4	CH ₂ Ph	12	8d	61
6e	0	1,3-Диоксолан-2-ил	CH ₂ Ph	24	8e	30
6f	0	1,3-Диоксолан-2-ил	Ph	4	8f	39
6g	0	1,3-Диоксолан-2-ил	$cyclo-C_6H_{11}$	16	8g	65
6h	0	1,3-Диоксолан-2-ил	$(CH_2)_2CO_2Me$	24	8h	40

1,3-Диполярное циклоприсоединение соединения 1 к нитросульфонам 6а-h

В случае менее π-дефицитных 6-нитро-1-фенилиндазолов и 6-нитробензо[*d*]изоксазолов образования циклоаддуктов не наблюдалось, исходные соединения не реагировали, хотя 4,6-динитро-1-фенилиндазол (**2a**, схема 1) легко подвергался двойному циклоприсоединению под действием азометинилида **1**. В то же время, введение электроноакцепторных групп в положение 4 гетероциклической системы (например, алкил- и арилсульфонильных, синтез такого рода соединений см. в [19–23]) позволяет получить соответствующие циклоаддукты (схема 3, табл. 2).

В отличие от 4,6-динитроиндазола 2а, который образует бис-аддукты (схема 1), в случае сульфонильных производных 6 циклоприсоединение происходит исключительно по фрагменту C=C–NO₂. Кроме того, промежуточные циклоаддукты 7а–h не могут быть выделены из-за быстрой реароматизации с элиминированием HNO₂, но при этом образуются соединения 8a-h [14].

Схема 3

Для подтверждения предположения о механизме реакции, характерном для полярного процесса присоединения метилазометинилида к диполярофилам, были привлечены методы квантовой химии.

Квантово-химические расчёты электронного строения и индексов реакционной способности

Расчёты пространственного и электронного строения соединений выполнены с использованием программного комплекса Gaussian 98 [24] в Вычислительном центре ИОХ РАН. Вначале для каждого соединения (в газовой фазе) осуществлялся поиск глобального минимума поверхности потенциальной энергии (ППЭ) неэмпирическим методом Хартри–Фока с базисом STO-3G. Последующая оптимизация выполнялась на основе полученной геометрии в рамках теории функционала плотности (DFT) с гибридным обменно-корреляционным функционалом B3LYP в валентно-расщеплённом базисе 6-31G*. Положения стационарных точек фиксировались на основе матрицы Гессе по отсутствию мнимых частот.

В последнее время для оценки реакционной способности соединений, вступающих в реакции, например циклоприсоединения, используется индекс глобальной электрофильности [25]:

$$\omega = \mu^2 / 2\eta, \qquad (1)$$

где µ – электронный химический потенциал, η – химическая жесткость. В свою очередь, индексы µ и η вычисляются через энергии граничных молекулярных орбиталей (MO):

$$\mu = \frac{1}{2}(\varepsilon_{\rm H} + \varepsilon_{\rm L}), \ \eta = (\varepsilon_{\rm L} - \varepsilon_{\rm H}), \tag{2}$$

где $\varepsilon_{\rm H}$ – энергия высшей занятой молекулярной орбитали (B3MO), $\varepsilon_{\rm L}$ – энергия низшей свободной молекулярной орбитали (HCMO), которые считаются [26] ответственными за реакционную способность.

Определяющим в реакции 1,3-циклоприсоединения диполя к диполярофилу предполагается [28, 29] взаимодействие ВЗМО и НСМО реактантов. Чем меньше энергетический зазор между граничными МО реактантов, тем легче реализуются перициклические реакции, в том числе, 1,3-ДЦП [30].

Результаты оценок индексов реакционной способности исследованных соединений представлены в табл. 3.

Как следует из данных табл. 3, во всех случаях 1,3-диполярное циклоприсоединение N-метилазометинилида 1 к нитро- и динитробензазолам осуществляется через взаимодействие ВЗМО диполя с НСМО диполярофилов, т. е. процесс протекает в соответствии с нормальным (неинверсионным) [30] электронным распределением.

Использование значений ω позволяет классифицировать соединения по следующей шкале [25]: соединения с $\omega > 1.5$ эВ относятся к сильным электрофилам, диапазон $1.5 > \omega > 0.9$ эВ соответствует средним электрофилам, а соединения с $\omega < 0.9$ эВ следует отнести к слабым электрофилам (нуклеофилы).

Таблица 3

Характеристики электронного строения и индексы реакционной способности исследованных соединений

$\mathcal{N}_{\underline{o}}*$	Соединение	$E_{ m B3MO}, \Im m B$	$E_{ m HCMO}, \Im { m B}$	μ, 3Β	η, 3Β	00, 3B	ΔN_{\max}^{**}	ΔE , $3B^{***}$	Δω, ∋Β
I	N-Метилазометинилид (1)	-3.94	0.35	-1.80	4.29	0.38	0.42	I	I
Ι	6-Нитро-1-фенилиндазол	-6.28	-2.53	-4.41	3.76	2.59	1.17	1.41	2.21
1	6-Нитро-1-фенил-4-(фенилсульфонил)- инлазол (6а)	-6.41	-2.68	-4.55	3.73	2.77	1.22	1.26	2.40
7	6-Нитробензо[<i>c</i>]изоксазол (4c)	-6.83	-2.98	-4.92	3.85	3.13	1.28	0.95	2.75
ю	4-Нитробензотиадиазол (4b)	-7.41	-3.28	-5.35	4.13	3.46	1.29	0.66	3.08
4	2-Метил-4,6-динитро-2Н-бензотриазол (2d)	-7.66	-3.32	-5.49	4.34	3.47	1.27	0.62	3.10
5	5-Нитробензотиадиазол (4е)	-7.37	-3.30	-5.34	4.08	3.49	1.31	0.64	3.12
9	4,6-Динитро-1-фенилиндазол (2а)	-6.79	-3.23	-5.01	3.56	3.53	1.41	0.70	3.16
Ι	5,7-Динитрохинолин	-7.71	-3.43	-5.57	4.29	3.62	1.30	0.51	3.24
7	6,8-Динитрохинолин (2e)	-6.88	-3.37	-5.13	3.51	3.74	1.46	0.57	3.36
8	4-Нитробензофуразан (4а)	-7.64	-3.52	-5.58	4.13	3.77	1.35	0.42	3.39
6	5-Нитробензофуразан (4d)	-7.64	-3.52	-5.58	4.13	3.77	1.35	0.42	3.40
10	$4,6$ -Динитробензо $[c]$ изоксазол (${f 2b}$)	-7.54	-3.84	-5.69	3.70	4.38	1.54	0.10	4.00
11	4,6-Динитробензотиадиазол (2с)	-8.07	-3.98	-6.02	4.09	4.43	1.47	-0.04	4.06
		_	-		_		_	_	

* Номера соответствуют цифрам на графике рисунка.
** ΔN_{max} = -µ/η [27] – максимальное количество электронов, которое может принять электрофильный партнер.
*** Δ*L* – разность энергий НСМО диполярофила и ВЗМО диполя.

275

Результаты анализа рассчитанных индексов реакционной способности μ , η , ω , ΔN_{max} и энергий граничных орбиталей свидетельствуют о том, что диполь N-метилазометинилида с $\omega = 0.38$ эВ имеет нуклеофильный характер, а исследуемые диполярофилы – выраженный электрофильный. О том же свидетельствует и положительный знак в энергии НСМО в N-метилазометинилиде и отрицательный – в диполярофилах.

Разность электрофильностей диполя и диполярофила ($\Delta \omega$) и значение ΔE характеризуют полярность процесса. Реакции с большими значениями $\Delta \omega$ строго полярны, а с малыми – прототипы неполярного процесса [30].

Введение электроноакцепторных заместителей в молекулу диполярофила понижает энергию его HCMO [30]. Сравнение энергий HCMO 6нитро-1-фенилиндазола и его 4-PhSO₂-замещенного аналога с разностью энергий HCMO и B3MO N-метилазометинилида позволяет заключить, что для реакций с нормальным электронным распределением такое замещение способствует протеканию 1,3-ДЦП диполя к диполярофилу из-за уменьшения энергетической щели между граничными орбиталями реактантов.

Нами обнаружена прямая зависимость между значениями ΔE и $\Delta \omega$ (рисунок).

Эта зависимость в рамках метода наименьших квадратов описывается уравнением:

$$\Delta E = -0.73632 \cdot (\Delta \omega) + 2.97042, R^2 = 0.97$$

Таким образом, результаты квантово-химических расчетов подтверждают то, что 1,3-ДЦП N-метилазометинилида к изученным диполярофилам имеет строго полярный характер и протекает в соответствии с нормальным (неинверсионным) [30] электронным распределением в молекулах.

Зависимость разности энергий НСМО и ВЗМО (ΔЕ) реактантов от разности их электрофильностей (Δω)

Работа выполнена при финансовой поддержке Российского фонда

276

фундаментальных исследований (гранты 10-03-91162-ГФЕН-а и 10-03-00185-а).

СПИСОК ЛИТЕРАТУРЫ

- A. Padwa, W. H. Pearson, Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products, Wiley, New York, 2002, p. 169.
- S. Roy, T. L. S. Kishbaugh, J. P. Jasinski, G. W. Gribble, *Tetrahedron Lett.*, 48, 1313 (2007).
- 3. R. Grigg, M. A. B. Sarker, Tetrahedron, 62, 10332 (2006).
- 4. B. F. Bonini, F. Boschi, M. C. Franchini, M. Fochi, F. Fini, A. Mazzanti, A. Ricci, *Synlett*, 543 (2006).
- 5. C. Najera, J. M. Sansano, Curr. Org. Chem., 7, 1105 (2003).
- 6. M. Ghandi, A. Taheri, A. Abbasi, J. Heterocycl. Chem., 47, 611 (2010).
- 7. J. M. Longmire, B. Wang, X. Zhang, J. Am. Chem. Soc., 124, 13400 (2002).
- 8. C. Alemparte, G. Blay, K. A. Jorgensen, Org. Lett., 7, 4569 (2005).
- 9. J. Xie, K. Yoshida, K. Takasu, Y. Takemoto, Tetrahedron Lett., 49, 6910 (2008).
- 10. M.-X. Xue, X.-M. Zhang, L.-Z. Gong, Synlett, 691 (2008).
- M. A. Bastrakov, A. M. Starosotnikov, S. Yu. Pechenkin, V. V. Kachala, I. V. Glukhov, S. A. Shevelev, *J. Heterocycl. Chem.*, 47, 893 (2010).
- 12. O. Tsuge, S. Kanemasa, Adv. Heterocycl. Chem., 45, 231 (1989).
- A. Viranyi, G. Marth, A. Dancso, G. Blasko, L. Toke, M. Nyerges, *Tetrahedron*, 62, 8720 (2006).
- A. M. Starosotnikov, M. A. Bastrakov, S. Yu. Pechenkin, M. A. Leontieva, V. V. Kachala, S. A. Shevelev, *J. Heterocycl. Chem.*, 2011, принято к печати (DOI 10.1002/jhet.599).
- 15. P. B. Ghosh, M. W. Whitehouse, J. Med. Chem., 11, 305 (1968).
- T. Murashima, D. Shiga, K. Nishi, H. Uno, N. Ono, J. Chem. Soc., Perkin. Trans. 1, 2671 (2000).
- 17. H. G. Garg, J. Org. Chem., 27, 3683 (1962).
- T. Murashima, K. Fujita, K. Ono, T. Ogawa, H. Uno, N. Ono, J. Chem. Soc., Perkin. Trans. 1, 12, 1403 (1996).
- 19. А. М. Старосотников, С. А. Шевелев, Изв. АН, Сер. хим., 1703 (2003).
- 20. V. M. Vinogradov, A. M. Starosotnikov, S. A. Shevelev, *Mendeleev Commun.*, 198 (2002).
- 21. А. М. Старосотников, А. В. Лобач, Ю. А. Хомутова, С. А. Шевелев, *Изв. АН*, *Сер. хим.*, 523 (2006).
- 22. А. М. Старосотников, В. В. Качала, А. В. Лобач, В. М. Виноградов, С. А. Шевелев, Изв. АН, Сер. хим., 1690 (2003).
- 23. В. М. Виноградов, И. Л. Далингер, А. М. Старосотников, С. А. Шевелев, Изв. *АН*, *Сер. хим.*, 445 (2001).
- 24. M. J. Frish, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komazomi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson,

W. Chen, M. W. Wong, J. L. Andres, C. Gonzales, M. Head-Gordon, E. S. Replogle, J. A. Pople, *GAUSSIAN 98. Revision A.9*, Gaussian Inc., Pittsburgh (PA), 1998.

- 25. R. G. Parr, L. V. Szentpaly, S. Liu, J. Am. Chem. Soc., 121, 1922 (1999).
- 26. R. G. Parr, W. Yang, *Density Functional Theory of Atoms and Molecules*, Oxford Univ. Press, New York, 1989.
- 27. L. R. Domingo, M. Arno, R. Contreras, P. Perez, J. Phys. Chem., A, 106, 952 (2002).
- 28. R. Sustmann, Tetrahedron Lett., 12, 2717 (1971).
- 29. R. Sustmann, Pure Appl. Chem., 40, 569 (1974).
- 30. М. Л. Кузнецов, Успехи химии, 75, 1045 (2006).

Институт органической химии РАН им. Н. Д. Зелинского, Ленинский проспект, 47, Москва 119991, Россия e-mail: tsp@ioc.ac.ru Поступило 22.11.2010