Н. Н. Тонких, М. В. Петрова, А. Ф. Мишнев^а, К. В. Рыжанова, Ф. М. Авотиньш, А. Я. Страков

4(3Н)-ХИНАЗОЛИНОНЫ С ГЕТЕРОЦИКЛИЧЕСКОЙ ГРУППОЙ В ПОЛОЖЕНИИ 3

В реакциях 2-метил- и 2-фенил-4-оксо-3,1-бензоксазинов с 1-амино-1,2,4-триазолом, 4-амино-2,3-диметил-1-фенил-5-пиразолоном, 2-амино-5-этил-1,3,4-тиадиазолом, 3-амино-6,6-диметил-4-оксо-4,5,6,7-тетрагидроиндазолом, 1-амино-4,6-диметил-3-циано-2-пиридоном и 1-амино-4-трифторметил-6-фенил-3-циано-2-пиридоном получены соответствующие 2,3-замещенные 4(3H)-хиназолиноны. Исключение составляет образование амидов N-бензоилантраниловых кислот в реакциях 2-фенил-4-оксо-3,1бензоксазина с 2-амино-5-этил-1,3,4-тиадиазолом и 1-амино-4-трифторметил-6-фенил-3-циано-2-пиридонами. Строение полученных соединений в двух случаях подтверждено данными рентгеноструктурных исследований.

Ключевые слова: 2-метил- и 2-фенил-3R-4(3H)-хиназолиноны, 1,2,4-триазол-4-ил, 2,3-диметил-1-фенил-5-пиразолинон-4-ил, 1,3,4-тиадиазол-2-ил, 4-трифторметил-6-фенил-3-циано-2-пиридон-1-ил, 6,6-диметил-4-оксо-4,5,6,7-тетрагидро-3-индазолил.

Среди огромного числа 2,3-замещенных 4(3H)-хиназолинонов соединений, содержащих в положении 3 непосредственно присоединенную гетероциклическую замещающую группу, не так много, но они проявляют разноплановую биологическую активность [1—7], на их примерах решались ряд теоретических проблем [8—12], к этому типу веществ относятся многие хиназолиновые алкалоиды [13].

В реакциях 2-метил-4-оксо-3,1-бензоксазина **1a** во всех случаях получены соответствующие 2-метил-4(3H)-хиназолиноны **3** с 1-амино-1,2,4-триазолом (**2a**), 4-амино-2,3-диметил-1-фенил-5-пиразолиноном (**2b**), 2-амино-5-этил-1,3,4-тиадиазолом (**2c**), 3-амино-6,6-диметил-4-оксо-4,5,6,7-тетрагидроиндазолом (**2d**) [13], 4,6-замещенными 3-циано-2-пиридонами (**2e,f**).

Взаимодействие 2-фенил-4-оксо-3,1-бензоксазина (1b) с 2-амино-5-этил-1,3,4тиадиазолом (2c), 1-амино-4-трифторметил-6-фенил-3-циано-2-пиридоном (2f) приводит к соответствующим амидам N-бензоилантраниловой кислоты 4a,b; в остальных случаях получены соответствующие 2-фенил-4(3H)-хиназолиноны 3b,d,g,i. Амид N-бензоилантраниловой кислоты 4c получен в реакции 2,6-диаминопиридина с оксазином 1b; соответствующий 4(3H)-хиназолинон описан в работе [14].

Условия взаимодействия оксазинов 1 и аминов 2 не варьировались — все реакции проведены 1—2-часовым сплавлением смеси эквимолярных количеств оксазина 1 и N-нуклеофила 2 в колбе с коротким дефлегматором на масляной бане при 160—175 °C.

Строение производных хиназолина **3** подтверждаются данными ИК и спектров ЯМР ¹Н. В соединении **3f** в отличие от **3g** сигналы протонов $C_{(6)}$ —СН₃ групп индазольного фрагмента проявляются двумя отдельными синглетными сигналами при 1.05 и 1.11 м. д., а сигналы протонов NH характеризуются химическими сдвигами при 13.67 (**3f**) и 13.35 м. д. (**3g**). В ИК спектрах обнаруживаются обе карбонильные частоты соединений (**3f** — 1702, 1668 см⁻¹; **3g** — 1681, 1668 см⁻¹), а

также частоты валентных колебаний связей NH (**3f** — 3170 см⁻¹; **3g** — 3240 см⁻¹). В ИК спектрах хиназолинонов **3h,i,j** также обнаруживаются сигналы частоты двух карбонильных групп в районе 1714—1670 см⁻¹. Характеристические частоты цианогруппы этих соединений проявляются при 2220—2230 см⁻¹. В спектрах ЯМР ¹Н диамидов **4** четко обнаруживаются два сигнала протонов NH при 10—13 м. д., отсутствующие в циклических структурах **3**.

Строение хиназолинонов **3f** и **3j** подтверждено рентгеноструктурным анализом кристаллов этих веществ.

Пространственная модель молекулы 3ј представлена на рис. 1, важнейшие геометрические параметры даны в табл. 1 и 2. Пиридоновое кольцо плоское в пределах ошибки и имеет характерную для 2-пиридонов геометрию [16, 17]. В отличие от изученного ранее 4-трифторметил-6-фенил-3-циано-2-пиридона [16], в молекуле 3ј наличие объемного заместителя в положении 1 пиридоновой системы препятствует образованию совместной сопряженной системы двух шестичленных колец. Двугранный угол между средними плоскостями пиридона и фенила в **3i** составляет 55.1(1)°. Близкое значение этого угла (53.1°) было найдено в структуре 1-амино-6-фенил-4-трифторметил-3-циано-2-пиридона [18]. В свою очередь, двугранный угол между средними плоскостями хиназолинового и пиридонового фрагментов в 3j составляет 79.4(1)°. Атомы азота N(1) и N(2) проявляют некоторую степень пирамидальности, что приводит к нарушению строгой планарности соответствующих циклов. Высота пирамид (выход из плоскости трех соседних атомов) для N(1) и N(2) составляет 0.070(3) и 0.104(3) Å соответственно. Ординарная связь N(1)—N(2), равная 1.403(4) Å, совпадает с ее стандартным значением (1.401 Å) [19]. Укорочение длин связей С—F в структуре 1 (среднее значение 1.293 Å, стандартное 1.322 Å [19]) связано с сильными тепловыми колебаниями атомов фтора [20].

Таблица 1

Атом	x	У	Ζ	U(eq)
F(1)	2146(1)	6649(4)	4564(3)	136(2)
F(2)	2640(1)	5165(3)	4763(2)	98(1)
F(3)	2441(1)	6501(4)	3494(2)	130(2)
O(1)	1453(1)	1185(3)	4065(2)	56(1)
O(2)	663(1)	3040(4)	2134(2)	70(1)
N(1)	1448(1)	2316(3)	2588(2)	39(1)
N(2)	1142(1)	1246(3)	2105(2)	40(1)
N(3)	996(1)	-1348(4)	1724(3)	59(1)
N(4)	2189(1)	3107(5)	6055(3)	68(1)
C(2)	1584(1)	2194(4)	3645(3)	41(1)
C(3)	1890(1)	3339(4)	4136(3)	38(1)
C(4)	2003(1)	4468(4)	3591(3)	39(1)
C(5)	1830(1)	4542(4)	2549(3)	45(1)
C(6)	1543(1)	3487(4)	2040(3)	38(1)
C(7)	1346(1)	3607(4)	940(3)	40(1)
C(8)	1166(1)	4992(5)	562(3)	53(1)
C(9)	998(1)	5204(5)	-469(3)	60(1)
C(10)	1017(1)	4038(6)	-1111(3)	63(1)
C(11)	1196(1)	2666(6)	-742(3)	58(1)
C(12)	1359(1)	2428(5)	278(3)	48(1)
C(13)	2054(1)	3217(4)	5208(3)	47(1)
C(14)	2309(1)	5681(4)	4110(3)	45(1)
C(15)	730(1)	1720(5)	1955(3)	49(1)
C(16) C(17) C(18)	438(1) 13(1) -261(2)	489(6) 780(7) -411(10)	1590(3) 1348(3) 1035(4)	55(1) 75(2) 100(2)
C(19)	-120(2)	-1865(10)	965(4)	106(2)
C(20)	292(2)	-2190(7)	1193(4)	87(2)
C(21)	581(1)	-989(6)	1506(3)	59(1)
C(22)	1262(1)	-265(4)	2020(3)	47(1)
C(23)	1716(1)	-593(5)	2287(4)	65(1)

Координаты неводородных атомов (×10⁴) молекулы 3j и эквивалентные изотропные температурные факторы

В асимметрической части элементарной ячейки соединения **3f** обнаружены две независимые молекулы (α и β) соединения **3f**, связанные центром псевдосимметрии и отличающиеся конформациями циклогексанового фрагмента. Вид молекул α и β в кристалле показан на рис. 2. Конформация циклогексанового фрагмента (торсионные углы приведены в табл. 4) в молекуле α близка форме кресла, тогда как в молекуле β переходной форме C_2 [21].

Рис. 1. Пространственная модель молекулы 2-метил-3-(4-трифторметил-6-фенил-3-циано-2-пиридон-1-ил)-4(3H)-хиназолинона (3j)

Рис.2. Пространственная модель и вид молекул в кристалле 3-(6,6-диметил-4-оксо-4,5,6,7-тетрагидро-3-индазолил)-2-метил-4(3H)-хиназолинона (**3f**)

Таблица 2

Связь	l, Å	Связь	l, Å
F(1)—C(14)	1.283(5)	C(3)—C(4)	1.373(5)
F(2)—C(14)	1.290(4)	C(3)—C(13)	1.434(6)
F(3)—C(14)	1.305(5)	C(4)—C(5)	1.395(5)
O(1)—C(2)	1.217(4)	C(4)—C(14)	1.499(5)
O(2)—C(15)	1.211(5)	C(5)—C(6)	1.366(5)
N(1)—C(6)	1.374(4)	C(6)—C(7)	1.482(5)
N(1)—N(2)	1.403(4)	C(15)—C(16)	1.441(6)
N(1)—C(2)	1.413(5)	C(16)—C(21)	1.391(6)
N(2)—C(22)	1.391(5)	C(16)—C(17)	1.402(6)
N(2)—C(15)	1.412(5)	C(17)—C(18)	1.370(8)
N(3)—C(22)	1.280(5)	C(18)—C(19)	1.365(9)
N(3)—C(21)	1.387(6)	C(19)—C(20)	1.368(8)
N(4)—C(13)	1.137(5)	C(20)—C(21)	1.408(6)
C(2)—C(3)	1.449(5)	C(22)—C(23)	1.500(6)

Длины связей (1) в структуре 3ј

Таблица З

Угол	ω, град.	Угол	ω, град.
C(6)—N(1)—C(2)	125.9(3)	F(1)—C(14)—F(2)	107.0(4)
C(6)—N(1)—N(2)	119.4(3)	N(4)—C(13)—C(3)	178.9(4)
N(2)—N(1)—C(2)	114.0(3)	F(1)—C(14)—F(3)	105.3(4)
C(22)—N(2)—N(1)	118.2(3)	F(2)—C(14)—F(3)	104.7(4)
C(22)—N(2)—C(15)	124.6(3)	F(1)—C(14)—C(4)	111.1(3)
N(1)—N(2)—C(15)	115.6(3)	F(2)—C(14)—C(4)	114.9(3)
C(22)—N(3)—C(21)	118.4(4)	F(3)—C(14)—C(4)	113.2(3)
O(1) - C(2) - N(1)	120.9(3)	O(2)—C(15)—N(2)	119.3(4)
O(1)—C(2)—C(3)	125.6(3)	O(2)—C(15)—C(16)	128.4(4)
N(1)—C(2)—C(3)	113.4(3)	N(2)—C(15)—C(16)	112.3(4)
C(4)—C(3)—C(13)	123.5(3)	C(21)—C(16)—C(17)	120.5(4)
C(4)—C(3)—C(2)	120.8(3)	C(21)—C(16)—C(15)	119.6(4)
C(13)—C(3)—C(2)	115.7(3)	C(17)—C(16)—C(15)	119.9(5)
C(3)—C(4)—C(5)	121.1(3)	N(3)—C(21)—C(16)	123.3(4)
C(3)—C(4)—C(14)	120.3(3)	N(3)—C(21)—C(20)	11027.9(5)
C(5)—C(4)—C(14)	118.5(3)	C(16)—C(21)—C(20)	118.8(5)
C(6)—C(5)—C(4)	121.0(3)	N(3)—C(22)—N(2)	121.6(4)
C(5)—C(6)—N(1)	117.3(3)	N(3)—C(22)—C(23)	120.6(4)
C(5)—C(6)—C(7)	121.0(3)	N(2)—C(22)—C(23)	117.8(3)
N(1)—C(6)—C(7)	121.7(3)		

Валентные углы (00) в структуре 3ј

Таблица 4

Торсионные углы (т) в структуре 3ј

Vrog		τ, град.		
9101	Молекула α	Молекула β		
C(2)—C(3)—C(5)—C(6)	-40(3)	10(4)		
C(3)—C(5)—C(6)—C(7)	55(2)	-47(3)		
C(5)—C(6)—C(7)—C(8)	-58(3)	55(3)		
C(6)—C(7)—C(8)—C(2)	37(3)	-20(4)		
C(7)—C(8)—C(2)—C(3)	-10(3)	-12(4)		
C(8)—C(2)—C(3)—C(5)	14(3)	19(4)		

Таблица 5

Атом	Молекула α			Молекула β		
	x	У	Z	x	У	Ζ
N(1)	2442(9)	1310(2)	2815(9)	6025(13)	3630(4)	-810(2)
N(2)	2335(13)	2180(2)	1325(13)	6035(13)	2580(3)	733(14)
N(3)	2555(11)	810(3)	81(13)	5838(14)	4290(3)	1984(13)
O(1)	416(16)	4640(3)	446(18)	7831(10)	140(2)	1530(11)
O(2)	2797(11)	5190(3)	1732(14)	5517(10)	-280(2)	158(10)
C(1)	1954(13)	2260(3)	2003(16)	6389(18)	2750(4)	-10(2)
C(2)	1118(11)	3010(2)	1933(12)	7064(14)	1650(3)	-2(15)
C(3)	1127(13)	2670(3)	2760(14)	7103(16)	2290(4)	-898(17)
N(4)	1831(13)	1520(3)	3319(15)	6393(14)	3310(3)	-1357(15)
C(5)	379(15)	3210(3)	3025(17)	7764(13)	1540(3)	-1271(15)
C(6)	7(13)	5240(3)	2605(17)	8199(17)	-90(4)	-660(2)
C(7)	-234(19)	4910(4)	1500(2)	8571(17)	10(4)	420(2)
C(8)	506(12)	4270(3)	1248(14)	7840(2)	670(6)	730(3)
C(9)	-884(17)	5350(4)	2690(2)	9065(13)	-700(3)	-876(17)
C(10)	660(2)	6680(5)	3090(2)	7556(12)	-1860(3)	-1027(14)
C(11)	2826(12)	3940(3)	1273(13)	5712(13)	980(3)	829(14)
C(12)	3004(12)	3960(3)	376(15)	5241(12)	1090(3)	1416(14)
C(13)	3475(17)	5520(4)	370(2)	4878(14)	-570(4)	1670(17)
C(14)	3785(15)	5530(4)	-335(19)	4515(15)	-470(4)	2335(18)
C(15)	3703(14)	4130(3)	-914(17)	4551(14)	1230(3)	2807(16)
C(16)	3259(17)	2510(4)	-810(2)	4968(13)	2750(3)	2682(15)
C(17)	2904(16)	2300(3)	-109(17)	5303(14)	2610(3)	1977(15)
C(18)	2274(16)	860(4)	689(19)	6130(13)	4250(3)	1288(15)
C(19)	1663(14)	-920(3)	757(17)	6507(14)	5910(3)	1112(18)

Координаты неводородных атомов (× 10⁴) в 3f

Двугранный угол между средними плоскостями обеих бициклических частей в молекулях α и β равен 73.2(5) и 70.6(5)° соответственно. Взаимный наклон плоскостей хиназолиновых фрагментов молекул α и β составляет 5.9(5)°. Низкая точность определения структуры, связанная с малыми размерами исследованного кристалла, не позволила провести надежный анализ геометрии молекул.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Общая процедура синтеза 4(3H)-хиназолинонов 3 и диамидов 4. Нагревают 1.5 ч на масляной бане в колбе с коротким дефлегматором при 160—175 °С (температура бани) смесь 5 ммоль 4-оксо-3,1бензоксазина 1, 5 ммоль аминогетероцикла 2 и каталитического количества *n*-толуол- сульфокислоты. Реакционную смесь охлаждают и подвергают кристаллизации.

ИК спектры сняты на спектрометре Specord IR-75 для суспензий веществ в вазелиновом масле (1800—1500 см⁻¹) и гексахлорбутадиене (3600—2000 см⁻¹). Частоты валентных колебаний связей С—Н в области 3050—2000 см⁻¹ не указаны. Спектры ЯМР ¹Н сняты в ДМСО-d₆ на спектрометре Bruker WH-90/DS (90 МГц), внутренний стандарт ТМС.

2-Метил-3-(1,2,4-триазол-4-ил)-4(3H)-хиназолинон (3a). Выход 41%. Т. пл. 227—228 °С (из метанола). ИК спектр: 1702, 1628, 1610, 1568, 1520, 1504; 3110 см⁻¹. Спектр ЯМР ¹Н: 2.25 (3H, с, CH₃); 7.56—8.23 (4H, м, C₆H₄); 9.38 м. д. (2H, с, 2=CH—). Найдено, %: С 58.33; Н 4.06; N 30.66. С₁₁Н₉N₅O. Вычислено, %: С 58.15; Н 3.99; N 30.82.

2-Фенил-3-(1,2,4-триазол-4-ил)-4(3H)-хиназолинон (3b). Выход 28%. Т. пл. 301—303 °С (из метанола). ИК спектр: 1705, 1620, 1605, 1600, 1580, 1500; 3140, 3080 см⁻¹. Спектр ЯМР ¹Н: 7.49 (5H, м, C₆H₃); 7.60—8.39 (4H, м, C₆H₄); 8.82 м. д. (2H, с, 2=CH—). Найдено, %: С 66.66; Н 3.69; N 24.13. С₁₆H₁₁N₅O. Вычислено, %: С 66.43; Н 3.83; N 24.21.

2-Метил-3-(2,3-диметил-1-фенил-5-пиразолинон-4-ил)-4(3H)-хиназолинон (3c). Выход 55%. Т. пл. 228—229 °С (из диоксана). ИК спектр: 1690—1678, 1630, 1602; 1570 см⁻¹. Спектр ЯМР ¹Н: 2.18 (3H, с, CH₃); 2.43 (3H, с, CH₃); 3.28 (3H, с, CH₃); 7.36—8.18 м. д. (9H, м, C₆H₅, C₆H₄). Найдено, %: С 68.04; Н 5.40; N 16.60. С₁₉H₁₈N₄O₂. Вычислено, %: С 68.25; Н 5.43; N 16.76.

2-Фенил-3-(2,3-диметил-1-фенил-5-пиразолинон-4-ил)-4(3H)-хиназолинон (3d). Выход, 82%. Т. пл. 85—87 °С (система этилацетат—толуол, 7 : 3, *R_f* = 0.13, силикагель Aeros, 35—70 мкм, с диаметром пор 6 нм). ИК спектр: 1693—1673, 1610, 1595, 1563, 1500 см⁻¹. Спектр ЯМР ¹Н: 2.07 (3H, с, CH₃); 3.05 (3H, с, CH₃); 7.12—8.25 м. д. (14H, м, 2C₆H₅, C₆H₄). Найдено, %: С 73.30; Н 4.80; N 13.88. С₂₅H₂₀N₄O₂. Вычислено, %: С 73.51; Н 4.94; N 13.72.

2-Метил-3-(5-этил-1,3,4-тиадиазол-2-ил)-4(3H)-хиназолинон (3e). Выход 38%. Т. пл. 136—137 °С (из диоксана). ИК спектр: 1692, 1610, 1582, 1560, 1500 см⁻¹. Спектр ЯМР ¹Н: 1.27 (3H, т, ³*J* = 7 Гц, CH₃); 2.31 (3H, с, CH₃); 2.98 (2H, кв, ³*J* = 7 Гц, CH₂); 7.34—8.16 м. д. (4H, м, C₆H₄). Найдено, %: С 57.11; H 4.40; N 20.41. S 11.60. С₁₃H₁₂N₄OS. Вычислено, %: С 57.34; H 4.44; N 20.57; S 11.77.

3-(6,6-Диметил-4-оксо-4,5,6,7-тетрагидро-3-индазолил)-2-метил-4(3H)-хиназолинон (3f). Выход 31%. Т. пл. 300—301 °C (из диоксана). ИК спектр: 1704, 1668, 1604, 1572, 1512; 3170, 3100 см⁻¹. Спектр ЯМР ¹Н: 1.05 (3H, с, CH₃); 1.11 (3H, с, CH₃); 2.13 (3H, с, CH₃); 2.29 (2H, с, CH₂); 2.77 (2H, с, CH₂); 7.48—8.20 (4H, м, C₆H₄); 13.67 м. д. (1H, уш. с, NH). Найдено, %: С 66.88; Н 5.50; N 17.14. С₁₈H₁₈N₄O₂. Вычислено, %: С 67.07; Н 5.62; N 17.32.

3-(6,6-Диметил-4-оксо-4,5,6,7-тетрагидро-3-индазолил)-2-фенил-4(3H)-хиназолинон (3g). Выход 30%. Т. пл. 222 °С (из диоксана). ИК спектр: 1681, 1668, 1628, 1592, 1568, 1516; 3240 см⁻¹. Спектр ЯМР ¹H: 0.63 (3H, с, CH₃); 1.02 (3H, с, CH₃); 1.94 (1H, д, ²J = 14 Гц, CH₂); 2.36 (1H, д, ²J = 14 Гц, CH₂); 2.49 (1H, д, ²J = 13 Гц, CH₂); 2.81 (1H, д, ²J = 13 Гц, CH₂); 7.32 (5H, м, C₆H₃); 7.50—8.24 (4H, м, C₆H₄); 13.35 м. д. (1H, уш. с, NH). Найдено, %: С 71.70; H 5.30; N 14.41. С₂₃H₂₀N₄O₂. Вычислено, %: С 71.86; H 5.24; N 14.57.

2-Метил-3-(4,6-диметил-3-циано-2-пиридон-1-ил)-4(3H)-хиназолинон (3h). Выход 52%. Т. пл. 225—226 °С (из смеси метанол—вода, 1 : 3). ИК спектр: 2224, 1714, 1670, 1606, 1540 см⁻¹. Спектр ЯМР ¹H: 2.24 (3H, с, CH₃); 2.32 (3H, с, CH₃); 2.45 (3H, с, CH₃); 6.67 (1H, с, =CH—); 7.54—8.25 м. д. (4H, м, C₆H₄). Найдено, %: С 66.40; H 4.46; N 18.02. С₁₇H₁₄N₄O₂. Вычислено, %: С 66.65; H 4.61; N 18.29.

2-Фенил-3-(4,6-диметил-3-циано-2-пиридон-1-ил)-4(3H)-хиназолинон (3i). Выход 70%. Т. пл. 191—192 °С (система этилацетат—толуол, 3 : 4, $R_f = 0.29$). ИК спектр: 1708, 1676, 1592, 1562, 1536; 2220 см⁻¹. Спектр ЯМР ¹Н: 2.33 (6H, с, 2CH₃); 6.49 (1H, с, =CH—); 7.54 (5H, с, C₆H₃); 7.21—8.36 м. д. (4H, м, C₆H₄). Найдено, %: С 71.50; Н 4.45; N 15.02. С₂₂H₁₆N₄O₂. Вычислено, %: С 71.73; Н 4.38; N 15.21.

2-Метил-3-(4-трифторметил-6-фенил-3-циано-2-пиридон-1-ил)-4(3H)-хиназолинон (3j). Выход 73%. Т. пл. 223—224 °С (из метанола). ИК спектр: 1710, 1692, 1610, 1548; 2230 см⁻¹. Спектр ЯМР ¹Н: 2.33 (3H, с, CH₃); 7.22 (1H, с, =CH—); 7.41 (5H, м, C₆H₅); 7.51—8.20 м. д. (4H, м, C₆H₄). Найдено, %: С 62.46; Н 3.06; N 13.28. С₂₂H₁₃F₃N₄O. Вычислено, %: С 62.56; Н 3.10; N 13.26.

5-Этил-1,3,4-тиадиазол-2-иламид N-бензоилантраниловой кислоты (4а). Выход 37%. Т. пл. 176—177 °С (из метанола). ИК спектр: 1675, 1650, 1610, 1595; 1535, 1500; 3250—3150 см⁻¹. Спектр ЯМР ¹Н: 1.32 (3H, т, ³*J* = 7 Гц, CH₃); 3.02 (2H, кв. ³*J* = 7 Гц, CH₂); 7.22—8.33 (9H, м, C₆H₅, C₆H₄); 11.38 (1H, уш. с, NH); 13.24 м. д. (1H, уш. с, NH). Найдено, %: С 61.16; Н 4.50; N 15.70; S 8.90. С₁₈H₁₆N₄O₂S. Вычислено, %: С 61.35; Н 4.57; N 15.89; S 9.09.

4-Трифторметил-6-фенил-3-циано-2-пиридон-1-иламид N-бензоилантраниловой кислоты (**4b**). Выход 35%. Т. пл. 141—142 °С (из метанола). ИК спектр: 1689, 1650, 1645, 1608; 1588, 1542; 1500, 2220 см⁻¹. Спектр ЯМР ¹Н: 7.07 (1Н, уш. с, NН); 7.13 (1Н, т, ³*J* = 8 Гц, C₆H₄); 7.20—8.12 (1ЗН, м, 2C₆H₅, C₆H₄, =CH); 8.75 (1Н, д, ³*J* = 8 Гц, C₆H₄); 12.2 м. д. (1Н, уш. с, NН). Найдено, %: С 64.33; Н 3.29; N 11.11. С₂₇H₁₇F₃N₄O₃. Вычислено, %: С 64.54; Н 3.41; N 11.15.

6-Амино-2-пиридиламид N-бензоилантраниловой кислоты (4с). Выход 69%. Т. пл. 192—193 °С (из смеси этанол—ДМФА, 3 : 1). ИК спектр: 1675, 1648, 1635, 1614; 1588, 1575, 1526, 1500; 3460, 3330, 3300—3250 см⁻¹. Спектр ЯМР ¹Н: 5.82 (2H, уш. с, —NH₂); 6.27 (1H, д. д, ³*J* = 8 Гц, ⁴*J* = 1 Гц, С₅H₃N); 7.18—8.1 (10H, м, С₆H₅, С₆H₄, С₆H₅N); 8.53 (1H, д. д, ³*J* = 8 Гц, ⁴*J* = 1 Гц, С₅H₃N); 10.34 (1H, уш. с, NH); 11.66 м. д. (1H, уш. с, NH). Найдено, %: С 68.47; Н 4.71; N 16.62. С₁₉H₁₆N₄O₂. Вычислено, %: С 68.66; Н 4.85; N 16.86.

Рентгеноструктурные исследования хиназолинонов 3f и 3j. Кристаллы 3j состава $C_{22}H_{13}F_3N_4O_2$, выращенные из метанола, моноклинные: a = 34.080(7), b = 8.687(2), c = 14.037(3) Å, $\beta = 108.30(3)^\circ$, V = 3945.5(15) Å, d = 1.422 г/см³, Z = 8, F(000) = 1728, простр. группа C2/с. Интенсивности 2153 независимых отражений измерены на автоматическом дифрактометре Syntex P2₁. (МоК α -излучение, графитовый монохроматор), $\theta/2\theta$ -сканирования до $2\theta_{max} = 45^\circ$. Структура расшифрована прямым методом по программе SHELXS [22] и уточнена по программе SHELXL [23] методом наименьших крадратов в анизотропном приближении для неводородных атомов до R = 0.059. Кристаллы соединения **3f** состава C₁₈H₁₈N₄O₂, выращенные из метанола, моноклинные и имеют следующие кристаллографические параметры: a = 16.352(3), b = 7.160(1), c = 15.289(3) Å, $\beta = 116.02(3)^\circ$, V = 1608.6(5) Å³, M = 322.36, $d_{ввич} = 1.331$ г.см⁻³, Z = 4, простр. группа Pc. Интенсивности 2396 независимых отражений измерены на автоматическом дифрактометре Syntex P2₁ (МоК α -излучение, графитовый мохроматор, $\theta/2\theta$ -сканирование, $\theta_{max} = 22.5^\circ$). В расчетах использовано 1302 независимых отражения с $I \ge 2\sigma(I)$. Структура расшифрована прямым методом по программе [22] и уточнена полноматричным MHK [23] анизотропно для атомов O и N и изотропно для атомов C до окончательного значения R = 0.071. Координаты неводородных атомов приведены в табл.5.

СПИСОК ЛИТЕРАТУРЫ

- 1. M. B. Deshmukh, D. S. Deshmukh, J. Indian Chem. Soc., 72, 847 (1995).
- 2. A. M. Ismail, K. Artruda, M. Teitler, R. A. Glemuon, J. Med. Chem., 38, 1196 (1995).
- N. J. Liverton, D. A. Armstrong, D. A. Claumon, D. C. Remy, J. J. Baldwin, R. J. Lunch, Jhang Guixiand, R. J. Gold, *Bioorg. Med. Chem. Lett.*, 8, 483 (1998).
- 4. B. Srivastava, J. S. Shukla, Y. S. Prabhakar, A. K. Saxena, Indian J. Chem., 30B, 332 (1991).
- 5. S. Plescia, M. L. Bajardi, D. Raffa, G. Daidone, Eur. J. Med. Chem., 21, 291 (1986).
- 6. C. Parkanyi, Yuan H. Liang, B. H. E. Strömberg, A. Evenzahav, J. Heterocycl. Chem., 29, 749 (1992).
- 7. B. Dash, E. K. Dora, C. S. Randa, J. Indian Chem. Soc., 57, 835 (1980).
- 8. R. S. Atkinson, A. P. Ayscough, L. W. Gattrell, T. M. Raynham, *Tetrah. Lett.*, **39**, 4377 (1998).
- 9. R. S. Atkinson, P. J. Williams, J. Chem. Soc. Perkins Trans. 1, N 16, 1951 (1996).
- 10. M. A. Saleh, Rev. roum. chim., 39, 659 (1994).
- 11. F. A. Yascin, A. M. F. Eissa, A. A. F. Wasfy, Indian J. Chem., 33B, 1193 (1994).
- 12. M. B. Hogale, P. B. Chavan, Collect. Czechosl. Chem. Commun., 58, 1705 (1993).
- 13. А. Л. Дьяконов, М. В. Тележенецкая, Химия природ. соедин., № 3, 297 (1997).
- 14. А. Я. Страков, Н. Н. Тонких, Э. Л. Палитис, М. В. Петрова, Ф. М. Авотиньш, *XTC*, № 6, 840 (1999).
- А. Я. Страков, М. Б. Андабурская, А. М. Моисеенков, А. А. Ахрем, Изв. АН ЛатвССР. Сер. хим., № 3, 330 (1973).
- А. Ф. Мишнев, С. В. Беляков, Я. Я. Блейделис, С. К. Апинитис, Э. Ю. Гудриниеце, Кристаллография, 31, 297 (1986).
- С. В. Беляков, А. Ф. Мишнев, Я. Я. Блейделис, И. Я. Плуксе, Э. Ю. Гудриниеце, Ж. структур. химии, 29, 169 (1988).
- А. В. Гутцайт, С. В. Беляков, Э. Ю. Гудриниеце, Я. Я. Блейделис, А. Ф. Мишнев, М. В. Краминя, Изе. АН ЛатеССР. Сер. хим., № 5, 607 (1986).
- 19. F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen, R. Taylor, J. Chem. Soc. Perkin Trans. 2, N 12, 1 (1987).
- 20. W. P. Busing, H. A. Levy, Acta crystallogr., 17, 142 (1964).
- 21. Конформационный анализ органических молекул, под ред. В. Г. Дашевского, Химия, Москва, 1982.
- 22. G. M. Sheldrick, Acta crystallogr., A46, 467 (1990).
- G. M. Sheldrick, SHELXL-93. Program for refinement of Crystal Structures, University of Göttingen, Germany, 1993.

Рижский технический университет, Рига LV-1658, Латвия e-mail: marina@osi.lanet.lv Поступило в редакцию 02.07.99

^аЛатвийский институт органического синтеза, Рига LV-1006