А. Г. Михайловский, * З. Г. Алиев^а, Н. Г. Базина, А. А. Пантюхин, М. И. Вахрин

2-АРОИЛЦИКЛОГЕКСАНОНЫ В СИНТЕЗЕ АЗОЛОВ

2-Ароилциклогексаноны, полученные из пиперидиноциклогексена, реагируют с гидразином, гидроксиламином и *о*-фенилендиамином с образованием соответствующих производных бициклических гетероциклов: индазола, 2,1-бензизоксазола и 2-*спиро*-циклогексилбензимидазола. Структура производного бензизоксазола доказана данными РСА.

Ключевые слова: 3-арил-4,5,6,7-тетрагидро-2,1-бензизоксазолы, 3-арил-4,5,6,7тетрагидроиндазолы, 2-ароилциклогексаноны, гидразин, гидроксиламин, пиперидиноциклогексен, 2-*спиро*-(2-ароилциклогексил)бензимидазолины, *о*-фенилендиамин, РСА.

1,3-Дикетоны хорошо известны в качестве строительных блоков, применяемых в синтезе гетероциклов [1–3], в частности, для конструирования природных и биологически активных молекул. Мало изученной группой 1,3-дикетонов являются 2-ароилциклогексаноны. При рассмотрении свойств этих соединений следует учитывать, что карбонильная группа ароильного фрагмента в реакциях с нуклеофилами может оказаться довольно инертной, что предполагает регио- и стереоселективность процесса. Целью данной работы является исследование реакций 2-ароилциклогексанонов с бинуклеофилами.

Исходные дикетоны 2a-d получены обычной реакцией ацилирования енамина 1 ароилхлоридами [4, 5]. Исследования показали, что реакция протекает с хорошими выходами и удобна для препаративных целей. Полученные дикетоны могут быть использованы в синтезе некоторых пятичленных гетероциклов. Так, взаимодействие дикетонов 2a,b с гидразингидратом приводит к пиразолам 3a,b, реакция дикетонов 2a,c с гидроксиламином в любых соотношениях даёт производные 4,5,6,7-тетрагидро-2,1-бензизоксазола 4a,b, взаимодействие дикетонов 2a,b с *о*-фенилендиамином в кипящей ледяной уксусной кислоте приводит к образованию 2-*спиро*-циклогексилимидазолинов 5a,b. Характеристики полученных соединений представлены в табл. 1.

Характеристичным для спектров ЯМР ¹Н дикетонов 2a-d служит сигнал протона группы CH, находящейся между двумя карбонильными группами (4.17–4.34 м. д.), проявляющийся в виде уширенного триплета. В спектре дикетона 2c этот сигнал имеет интенсивность, соответствующую приблизительно 0.5H. В спектре соединения 2b сигнал протона названной группы CH не наблюдается, но присутствует синглет группы OH (16.45 м. д.), что свидетельствует о полной енолизации дикетона 2b.

2a–5a Ar = p-MeC₆H₄; **2b**, **3b**, **5b** Ar = p-NO₂C₆H₄; **2c**, **4b** Ar = p-BrC₆H₄; **2d** Ar = 3,4-(MeO)₂C₆H₃

Наблюдаемый факт легко объясним акцепторными свойствами нитрогруппы, повышающими СН-кислотность. О частичной енолизации дикетонов **2a,d** свидетельствует небольшое уменьшение интегральной интенсивности сигналов протонов названных групп СН. Спиртовые растворы всех четырех кетонов **2a**–d дают окрашивание с раствором FeCl₃, что является положительной качественной реакцией на енольный гидроксил.

В спектрах ЯМР ¹Н пиразолов **3а**,**b** присутствуют синглеты групп NH (соответственно 11.53 и 11.31 м. д.). В случае изоксазолов **4а**,**b** синглеты протонов групп CH отсутствуют, что свидетельствует в пользу приведённой структуры. В спектрах бензимидазолинов **5а**,**b** присутствуют синглеты протонов двух групп NH (11.06 и 11.05 м. д.).

С целью исследования таутомерных свойств полученных дикетонов был исследован спектр ЯМР ¹³С соединения **2a**. Анализ данных DEPT показал наличие 8 метиленовых групп, что соответствует их удвоенному содержанию (21.28, 23.07, 23.59, 26.28, 27.35, 30.11, 32.77 и 42.77 м. д.) и одной группы CH (58.24 м. д.). Эти данные свидетельствуют в пользу наличия двух форм – кетонной и енольной.

В ИК спектрах дикетонов **2а**–**d** (в CHCl₃) присутствуют полосы валентных колебаний групп C=O в области 1700, 1675 и 1600 см⁻¹, что соответствует двум кетонным карбонилам – свободному и хелатированному. В спектрах соединений **3а,b** полоса в области 3250 см⁻¹ подтверждает наличие группы NH пиразольного цикла. В спектрах имидазолинов **5а,b** содержатся характеристические полосы валентных колебаний групп C=O (1680) и NH (3400 см⁻¹).

Таблица 1

Соеди-	Брутто-		<u>Найден</u> Вычисле	Т. пл., °С	Вы- ход.		
ение	формула	С	Н	Br	Ν	,	%
2a	$C_{14}H_{16}O_2$	<u>77.7</u> 77.8	<u>7.4</u> 7.5		-	92–93	84
2b	$C_{13}H_{13}NO_4$	<u>63.1</u> 63.2	<u>5.3</u> 5.3		<u>5.8</u> 5.7	72–73	32
2c	$C_{13}H_{13}BrO_2$	<u>55.4</u> 55.5	$\frac{4.6}{4.7}$	<u>28.2</u> 28.4	_	106–107	51
2d	$C_{15}H_{18}O_4$	<u>68.6</u> 68.7	<u>6.8</u> 6.9		_	108–110	47
3a	$C_{14}H_{16}N_2$	<u>79.1</u> 79.2	<u>7.5</u> 7.6		<u>13.3</u> 13.2	82-83	62
3b	$C_{13}H_{13}N_3O_2$	<u>64.1</u> 64.2	<u>5.4</u> 5.4		<u>17.4</u> 17.3	177–178	63
4 a	C ₁₄ H ₁₅ NO	<u>78.7</u> 78.8	<u>7.0</u> 7.1		<u>6.7</u> 6.6	95–96	72
4b	C ₁₃ H ₁₂ BrNO	<u>56.0</u> 56.1	$\frac{4.4}{4.4}$	<u>28.5</u> 28.7	<u>5.1</u> 5.0	145–146	73
5a	$C_{20}H_{22}N_2O$	<u>78.3</u> 78.4	<u>7.1</u> 7.2		<u>9.1</u> 9.1	109–110	67
5b	$C_{19}H_{19}N_3O_3$	<u>67.4</u> 67.6	<u>5.5</u> 5.7		<u>12.6</u> 12.5	130–131	64

Характеристики синтезированных соединений

Масс-спектры подтверждают гетероциклические структуры соединений **3**–**5**. В масс-спектрах тетрагидроиндазола **3a** и изоксазола **4a** присутствуют пики молекулярных ионов 212* (80%) и 213 (53%) и пики фрагментарных ионов, обусловленных элиминированием группы CH₃ – 197 (5%) и 198 (3%) соответственно.

В масс-спектре кетона **5а** наблюдаются пик молекулярного иона 306 (12%) и более интенсивные пики фрагментарных ионов, соответствующих отрыву *n*-толуоильной группы 187 $[M - C(O)Ar]^+$ (56%), а также пик иона 119 $[CH_3C_6H_4C(O)]$ (12%). Спектр кетона **5b** содержит пики ионов 337 $[M]^+$ (5%) и 187 $[M - C(O)Ar]^+$ (50%).

Следует, однако, сказать, что представленные данные ЯМР 1 Н, ИК и масс-спектров не противоречат еще одной возможной структуре соединений **4**a,**b**, которая может быть выражена формулой

^{*} Здесь и далее для пиков ионов приведены значения *m/z* (*I*_{отн}).

Таблица 2

соединений
синтезированных
Η
JMR
Спектры

Химические сдвиги, ô, м. д. (J, Гц)	Остальные протоны) 2.39 (3H, c, CH ₃)) 16.45 (c, OH)) 16.43 (c, OH)) 3.90 (3H, c, CH ₃ O), 3.91 (3H, c, CH ₃ O)) 2.34 (3H, c, CH ₃), 11.53 (c, NH)) 11.31 (c, NH)) 2.38 (3H, c, CH ₃)	- () 2.37 (3H, c, CH ₃), 11.06 (2H, c, 2NH)) 11.05 (2H, c, 2NH)
	Ароматические протоны	7.20–7.78 (4H, _M)	7.33–8.86 (4H, m)	7.17–7.57 (4H, m)	6.83–7.25 (3H, m)	7.19–7.50 (4H, _M)	7.71-8.12 (4Н, м)	7.26–7.63 (4Н, м)	7.36–7.86 (4H, _M)	7.11–8.10 (8H, m)	7.13–8.32 (8H, _M)
	4,7-(CH ₂) ₂ (4H, м), гетероцикла	Γ	I	I	I	2.60–2.64	2.58-2.80	2.73-2.81	2.73-2.79	I	I
	5,6-(CH ₂) ₂ (4H, м) гетероцикла	I	I	I	I	1.75–1.81	1.73-1.78	1.80-1.82	1.79–1.87	I	I
	2-СН (1Н, уш. т) циклогексана	4.34 ($^{2}J = 10$)	I	$4.20 \ (^2J = 10)$	$4.17 (^2 J = 10)$	I	Ι	Ι	Ι	$3.30 (^2 J = 8)$	$3.38 (^2J = 10)$
	3-CH ₂ (2H, м) и 6-CH ₂ (2H, м) циклогексана	2.23–2.28, 2.46–2.63	2.50–2.55, 2.47–2.60	2.29–2.35, 2.35–2.50	2.20–2.43, 2.21–2.64	I	Ι	Ι	I	2.83–3.05	2.79–3.13
	4,5-(CH ₂) ₂ (4H, м) циклогексана	1.67–1.98	1.60–2.07	1.55–1.95	1.60–2.10	I	I	Ι	I	1.43–2.05	1.60–2.10
	Соеди- нение	2a	2b	2c	2d	3a	3b	4a	4b	5a	5b

908

Структура молекулы соединения 4а, по данным РСА

Таблица З

Угол	ф, град.	Угол	<i>ф</i> , град.	
C(1)–O(1)–N(2)	108.5(2)	C(21)–N(21)–O(22)	108.8(2)	
C(3)–N(2)–O(1)	104.9(2)	C(23)–N(22)–O(21)	104.2(2)	
C(2)-C(1)-O(1)	109.3(2)	C(22)–C(21)–O(21)	109.3(2)	
C(2)–C(1)–C(8)	135.4(3)	C(22)–N(21)–C(28)	134.0(3)	
O(1)–C(1)–C(8)	115.2(2)	O(21)–C(21)–C(28)	116.6(2)	
C(1)-C(2)-C(3)	104.3(2)	C(21)–C(22)–C(23)	104.6(3)	
C(1)–C(2)–C(7)	133.4(3)	C(21)–C(22)–C(27)	132.7(3)	
C(3)–C(2)–C(7)	122.2(3)	C(23)–C(22)–C(27)	122.7(3)	
N(2)–C(3)–C(2)	112.9(3)	N(22)-C(23)-C(22)	113.1(3)	
N(2)-C(3)-C(4)	122.7(3)	N(22)-C(23)-C(24)	122.4(3)	
C(2)–C(3)–C(4)	124.4(3)	C(22)–C(23)–C(24)	124.4(3)	
C(3)–C(4)–C(5)	109.9(3)	C(23)-C(24)-C(25)	110.0(3)	
C(6)–C(5)–C(4)	112.5(3)	C(26)–C(25)–C(24)	114.9(3)	
C(5)–C(6)–C(7)	112.9(3)	C(25)-C(26)-C(27)	115.9(3)	
C(2)–C(7)–C(6)	110.6(3)	C(22)-C(27)-C(26)	109.3(3)	
C(13)-C(8)-C(9)	117.2(3)	C(33)-C(28)-C(29)	117.8(3)	
C(13)–C(8)–C(1)	112.9(3)	C(33)–C(28)–C(21)	121.0(3)	
C(9)–C(8)–C(1)	120.2(3)	C(29)–C(28)–C(21)	121.1(3)	
C(10)–C(9)–C(8)	120.9(3)	C(30)–C(29)–C(28)	120.1(3)	
C(11)-C(10)-C(9)	121.9(3)	C(29)–C(30)–C(31)	122.3(3)	
C(10)-C(11)-C(12)	117.2(3)	C(30)-C(31)-C(32)	116.7(3)	
C(10)-C(11)-C(14)	120.9(3)	C(30)-C(31)-C(34)	121.6(3)	
C(12)-C(11)-C(14)	121.9(3)	C(32)-C(31)-C(34)	121.7(3)	
C(11)-C(12)-C(13)	121.8(3)	C(33)–C(32)–C(31)	121.9(3)	
C(12)-C(13)-C(8)	120.9(3)	C(32)-C(33)-C(28)	121.1(3)	

Основные валентные углы (ф) в молекуле соединения 4а

Таблица 4

Связь	<i>d</i> , Å	Связь	<i>d</i> , Å	Связь	<i>d</i> , Å
O(1)–C(1)	1.366(3); 1.360(3)	C(2)–C(7)	1.491(4); 1.494(1)	C(8)–C(9)	1.386(4); 1.396(4)
O(1)–N(2)	1.421(3); 1.420(3)	C(3)–C(4)	1.490(4); 1.496(1)	C(9)–C(10)	1.378(4); 1.375(4)
N(2)–C(3)	1.302(4); 1.305(4)	C(4)–C(5)	1.516(4); 1.505(5)	C(10)–C(11)	1.374(4); 1.385(4)
C(1)–C(2)	1.356(4); 1.347(4)	C(5)–C(6)	1.503(4); 1.458(5)	C(11)–C(12)	1.374(4); 1.388(4)
C(1)–C(8)	1.463(4); 1.459(4)	C(6)–C(7)	1.540(4); 1.517(4)	C(11)–C(14)	1.512(4); 1.509(4)
C(2)–C(3)	1.417(4); 1.407(4)	C(8)–C(13)	1.386(4); 1.387(4)	C(12)–C(13)	1.380(4); 1.367(4)

Длины связей (d) в молекуле соединения 4a

Таким образом, установление структуры в данном случае возможно лишь с помощью РСА. Подходящие монокристаллы были получены для соединения **4a** перекристаллизацией из 2-пропанола. Общий вид молекулы представлен на рисунке. Все длины связей и валентные углы (табл. 3, 4) хорошо согласуются с обычными для соответствующих атомов значениями. Независимая часть элементарной ячейки содержит 2 молекулы. Соответственно в таблицах приведены значения, характеризующие как первую, так вторую кристаллографически независимую молекулу.

В целом форма молекулы близка к планарной, атом C(5) несколько приподнят над основной плоскостью молекулы, образуя конформацию кресла. В кристалле отсутствуют водородные связи и укороченные межмолекулярные контакты.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н зарегистрированы на приборе Bruker 300 (300 МГц), для соединения **5b** в ДМСО-d₆, для всех остальных в CDCl₃, внутренний стандарт ГМДС (δ 0.05 м. д.). ИК спектры получены на спектрометре Specord M-80 в хлороформе в концентрации 0.01 моль/л. Масс-спектры записаны на приборе Finigan MAT Incos 50 (70 эв, ЭУ). Проверка чистоты полученных веществ осуществлялась методом TCX на пластинах Silufol UV-254 в системе ацетон– этанол–хлороформ, 1:3:6, проявление в УФ свете или парами брома.

Впервые полученные 2-ароилциклогексаноны **2а**-**d** синтезированы по методике, приведенной в работе [4]. Все соединения перекристаллизованы из изопропилового спирта.

Рентгеноструктурное исследование соединения 4а. Кристаллы $C_{14}H_{15}NO$ принадлежат к моноклинной сингонии: a = 8.279(17), b = 11.382 (2), c = 24.807(5) Å, $\beta = 91.00(3)^\circ$, V = 2337.2(8) Å³, M 213.27, $d_{\text{выч}} = 1.212$ г/см³, Z = 8, пространственная группа $P2_1/c$. Набор экспериментальных отражений получен в автоматическом 4-кружном дифрактометре KM-4 (KUMA DIFRACTION) с χ -4, геометрией методом $\omega/2\theta$ сканирования на монохроматированном МоКа-излучении

 $(2\theta \le 50)$. Всего измерено 4964 независимых отражений ($R_{int} = 0.0276$). Поправки на поглощение не вводили ($\mu = 0.076 \text{ мм}^{-1}$). Структура определена прямым методом по программе SIR 92 [6] с последующей серией расчётов карт электронной плотности. Все атомы водорода заданы геометрически. Полноматричное анизотропное (неводородных атомов) уточнение МНК по программе SHELXL-97 [7] завершено при $R_1 = 0.0579$ по 3661 отражениям с $I \ge 2\sigma$ (I). GooF = 1.005.

3-Арил-4,5,6,7-тетрагидроиндазолы За,b. К раствору 10 ммоль кетона **2а** или **2b** в 10 мл кипящего 2-пропанола прибавляют 0.7 мл (15 ммоль) 70% раствора гидразингидрата. Смесь кипятят 30 мин, охлаждают до 20 °С, разбавляют 50 мл ледяной воды, выпавший осадок отфильтровывают, сушат и перекристаллизовывают.

3-Арил-4,5,6,7-тетрагидро-2,1-бензизоксазолы 4а,b. К раствору 10 ммоль кетона **2а** или **2с** в 10 мл кипящего 2-пропанола, прибавляют раствор смеси 1.40 г (20 ммоль) гидрохлорида гидроксиламина в смеси с 0.8 г (20 ммоль) NaOH. Реакционную смесь обрабатывают аналогично методике для соединений **3а,b**.

2-спиро-(2-Ароилциклогексил)-1,2-дигидробензимидазолы 5а,b. Раствор 10 ммоль кетона **2а** или **2b**, 1.08 г (10 ммоль) *о*-фенилендиамина в 10 мл ледяной уксусной кислоты кипятят 30 мин. Раствор охлаждают до 20 °C, разбавляют 50 мл воды, выпавший осадок отфильтровывают, промывают небольшим количеством аммиака, а затем снова водой, сушат и перекристаллизовывают.

СПИСОК ЛИТЕРАТУРЫ

- 1. Дж. Джоуль, К. Миллс, *Химия гетероциклических соединений*, Мир, Москва, 2004.
- 2. H. K. Hombrecher, G. Horter, Synthesis, 389 (1990).
- 3. H. Bredereck, R. Gompper, G. Morlock, Chem. Ber., 90, 942 (1958).
- 4. Органикум, Мир, Москва, 2008, т. 2, с. 221.
- 5. S. Hunig, H. Hoch, Fortshr. Chem. Forsch., 14, 235 (1970).
- 6. A. Altomare, G. Cascarano, C. Giacovazzo, A. Gualardi, *J. Appl. Crystallogr.*, **26**, 343 (1993).
- 7. G. M. Sheldrick, SHELXL97, Programs for Crystal Structure Analysis, Univ. of Göttingen, Germany, 2332 (1998).

Пермская государственная фармацевтическая академия Пермь 614990, Россия e-mail: perm@pfa.ru Поступило 22.08.2009

^аИнститут проблем химической физики РАН, Черноголовка 142432, Московская область, Россия e-mail: aliev@icp.ac.ru