О. И. Харанеко^{1*}, В. Ю. Попов¹, С. Л. Богза¹

4-АРИЛ-1-ГИДРАЗИНО-5*H*-2,3-БЕНЗОДИАЗЕПИН И 1-АРИЛ-4-ГИДРАЗИНО-5*H*-2,3-БЕНЗОДИАЗЕПИН В СИНТЕЗЕ КОНДЕНСИРОВАННЫХ [1,2]ДИАЗЕПИНОВ

Разработан метод циклизации 4-арил-1-гидразино-5H-2,3-бензодиазепина и 1-арил-4-гидразино-5H-2,3-бензодиазепина в производные 3-R-6-арил-7H-[1,2,4]триазоло-[3,4-a]- и 3-R-6-арил-7H-[1,2,4]триазоло[4,3-c][2,3]бензодиазепина с различными заместителями в триазольном цикле.

Ключевые слова: [1,2,4]триазоло[3,4-a][2,3]бензодиазепин, [1,2,4]триазоло[4,3-c]-[2,3]бензодиазепин, циклизация.

Производные 2,3-бензодиазепина показали себя как перспективные лиганды АМРА глутаматных рецепторов [1]. Аннелирование имидазольного цикла к грани с бензодиазепиновой системы сохраняет высокий уровень нейротропной активности, подчёркивая антиконвульсивный и нейропротекторный компоненты в фармакологическом профиле [2, 3]. Спектр биологической активности 2,3-бензодиазепинов с аннелироваными к ним азолами позволяет надеяться, что и другие модификации его структуры в этом направлении будут востребованы в медицинской химии.

В предыдущей работе [4] мы описали способ синтеза производных новой гетероциклической системы – [1,2,4]триазоло[3,4-a][2,3]бензодиазепина 2 – циклизацией 1-гидразино-4-(4-метоксифенил)-5H-2,3-бензодиазепина (1) с карбоновыми кислотами в присутствии каталитических количеств соляной кислоты.

Было замечено, что бензойная кислота в этих условиях даёт иные продукты, структуру которых нам установить не удалось.

Мы установили, что 4-(4-метоксифенил)-2,5-дигидро-1H-2,3-бензодиазепин-1-он (3) при кипячении в воде с двукратным избытком соляной кислоты в течение 1–2 мин количественно превращается в гидрохлорид 2-амино-3-(4-метоксифенил)изохинолин-1(2H)-она (4).

В то же время 1-гидразино-4-(4-метоксифенил)-5*H*-2,3-бензодиазепин (1) при кипячении в воде с двукратным избытком соляной кислоты в течение 30 мин остаётся неизменным.

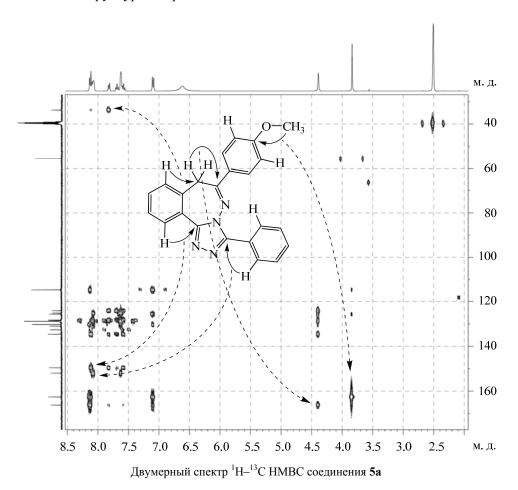
В настоящей работе мы установили, что при кипячении гидразина 1 с хлористым бензоилом в абсолютном диоксане в течение 1 ч с высоким выходом образуется гидрохлорид 6-(4-метоксифенил)-3-фенил-7H-[1,2,4]-триазоло[3,4-a][2,3]бензодиазепина (5a). Используя такой способ, мы также получили триазолобензодиазепины 5b,c, осуществили циклизацию соединения 1 с хлорангидридами моноэфира янтарной кислоты и N-фталимидозамещённых карбоновых кислот с образованием соединений 6 и 7a-c соответственно.

5 а Ar = Ph, **b** Ar = 2-фурил, **c** Ar = 1,3-диметил-1*H*-пиразол-5-ил; **7, 8 а** n=1, **b** n=2, **c** n=3

Гидразинолизом фталоильной группы триазолобензазепинов **7а–с** мы получили **3-**аминоалкилзамёщенные производные **8а–с**.

Циклизация 4-гидразино-7,8-диметокси-1-фенил-5*H*-2,3-бензодиазепина (**9a**) и 4-гидразино-7,8-диметокси-1-(2-хлорфенил)-5*H*-2,3-бензодиазепина (**9b**) [5] с хлорангидридами гетероциклических и функционально замещённых кислот протекает в тех же условиях, что и циклизация соединения **1**. Это позволило нам получить триазолобензодиазепины **10a,b** и **11** по существенно более простой методике, чем была предложена в работе [6].

Основные характеристики полученных соединений приведены в табл. 1. Строение синтезированных соединений подтверждают данные спектров ИК, ЯМР 1 Н и 13 С (табл. 2).


. $T\ a\ б\ \pi\ u\ ц\ a\ 1$ Физико-химические характеристики синтезированных соединений

Соеди-	Брутто-	Найдено, % Вычислено, %				Т. пл., °С	Выход,
нение	формула	С	Н	Cl	N	1. IIII., °C	%
4	C ₁₆ H ₁₄ N ₂ O ₂ ·HCl	63.51 63.47	<u>5.01</u> 4.99	11.70 11.71	9.22 9.25	107–108	98
5a	C ₂₃ H ₁₈ N ₄ O·HCl	68.55 68.57	4.81 4.75	8.81 8.80	13.79 13.91	182–183	99
5b	C ₂₁ H ₁₆ N ₄ O ₂ ·HCl	64.23 64.21	<u>4.41</u> 4.36	9.00 9.02	14.30 14.26	214–216	99
5c	C ₂₂ H ₂₀ N ₆ O·2HCl	57.81 57.78	4.82 4.85	15.52 15.50	18.42 18.37	178–179	89
6	$C_{20}H_{18}N_4O_3$	66.25 66.29	5.02 5.01	_	15.53 15.46	227–229	54
7a	C ₂₆ H ₁₉ N ₅ O ₃ ·HCl	64.29 64.27	4.13 4.15	7.13 7.30	14.42 14.41	197–199	92
7b	C ₂₇ H ₂₁ N ₅ O ₃ ·HCl	64.89 64.87	4.41 4.44	7.11 7.09	14.00 14.01	206–208	94
7c	C ₂₈ H ₂₃ N ₅ O ₃ ·HCl	65.41 65.43	4.72 4.71	7.01 6.90	13.62 13.63	190–192	94
8a	C ₁₈ H ₁₇ N ₅ O	67.72 67.70	5.39 5.37	_	21.92 21.93	74–76	91
8b	$C_{19}H_{19}N_5O$	68.48 68.45	5.73 5.74	_	21.03 21.01	65–67	94
8c	$C_{20}H_{21}N_5O\cdot 2HCl$	<u>57.11</u> 57.15	5.50 5.52	16.89 16.87	16.68 16.66	159–163	92
10a	$C_{21}H_{20}N_4O_4$	64.32 64.28	<u>5.22</u> 5.14	_	14.31 14.28	117–120	72
10b	$C_{21}H_{19}CIN_4O_4$	<u>59.11</u> 59.09	4.52 4.49	8.33 8.31	13.19 13.13	110–112	57
11	$C_{23}H_{22}CIN_6O_2 \cdot 2HC1$	<u>56.70</u> 56.68	5.99 4.96	14.53 14.55	17.25 17.24	184–186	32

В спектрах ЯМР 1 Н соединений **5а-с**, **6**, **7а-с**, **8а-с 10а**,**b**, **11** присутствует синглет в районе 4.08–4.32 м. д., относящийся к CH_2 -группе диазепинового цикла (по данным [6] в спектрах ЯМР 1 Н структурно близких соединений сигнал этой группы проявляется при 3.8–3.9 м. д.). В спектрах ЯМР 13 С соединений **5а**, **6**, **8а-с** присутствуют сигналы, принадлежащие атомам углерода триазольного цикла – сигнал атома C-3 при 147–148 м. д., что по значениям δ совпадает с данными работы [7] для спектров аналогичных соединений, и сигнал атома C-11b при 150–154 м. д. Сигнал CH_2 -группы диазепинового цикла (C-7) проявляется при 53–54 м. д.

Для структуры соединения **5a** был записан двумерный спектр ${}^{1}\text{H}-{}^{13}\text{C}$ НМВС. Ключевые взаимодействия, подтверждающие структуру соединения **5a**, приведены на рисунке.

Таким образом, проведённые исследования позволяют предложить удобный метод синтеза изомерных триазолоконденсированных 2,3-бензодиазепинов с широкими возможностями их функционализации. Разработанный нами метод аннелирования триазольного цикла к 2,3-бензодиазепину выгодно отличается от известных методов не только препаративной простотой и высокими выходами конечных продуктов, но и возможностью получения 3-карбоксиалкил- и 3-аминоалкилзамещённых триазолобензодиазепинов с регулируемой длиной линкера, что делает их привлекательными объектами для поиска структур-лидеров в медицинской химии.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры зарегистрированы на приборе IR-75 в таблетках КВг. Спектры ЯМР 1 Н и 13 С записаны на приборе Bruker Avance II (400 и 100 МГц соответственно) в ДМСО- d_{6} , внутренний стандарт ТМС. Элементный анализ проведён с использованием анализатора Elementar vario El cube. Температуры плавления определены на нагревательном приборе типа Boetius и не исправлены.

Гидрохлорид 2-амино-3-(4-метоксифенил)изохинолин-1(2*H*)-она (4). К суспензии 1.0 г (3.76 ммоль) 4-(4-метоксифенил)-2,5-дигидро-1*H*-2,3-бензодиазепин-1-она (3) в 10 мл кипящей воды добавляют 0.3 мл (4 ммоль) конц. НСІ. Смесь кипятят в течение 5 мин. Исходное соединение 3 в течение первой минуты полностью растворяется, и после его растворения сразу начинает выпадать продукт 4. Смесь охлаждают, бесцветный кристаллический осадок отфильтровывают, промывают водой и высушивают на воздухе.

Гидрохлорид 6-(4-метоксифенил)-3-фенил-7*H*-[1,2,4]триазоло[3,4-*a*][2,3]бензодиазепина (5а). В круглодонную колбу объёмом 20 мл помещают 1.0 г (3.6 ммоль) 1-гидразино-4-(4-метоксифенил)-5*H*-2,3-бензодиазепина (1) и 5 мл абс. диоксана. Смесь нагревают до полного растворения осадка и затем к раствору при перемешивании приливают 0.5 мл (4.3 ммоль) бензоилхлорида. Смесь кипятят в колбе с обратным холодильником в течение 1 ч. Выпавший в начале прибавления осадок постепенно растворяется, а затем начинает выпадать конечный продукт. По окончании кипячения раствор охлаждают до комнатной температуры, отфильтровывают осадок, промывают его небольшим количеством абс. диоксана и высушивают на воздухе.

Гидрохлорид 6-(4-метоксифенил)-3-(2-фурил)-7*H*-[1,2,4]триазоло[3,4-*a*][2,3]-**бензодиазепина** (**5b**). Получают аналогично, используя хлорангидрид пирослизевой кислоты

Дигидрохлорид 3-(1,3-диметил-1*H*-пиразол-5-ил)-6-(4-метоксифенил)-7*H*-[1,2,4]-триазоло[3,4-*a*][2,3]бензодиазепина (5c). В круглодонную колбу объёмом 20 мл помещают 1.0 г (3.6 ммоль) гидразина 1 и 5 мл абс. диоксана. Смесь нагревают до полного растворения осадка и к раствору при перемешивании добавляют 0.7 г (4.4 ммоль) хлорангидрида 1,3-диметилпиразолил-5-карбоновой кислоты. Смесь кипятят в колбе с обратным холодильником в течение 1 ч. Выпавший в начале прибавления осадок постепенно растворяется. По окончании кипячения раствор охлаждают до комнатной температуры и выливают в 30 мл горячей воды, содержащей 2 мл конц. HCl. Выпавшее масло при растирании закристаллизовывается. После охлаждения осадок отфильтровывают, промывают водой и высушивают на воздухе.

3-[6-(4-Метоксифенил)-7*H*-[1,2,4]триазоло[3,4-*a*][2,3]бензодиазепин-3-ил]пропионовая кислота (6). В круглодонную колбу объёмом 30 мл помещают 1.0 г (3.6 моль) гидразина 1 и 5 мл абс. диоксана. Смесь нагревают до полного растворения осадка и к раствору при перемешивании добавляют 0.6 г (4.0 ммоль) хлорангидрида монометилового эфира янтарной кислоты. Смесь кипятят в колбе с обратным холодильником в течение 1 ч, добавляют водный раствор NaOH (10 мл) до сильнощелочной реакции на лакмус и продолжают кипячение ещё в течение 2 ч. Диоксан отгоняют в вакууме, а к остатку добавляют АсOH до слабокислой среды. Выпавший осадок отфильтровывают, промывают водой и высушивают на воздухе.

Гидрохлорид 2-{[6-(4-метоксифенил)-7*H*-[1,2,4]триазоло[3,4-*a*][2,3]бензодиазепин-3-ил]метил}-1*H*-изоиндоло-1,3(2*H*)-диона (7а). В круглодонную колбу объёмом 20 мл помещают 1.0 г (3.6 ммоль) гидразина 1 и 5 мл абс. диоксана. Смесь нагревают до полного растворения осадка и к раствору при перемешивании добавляют 1.6 г (7.2 ммоль) хлорангидрида фталоилглицина. Смесь кипятят в колбе с обратным холодильником в течение 1 ч, охлаждают до комнатной температуры, осадок отфильтровывают и промывают небольшим количеством абс. диоксана.

Гидрохлорид 2-{2-[6-(4-метоксифенил)-7H-[1,2,4]триазоло[3,4-a][2,3]бензодиазепин-3-ил]этил}-1H-изоиндоло-1,3(2H)-диона (7b). Получают аналогично соединению 7a из гидразина 1 и хлорангидрида β -фталимидопропионовой кислоты.

Спектральные характеристики синтезированных соединений

Соеди-	ИК спектр, v, см ⁻¹	Спектр ЯМР 1 Н, δ , м. д. $(J, \Gamma$ ц)	Спектр ЯМР ¹³ С, δ, м. д.
4	1595, 1720, 2830, 2920, 2980	3.05 (2H, уш. c, NH ₂); 3.84 (3H, c, OCH ₃); 6.98 (2H, д, $J = 8.8$, H Ar); 7.09 (1H, c, H-4); 7.46 (1H, т, $J = 7.6$, H Ar); 7.56 (1H, д, $J = 7.6$, H Ar); 7.72 (1H, т, $J = 8.0$, H Ar); 7.82 (2H, д, $J = 8.8$, H Ar); 8.13 (1H, д, $J = 8.0$, H Ar)	
5a	1600, 1795	3.86 (3H, c, OCH ₃); 4.32 (2H, c, 7-CH ₂); 7.01 (2H, д, J = 8.8, H Ar); 7.49–7.59 (4H, м, H Ar); 7.61 (1H, т, J = 7.6, H Ar); 7.71 (1H, д, J = 7.6, H Ar); 8.06–8.12 (4H, м, H Ar); 8.16 (1H, д, J = 7.6, H Ar)	· · · · · · · · · · · · · · · · · · ·
5b	1595, 1820	3.88 (3H, c, OCH ₃); 4.23 (2H, c, 7-CH ₂); 6.67 (1H, c, H Ar); 7.05 (2H, д, J = 8.8, H Ar); 7.18 (1H, д, J = 3.2, H Ar); 7.50 (1H, т, J = 7.2, H Ar); 7.58 (1H, т, J = 7.2, H Ar); 7.67 (1H, д, J = 7.2, H Ar); 8.12 (1H, д, J	
5c		= 7.6, H Ar); 8.16 (2H, д, <i>J</i> = 8.4, H Ar) 2.25 (3H, c, CH ₃); 3.87 (3H, c, OCH ₃); 4.15 (2H, c, 7-CH ₂); 4.22 (3H, c, CH ₃); 6.56 (1H, c, H Ar); 7.01 (2H, д, <i>J</i> = 8.8, H Ar); 7.49 (1H, т, <i>J</i> = 7.2, H Ar); 7.54 (1H, т, <i>J</i> = 7.2, H Ar); 7.62 (1H, д, <i>J</i> = 7.2, H Ar); 8.02–8.15 (3H, м, H Ar)	
6	1600, 1730, 2900	2.82 (2H, т, $J = 7.2$, CH ₂ CH ₂ COOH); 3.17 (2H, т, $J = 7.2$, CH ₂ CH ₂ COOH); 3.88 (3H, c, OCH ₃); 4.08 (2H, c, 7-CH ₂); 7.01 (2H, д, $J = 8.4$, H Ar); 7.45 (1H. т, $J = 7.6$, H Ar); 7.51 (1H, т, $J = 7.6$, H Ar); 7.59 (1H, д, $J = 7.6$, H Ar); 8.03	147.4 (C-3); 131.9; 129.6; 128.4; 126.9; 126.4; 126.1; 124.9; 124.7; 112.8; 53.9 (7-CH ₂); 32.5 (OCH ₃); 29.0
7a	1600, 1710,	(1H, д, J = 7.6, H Ar); 8.11 (2H, д, J = 8.4, H Ar); 12.13 (1H, с, COOH) 3.87 (3H, с, OCH ₃); 4.16 (2H, с, 7-CH ₂); 5.17 (2H, с, CH ₂ N); 7.03 (2H, д, J = 8.8, H Ar); 7.48 (1H, т, J = 7.6, H Ar); 7.57 (1H, т, J = 7.6, H Ar); 7.65 (1H, д, J = 7.6, H Ar); 7.84–7.95 (4H, м, H Ar); 8.02 (1H, д, J = 7.6, H Ar); 8.09 (2H, д, J = 8.4, H Ar)	
7b	1580, 1710, 1760, 1850, 2900	3.44 (2H, т, J = 6.4, CH ₂ CH ₂ N); 3.88 (3H, c, OCH ₃); 4.05–4.15 (4H, м, 7-CH ₂ , CH ₂ CH ₂ N); 6.97 (2H, д, J = 8.8, H Ar); 7.51 (1H, т, J = 7.6, H Ar); 7.59 (1H, т, J = 7.6, H Ar); 7.65 (1H, д, J = 7.6, H Ar); 7.72 (4H, c, H Ar); 8.02 (2H, д, J = 8.4, H Ar); 8.05 (1H, д, J = 7.6, H Ar)	
7c		2.23 (2H, κB , $J = 6.8$, $CH_2CH_2CH_2CH_2N$); 3.06 (2H, τ , $J = 6.8$ $CH_2CH_2CH_2N$); 3.77 (2H, τ , $J = 6.8$, $CH_2CH_2CH_2N$); 3.85 (3H, τ , $t = 6.8$,	

8a	1600	3.92 (3H, c, OCH ₃); 4.09 (2H, c) и 4.14 (2H, c, 7-CH ₂ , CH ₂ N); 7.05 (2H, д, $J = 8.4$, H Ar); 7.50 (1H, т, $J = 7.6$, H Ar); 7.57 (1H, т, $J = 7.6$, H Ar); 7.63 (1H, д, $J = 7.6$, H Ar); 8.05 (1H, д, $J = 7.6$); 8.13 (2H, д, $J = 8.4$, H Ar)	
8b	1590	3.04 (2H, т, J = 5.6, С \underline{H}_2 СH ₂ NH ₂); 3.13 (2H, т, J = 5.6,СH ₂ С \underline{H}_2 NH ₂); 3.92 (3H, c, OCH ₃); 4.08 (2H, c, 7-CH ₂); 7.05 (2H, д, J = 8.4, H Ar); 7.44 (1H, т, J = 7.6, H Ar); 7.49 (1H, т, J = 7.6, H Ar); 7.57 (1H, д, J = 7.6, H Ar); 8.08 (2H, д, J = 8.4, H Ar)	162.0 (C-6); 160.8 (<u>C</u> OMe); 151.6 (C-11b); 147.3 (C-3); 132.2; 131.0; 129.6; 128.5; 126.9; 126.4; 126.0; 124.7; 112.8; 53.0 (7-
8c	1590	2.25 (2H, кв, $J = 6.8$, $CH_2C\underline{H}_2CH_2NH_3^+$); 3.01 (2H, кв, $J = 6.8$, $CH_2C\underline{H}_2C\underline{H}_2NH_3^+$); 3.18 (2H, т, $J = 6.8$, $C\underline{H}_2C\underline{H}_2C\underline{H}_2NH_3^+$); 3.86 (3H, с, OCH ₃); 4.26 (2H, с, 7-CH ₂); 7.03 (2H, д, $J = 8.4$, H Ar); 7.52 (1H, т, $J = 7.6$, H Ar); 7.63 (1H, т, $J = 7.6$, H Ar); 7.71 (1H, д, $J = 7.6$, H Ar); 8.04 (1H, д, $J = 7.6$, H Ar); 8.17 (2H, д, $J = 8.4$, H Ar); 8.33 (3H, уш. с, $N\underline{H}_3^+$)	132.0; 129.4; 127.6; 127.2; 126.8; 123.8; 120.9; 113.0; 54.1 (7-CH ₂); 36.6 (CH ₂ CH ₂ CH ₂ N); 32.2 (OCH ₃); 21.6
10a	1600, 1710, 2920	2.75 (2H, т, J = 7.6, С $\underline{\text{H}}_2$ СH ₂ COOH); 3.11 (2H, т, J = 7.6, CH ₂ C $\underline{\text{H}}_2$ COOH); 3.60 (3H, c, OCH ₃); 3.93 (3H, c, OCH ₃); 4.08 (2H, c, 11-CH ₂); 6.58 (1H, c, H Ar); 7.19 (1H, c, H Ar); 7.47–7.56 (3H, м, H Ar); 7.73 (2H, μ , μ) = 7.2, H Ar)	
10b	1590, 1710, 2920	2.72 (2H, т, J = 8.0, С $\underline{\text{H}}_2$ СН $_2$ СООН); 3.02 (2H, т, J = 8.0, С $\underline{\text{H}}_2$ СООН); 3.45 (3H, c, OCH $_3$); 3.85 (3H, c, OCH $_3$); 4.18 (2H, c, 11-CH $_2$); 6.34 (1H, c, H Ar); 7.29 (1H, c, H Ar); 7.57–7.60 (3H, м, H Ar); 7.79 (1H, д, J = 8.0, H Ar)	132.9; 132.8; 132.0; 131.8; 130.4; 127.9; 123.5; 113.4; 112.3;
11	1600	2.32 (3H, c, CH ₃); 3.59 (3H, c, OCH ₃); 3.92 (3H, c, OCH ₃); 4.09 (3H, c, NCH ₃); 4.16 (2H, c, 11-CH ₂); 6.58 (1H, c, H Ar); 6.70 (1H, c, H Ar); 7.24 (1H, c, H Ar); 7.46–7.59 (3H, M, H Ar); 7.71 (2H, μ , μ	

Гидрохлорид 2-{3-[6-(4-метоксифенил)-7H-[1,2,4]триазоло[3,4-a][2,3]бензодиазепин-3-ил]пропил}-1H-изоиндоло-1,3(2H)-дион (7c). Получают аналогично соединению 7a из гидразина 1 и хлорангидрида γ -фталимидомасляной кислоты.

1-[6-(4-Метоксифенил)-7*H*-[1,2,4]триазоло[3,4-a][2,3]бензодиазепин-3-ил]метил-амин (8a). В круглодонную колбу объёмом 30 мл помещают 1.500 г (3.1 ммоль) соединения 7a, добавляют 0.124 г (3.1 ммоль) NaOH, 10 мл 2-PrOH и 0.3 мл (6.2 моль) гидразингидрата. Смесь кипятят в течение 4 ч. По истечении этого времени 2-PrOH отгоняют при пониженном давлении, добавляют 5 мл H_2O , подкисляют HCl до сильнокислой реакции на лакмус и доводят раствор до кипения. После медленного охлаждения раствора выпавший осадок отфильтровывают, промывают на фильтре 2 мл H_2O и к фильтрату добавляют твёрдый NaOH до сильнощелочной реакции. Выпавший маслообразный осадок соединения 8a со временем закристаллизовывается. Его отфильтровывают, промывают водой на фильтре и высушивают на воздухе.

2-[6-(4-Метоксифенил)-7*H*-[1,2,4]триазоло[3,4-*a*][2,3]бензодиазепин-3-ил]этил-амин (8b). Получают аналогично соединению 8a из соединения 7b.

Дигидрохлорид {3-[6-(4-метоксифенил)-7*H*-[1,2,4]триазоло[3,4-a]бензодиазепин-3-ил]пропил}амин (8c). Получают аналогично соединению 8a из соединения 7c. Выпавшее после подщелачивания фильтрата масло экстрагируют CH_2Cl_2 (2 × 5 мл), экстракты объединяют и упаривают CH_2Cl_2 . Остаток растворяют в 5 мл диоксана и добавляют раствор HCl в эфире до сильнокислой реакции. Выпавшее масло при растирании закристаллизовывается. Осадок отфильтровывают, промывают диоксаном и высушивают на воздухе.

3-(8,9-Диметокси-6-фенил-11*H*-[1,2,4]триазоло[4,3-*c*][2,3]бензодиазепин-3-ил)- пропионовая кислота (10a). Получают аналогично соединению 6 из 4-гидразино-7,8-диметокси-1-фенил-5*H*-2,3-бензодиазепина (9a).

3-[8,9-Диметокси-6-(2-хлорфенил)-11H-[1,2,4]триазоло[4,3-c][2,3]бензодиазепин-3-ил]пропионовая кислота (10b). Получают аналогично соединению 6 из 4-гидразино-7,8-диметокси-1-(2-хлорфенил)-5H-2,3-бензодиазепина (9b).

Дигидрохлорид 3-(1,3-диметил-1H-пиразол-5-ил)-6-фенил-11H-[1,2,4]триазоло-[4,3-c][2,3]бензодиазепин (11). Получают аналогично соединению 5c из 4-гидразино-7,8-диметокси-1-фенил-5H-2,3-бензодиазепина (9a) и хлорангидрида 1,3-диметил-пиразолил-5-карбоновой кислоты.

СПИСОК ЛИТЕРАТУРЫ

- 1. E. Csuzdi, K. Migleczi, I. Hazai, P. Berzsenyi, I. Pallagi, G. Horvath, G. Lengyel, S. Solyom, *Bioorg. Med. Chem. Lett.*, **15**, 4662 (2005).
- 2. S. Solyom, *Pharmazie*, **25**, 62 (2001).
- 3. V. Tamási, E. Hazai, M. Porsmyr-Palmertz, M. Ingelman-Sundberg, L. Vereczkey, K. Monostory, *Drug Metab. Dispos.*, **31**, 1310 (2003).
- 4. К. М. Хабаров, О. И. Харанеко, С. Л. Богза, *XГС*, 594 (2009). [*Chem. Heterocycl. Compd.*, **45**, 468 (2009).]
- 5. R. Gitto, M. Zappala, G. De Sarro, A. Chimirri, Farmaco, 57, 129 (2002).
- 6. M. Zappala, R. Gitto, F. Bevacqua, S. Quartarone, A. Chimirri, M. Rizzo, G. De Sarro, A. De Sarro, *J. Med. Chem.*, **43**, 4834 (2000).
- 7. L. W. Deady, S. M. Devine, J. Heterocycl. Chem., 41, 549 (2004).
- 8. G. G. Smith, C. W. Delong, W. H. Wetzel, V. P. Muralidharan, *J. Heterocycl. Chem.*, 4, 501 (1967).

¹ Институт физико-органической химии и углехимии им. Л. М. Литвиненко НАН Украины, ул. Р. Люксембург, 70, Донецк 83114, Украина e-mail: kharaneko@ukr.net, o_kharaneko@mail.ru

Поступило 14.05.2012