

Синтез 1,2,3-триазолов, линейно сочлененных с другими карбо- и гетероциклами, на основе реакции β-азолиленаминов с азидами

Илья В. Ефимов¹, Николай А. Беляев¹, Василий А. Бакулев¹, Татьяна В. Березкина¹*

¹ Уральский федеральный университет им. первого Президента России Б. Н. Ельцина, ул. Мира, 19, Екатеринбург 620002, Россия; e-mail: tetber@mail.ru Поступило 27.10.2017 Принято 28.11.2017

R = Ph, 4-MeC₆H₄, 4-O₂NC₆H₄, 4-ClC₆H₄, 4-FC₆H₄, CH₂CO₂Et, Bn; Ar = Ph, 2,6-Cl₂C₆H₃; R¹ = Me, Et

Реакции β-азолиленаминов с азидами протекают без растворителя и основания при температуре 110 °C селективно по одному из возможных направлений с образованием 1,4-дизамещенных 1,2,3-триазолов. Предложенный механизм реакции включает циклоприсоединение исходных реагентов к промежуточным 1,2,3-триазолинам с последующим элиминированием диметиламина и ароматического триазола.

Ключевые слова: азиды, енамины, линейно сочлененные бициклы, 1,2,3-триазолы, триазолины.

Гетероциклические соединения, состоящие из нескольких линейно сочлененных циклов, проявляют разнообразную биологическую активность,^{1–8} используются в органическом синтезе,^{9–11} в химии материалов^{12–17} и являются перспективными объектами исследований для химиков-органиков. Их можно отнести к палочкообразным соединениям, которые представляют новый класс объектов для органической электроники.^{18,19}

Открытие Мелдалом и Шарплессом катализируемого медью циклоприсоединения азидов к ацетиленам (CuAAC)^{20,21} привлекло огромное внимание многих синтетиков к исследованию свойств производных 1,2,3-триазола.^{1,22–24} Множество разнообразных веществ этого класса, включая биоконъюгаты,² хемосенсоры,³ лиганды,⁴ рецепторы анионов,⁵ стали доступны благодаря этой реакции. В свою очередь, это привело к расширению использования производных 1,2,3-триазола в медицине, технике и органическом синтезе.^{13,22–24}

Основные методы синтеза 1,2,3-триазолов включают присоединение азидов к ацетиленам, 20,21,25 взаимодействие азидов с соединениями с активированной метиленовой группой, 26,27 внутримолекулярную циклизацию диазоиминов по гетероэлектроциклическому механизму, 28,29 реакции α -диазоацетонитрилов с аминами

и галогеноводородами^{30,31} и реакции электрофильного замещения в 1,2,3-триазолах, синтезированных другими методами.³² Мы обратили внимание на реакцию азидов с енаминами, также приводящую к региоспецифическому образованию 1,4-дизамещенных 1,2,3-триазолов, из-за высокой реакционной способности енаминов по отношению к азидам по сравнению с другими алкенами в аналогичных реакциях.^{33,34} Вследствие большей доступности β-азолиленаминов,^{33–35} по сравнению с азолилацетиленами, мы отдали предпочтение этому методу синтеза азолил-1,2,3-триазолов. За исключением нашего предварительного сообщения,³³ реакции β-азолиленаминов с ароматическими и алифатическими азидами в литературе не описаны.

С целью разработки эффективного и удобного препаративного метода синтеза бициклических 1,2,3-триазолов, линейно сочлененных с 1,2,3-тиадиазольным, изоксазольным, 1,2,3-триазольным или 1,2,4-оксадиазольным циклом, мы осуществили исследования реакций β -азолиленаминов **1а**-е с ароматическими азидами **2а**-е, этоксикарбонилацетазидом (**2f**) и бензилазидом (**2g**) (схема 1). Исходные енамины **1а**-е синтезированы из соответствующих 5-метилазолов реакцией с диметилацеталем диметилформамида по методикам, опубликованным ранее.^{34,35} Их структуры были отнесены к *транс*-изомерам на основании констант спин-

2 a R = Ph, b R = 4-MeC₆H₄, c R = 4-O₂NC₆H₄, d R = 4-ClC₆H₄, e R = 4-FC₆H₄, f R = CH₂CO₂Et, g R = Bn

спинового взаимодействия (J = 13.0-13.6 Гц) для вицинальных протонов в спектрах ЯМР ¹Н соединений **1а–е**.

Ароматические азиды 2a-e получены обработкой ароматических солей диазония азидом натрия,³⁶ а 2-азидоацетат (2f) и бензилазид (2g) – реакцией 2-бромацетата и бензилбромида с азидом натрия.³⁷

С целью поиска оптимальных условий получения азолил-1,2,3-триазолов было исследовано взаимодействие β -(оксадиазол-5-ил)енамина **1e** с 4-нитрофенилазидом (**2c**) при варьировании растворителя и температуры (табл. 1). По табл. 1 видно, что тип растворителя слабо влияет на выход азолилтриазола **3g**.

Было показано, что при увеличении температуры процесса (опыты 2, 3) происходит уменьшение времени реакции и одновременно с этим – увеличение выхода триазола **3g**. Мы обнаружили, что быстрый нагрев смеси исходных реагентов до 110 °C в отсутствие растворителей, выдержка в течение 0.33 ч при этой температуре с последующим быстрым охлаждением позволяют увеличить выход целевого продукта до 92%. Таким образом, оптимальными условиями проведения реакции являются использование эквивалентных количеств исходных соединений и проведение реакции в отсутствие растворителей при температуре 110 °C. В дальнейшем во всех экспериментах для получения 1,2,3-триазолов **3а–m** мы использовали эти условия. Мы показали, что все синтезированные енамины **1а–е**

Таблица 1. Оптимизация условий реакции енамина 1е с азидом 2с* и выходы триазола 3g

 $Ar^{1} = 4 - FC_{6}H_{4}$

Опыт	Растворитель	Температура, °С	Время, ч	Выход, %
1	ДМСО	70	10	40
2	ДМФА	110	2.5	70
3	ДМСО	110	0.5	65
4	мета-Ксилол	110	0.66	70
5	Расплав	110	0.33	92

* В опытах 1-4 использовали раствор 0.33 ммоль исходных соединений в 1 мл указанного растворителя, в опыте 5 – такое же количество исходных соединений без растворителя.

гладко взаимодействуют с азидами **2а–g** с образованием 1,2,3-триазолов **3а–m**, сочлененных с 1,2,3-тиадиазольным, изоксазольным, 1,2,3-триазольным или оксадиазольным циклом, с выходами 45–92% (схема 1).

Следует отметить, что методами TCX и спектроскопии ЯМР ¹Н не обнаружено образования 1,5-дизамещенных 1,2,3-триазолов **3'**, изомерных соединениям **3**. Сравнивая исследуемую нами реакцию азолиленаминов с азидами с реакцией CuAAC, также приводящую к образованию 1,4-дизамещенных 1,2,3-триазолов, мы можем сделать вывод, что β -азолиленамины являются синтетическими эквивалентами монозамещенных ацетиленов.

Рисунок 1. Молекулярная структура триазола 3i в представлении атомов эллипсоидами тепловых колебаний с 50% вероятностью.

Структуры полученных 4-(азол-5-ил)-1,2,3-триазолов **3а-т** подтверждены данными спектроскопии ЯМР ¹H и ¹³C, а также данными РСА для соединения **3i** (рис. 1). Следует отметить, что характерной особенностью всех полученных триазолов **3а-т** является наличие сигнала протона H-5 триазольного цикла в области 8.21–10.12 м. д. в спектрах ЯМР ¹H и сигналов атомов углерода C-4 в области 134.7–139.9 м. д. в спектрах ЯМР ¹³C.

Методом спектроскопии ЯМР ¹Н на основании интегралов протонов енаминового фрагмента мы определили конверсию енаминов **1а,b** в реакции с азидами **2а–d** в соответствующие триазолы за 120 мин в растворе ДМСО- d_6 при температуре 110 °С (табл. 2). По табл. 2 видно, что конверсия обоих енаминов понижается при понижении электроноакцепторных свойств заместителей в молекуле арилазида (NO₂ > Cl > H > Me). Таким образом, мы можем сделать вывод, что введение электроноакцепторных заместителей в молекулу азидов ускоряет их реакцию с енаминами.

Реакции ароматических азидов с енаминами относят к реакциям с обратными электронными требованиями, поскольку введение электроноакцепторных заместителей в молекулу азида (диполя) и электронодонорных в молекулу енамина (диполярофила) благоприятствует протеканию реакции циклоприсоединения.³⁸ С этими данными согласуются полученные нами данные о конверсии β -азолиленаминов в реакции с ароматическими азидами. Предполагаемый механизм реакции енаминов 1 с азидами 2 включает реакцию 1,3-диполярного циклоприсоединения с образованием промежуточного неароматического 1,2,3-триазолина T-1, но не T-2 (схема 1).

Таблица 2. Степень конверсии енаминов **1**a,**b** в реакции с азидами **2**a-**d** в ДМСО- d_6 за 120 мин, %

	Азид 4-RC ₆ H ₄ N ₃				
Енамин	2a (R = H)	2b (R = Me)	$\frac{2c}{(R = NO_2)}$	2d (R = Cl)	
1a	20	15	78	41	
1b	6	2	63	13	

1,2,3-Триазолины, в общем, являются нестабильными соединениями. Некоторые соединения этого ряда выделены и идентифицированы с помощью спектроскопии ЯМР³⁸ и рентгеноструктурного анализа.³⁹ На заключительной стадии процесса образования ароматических 1,2,3-триазолов происходит элиминирование молекулы диметиламина.

Таким образом, в результате исследования реакции азолиленаминов с ароматическими и алифатическими азидами нами разработан эффективный, препаративно удобный, региоселективный и атом-экономный метод получения 4-азолил-1,2,3-триазолов.

Экспериментальная часть

ИК спектры записаны на фурье-спектрометре Bruker Alpha (HПBO, ZnSe). Спектры ЯМР ¹Н и ¹³С зарегистрированы на спектрометре Bruker Avance II 400 (400 и 100 МГц соответственно). Растворители: ДМСО-*d*₆- CCl_4 , 1:1 (спектры ЯМР ¹Н соединений **За**,**i**,**j**,**l**,**m**), CDCl₃ (спектры ЯМР ¹Н и ¹³С соединений **Зb**,**k**) или ДМСО-*d*₆ (остальные спектры); внутренний стандарт ТМС. Масс-спектры записаны на спектрометре Shimadzu GCMS-QP2010 Ultra (ионизация ЭУ, 70 эВ). Элементный анализ С, Н, N выполнен на автоматическом анализаторе PerkinElmer 2400 II. Температуры плавления определены на приборе Stuart SMP3. Контроль за ходом реакций и чистотой полученных соединений проведен методом ТСХ на пластинах Sorbfil UV-254 в системе EtOAc-гексан, 1:1. Для колоночной хроматографии использован силикагель 60–120 µm.

Исходные енамины $1a-e^{34,35}$ и азиды $2a-g^{36,37}$ получены по стандартным литературным методикам. Для получения енаминов 1a-e использован коммерчески доступный диметилацеталь диметилформамида (Sigma-Aldrich).

Получение 4-(азол-5-ил)-1,2,3-триазолов 3а-т (общая методика). Смесь 1 ммоль азолиленамина 1а-е и 1 ммоль азида 2а-g перемешивают при температуре 110 °C в течение 0.33-6 ч. Затем реакционную смесь охлаждают до комнатной температуры и приливают гексан. Образовавшийся осадок отфильтровывают, сушат и перекристаллизовывают из EtOH (соединение 3i очищают колоночной хроматографией, элюент EtOAc-гексан, 1:1).

Этил-5-(1-фенил-1*H*-1,2,3-триазол-4-ил)-1,2,3-тиадиазол-4-карбоксилат (3а). Выход 0.22 г (73%), светлобежевый порошок, т. пл. 180–182 °С. ИК спектр, v, см⁻¹: 3156, 1706 (С=О), 1462, 843, 755. Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 1.47 (3H, т, *J* = 7.1, OCH₂C<u>H</u>₃); 4.54 (2H, к, *J* = 7.1, OC<u>H</u>₂CH₃); 7.45–7.59 (1H, м, H Ph); 7.63 (2H, д, *J* = 7.8, H Ph); 7.94 (2H, д, *J* = 7.8, H Ph); 9.33 (1H, с, H-5). Спектр ЯМР ¹³С, δ, м. д.: 14.4 (OCH₂<u>C</u>H₃); 62.6 (O<u>C</u>H₂CH₃); 120.9 (С Ph); 123.6 (С-5); 129.7 (С Ph); 130.0 (С Ph); 136.5 (С Ph); 136.8 (С-4); 146.5 (С-5'); 152.6 (С-4'); 161.4 (С=О). Масс-спектр, *m/z* (*I*_{отн}, %): 301 [M]⁺ (4), 217 (27), 104 (100), 77 (80), 69 (68). Найдено, %: С 51.84; H 4.05; N 23.61. С₁₃H₁₁N₅O₂S. Вычислено, %: С 51.82; H 3.68; N 23.24. Этил-5-[1-(4-метилфенил)-1*H*-1,2,3-триазол-4-ил]-1,2,3-тиадиазол-4-карбоксилат (3b). Выход 0.16 г (52%), светло-бежевый порошок, т. пл. 205–207 °С. Спектр ЯМР ¹Н, δ , м. д. (*J*, Гц): 1.52 (3H, т, *J* = 7.1, OCH₂CH₃); 2.45 (3H, с, ArCH₃); 4.58 (2H, к, *J* = 7.1, OCH₂CH₃); 7.36 (2H, д, *J* = 8.5, H Ar); 7.69 (2H, д, *J* = 8.5, H Ar); 9.22 (1H, с, H-5). Спектр ЯМР ¹³С, δ , м. д.: 14.4 (OCH₂CH₃); 21.3 (ArCH₃); 62.6 (OCH₂CH₃); 120.8 (C Ar); 123.5 (C-5); 130.5 (C Ar); 134.1 (C Ar); 136.7 (C Ar); 139.9 (C-4); 146.4 (C-5'); 152.7 (C-4'); 161.4 (C=O). Масс-спектр, *m/z* (*I*_{отн}, %): 315 [M]⁺ (5), 287 (37), 270 (53), 242 (40), 91 (100). Найдено, %: C 53.47; H 3.87; N 22.48. C₁₄H₁₃N₅O₂S. Вычислено, %: C 53.32; H 4.16; N 22.21.

Этил-5-[1-(2-оксо-2-этоксиэтил]-1*H*-1,2,3-триазол-4-ил)-1,2,3-тиадиазол-4-карбоксилат (3c). Выход 0.14 г (45%), желтое масло. Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 1.23 (3H, т, *J* = 7.1, OCH₂C<u>H₃</u>); 1.38 (3H, т, *J* = 7.1, OCH₂C<u>H₃</u>); 4.20 (2H, к, *J* = 7.1, OC<u>H₂CH₃</u>); 4.48 (2H, к, *J* = 7.1, OC<u>H₂CH₃</u>); 5.58 (2H, c, NCH₂); 9.05 (1H, c, H-5). Спектр ЯМР ¹³С, δ , м. д.: 14.4 (OCH₂CH₃); 14.5 (OCH₂CH₃); 51.3 (NCH₂); 62.2 (OCH₂CH₃); 62.4 (OCH₂CH₃); 128.3 (C-5); 135.3 (C-4); 146.6 (C-5'); 152.5 (C-4'); 160.9 (C=O); 167.4 (C=O). Масс-спектр, *m*/*z* (*I*_{0TH}, %): 311 [M]⁺ (6), 283 (44), 211 (26), 125 (17). Найдено, %: C 42.28; H 4.30; N 22.71. С₁₁H₁₃N₅O₄S. Вычислено, %: C 42.44; H 4.21; N 22.50.

3-Фенил-5-(1-фенил-1*H***-1,2,3-триазол-4-ил)-1,2,4оксадиазол (3d)**. Выход 0.21 г (69%), бесцветный порошок, т. пл. 183–184 °С. ИК спектр, v, см⁻¹: 3136, 1640, 1303, 1040, 745. Спектр ЯМР ¹Н, δ , м. д.: 7.48– 7.67 (6H, м, H Ph); 8.03–8.09 (2H, м, H Ph); 8.09–8.16 (2H, м, H Ph); 9.82 (1H, с, H-5). Спектр ЯМР ¹³С, δ , м. д.: 120.6; 125.8 (C-5); 125.9; 127.1; 129.2; 129.4; 129.9; 131.7; 133.8; 135.8; 168.1 (C-3'); 168.8 (C-5'). Массспектр, *m/z* ($I_{\text{отн}}$, %): 289 [M]⁺ (5), 144 (31), 128 (12), 118 (17), 103 (16), 77 (100), 51 (50). Найдено, %: С 66.61; H 3.47; N 24.61. С₁₆H₁₁N₅O. Вычислено, %: С 66.43; H 3.83; N 24.21.

3-Фенил-5-[1-(4-хлорфенил)-1*H***-1,2,3-триазол-4-ил]-1,2,4-оксадиазол (3е)**. Выход 0.24 г (75%), бесцветный порошок, т. пл. 250–252 °С. ИК спектр, v, см⁻¹: 3120, 1638, 1487, 833, 742. Спектр ЯМР ¹Н, δ, м. д.: 7.50–7.69 (5H, м, H Ar); 8.03–8.18 (4H, м, H Ar); 9.87 (1H, с, H-5). Спектр ЯМР ¹³С, δ, м. д.: 122.4; 125.8 (С-5); 126.3; 127.1; 129.3; 129.9; 131.8; 133.9; 134.0; 134.7; 168.2 (C-3'); 168.8 (C-5'). Масс-спектр, *m*/*z* (*I*_{отн}, %): 325 [M(³⁷Cl)]⁺ (8), 323 [M(³⁵Cl)]⁺ (22), 180 (30), 179 (20), 178 (100), 177 (38), 176 (31), 164 (17), 150 (28), 128 (23), 118 (59), 113 (19), 111 (59), 77 (60), 76 (18), 75 (45). Найдено, %: C 59.12; H 2.72; N 21.60. C₁₆H₁₀ClN₅O. Вычислено, %: C 59.36; H 3.11; N 21.63.

3-Фенил-5-[1-(4-фторфенил)-1*H***-1,2,3-триазол-4-ил]-1,2,4-оксадиазол (3f)**. Выход 0.24 г (78%), бежевый порошок, т. пл. 225–227 °С. ИК спектр, v, см⁻¹: 3125, 1639, 1511, 1225, 827, 744. Спектр ЯМР ¹Н, δ, м. д.: 7.34– 7.44 (2H, м, H Ar); 7.53–7.62 (3H, м, H Ar); 8.08–8.16 (4H, м, H Ar); 9.82 (1H, с, H-5). Спектр ЯМР ¹³С, δ, м. д.: 116.8 (д, *J* = 23.0); 123.6 (д, *J* = 9.0); 125.8 (С-5); 126.3; 127.1; 129.3; 131.8; 132.4 (д, J = 3.0); 133.9; 162.1 (д, J = 244.0, C–F); 168.1 (С-3'); 168.8 (С-5'). Масс-спектр, m/z (I_{0TH} , %): 307 [M]⁺ (18), 162 (100), 161 (47), 160 (41), 146 (17), 134 (46), 128 (26), 119 (16), 118 (73), 95 (92), 77 (71), 76 (15), 75 (46). Найдено, %: 62.48; Н 3.08; N 22.82. С₁₆H₁₀FN₅O. Вычислено, %: С 62.54; Н 3.28; N 22.79.

5-[1-(4-Нитрофенил)-1*H***-1,2,3-триазол-4-ил]-3-фенил-1,2,4-оксадиазол (3g)**. Выход 0.30 г (92%), бесцветный порошок, т. пл. 288–290 °С. ИК спектр, v, см⁻¹: 3120, 1639, 1522, 1337, 1039, 853, 745. Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 7.52–7.64 (3H, м, H Ph); 8.12–8.15 (2H, м, H Ph); 8.43 (2H, д, *J* = 9.3, H Ar); 8.50 (2H, д, *J* = 9.3, H Ar); 10.12 (1H, с, H-5). Спектр ЯМР ¹³С, δ, м. д.: 122.0; 126.0 (C-5); 126.3; 127.3; 127.7; 129.9; 132.4; 134.9; 140.7; 147.9; 168.7 (C-3'); 169.1 (C-5'). Масс-спектр, *m/z* (*I*_{отн}, %): 334 [M]⁺ (8), 189 (18), 143 (25), 128 (19), 118 (37), 103 (34), 91 (23), 77 (100), 76 (82), 75 (39). Найдено, %: С 57.65; H 2.90; N 25.52. С₁₆H₁₀N₆O₃. Вычислено, %: C 57.49; H 3.02; N 25.14.

Этил-2-[4-(3-фенил-1,2,4-оксадиазол-5-ил)-1*H*-1,2,3триазол-1-ил]ацетат (3h). Выход 0.21 г (70%), бесцветный порошок, т. пл. 160–162 °С. ИК спектр, v, см⁻¹: 3070, 1707, 1513, 1220, 852. Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 1.32 (3H, т, *J* = 7.1, OCH₂C<u>H</u>₃); 4.26 (2H, к, *J* = 7.1, OC<u>H₂CH₃); 5.49 (2H, c, NCH₂); 7.52–7.58 (3H, м, H Ph); 8.08–8.14 (2H, м, H Ph); 9.03 (1H, c, H-5). Спектр ЯМР ¹³С, δ, м. д.: 13.8 (OCH₂CH₃); 50.6 (NCH₂); 61.5 (O<u>C</u>H₂CH₃); 126.1 (C-5); 126.9 (2C Ph); 128.7 (2C Ph); 128.8; 131.1; 132.9; 166.0 (C=O); 167.9 (C-3'); 168.7 (C-5'). Масс-спектр, *m/z* ($I_{0тн}$, %): 299 [M]⁺ (4), 240 (19), 223 (35), 145 (28), 135 (63), 77 (100). Найдено, %: C 56.51; H 4.72; N 23.17. C₁₄H₁₃N₅O₃. Вычислено, %: C 56.18; H 4.38; N 23.40.</u>

Этил-3-фенил-5-(1-фенил-1*H*-1,2,3-триазол-4-ил)-1,2-оксазол-4-карбоксилат (3i). Выход 0.20 г (56%), бесцветные призмы, т. пл. 153–154 °С. ИК спектр, v, см⁻¹: 3180, 2926, 1714, 1618, 1131. Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 1.16 (3H, т, *J* = 7.1, OCH₂C<u>H</u>₃); 4.25 (2H, к, *J* = 7.1, OC<u>H</u>₂CH₃); 7.46–7.76 (8H, м, H Ph); 8.00 (2H, д, *J* = 8.0, H Ph); 9.42 (1H, с, H-5). Спектр ЯМР ¹³С, δ, м. д.: 13.6 (OCH₂<u>C</u>H₃); 61.4 (O<u>C</u>H₂CH₃); 108.5 (C-4'); 120.8; 125.4 (C-5); 127.5; 128.4; 129.0; 129.6; 130.1; 130.3; 135.2; 136.0; 160.9 (C=O); 162.3 (C-3'); 163.7 (C-5'). Масс-спектр, *m/z* (I_{OTH} , %): 360 [M]⁺ (4), 286 (17), 259 (17), 144 (95), 143 (94), 116 (22), 104 (25), 77 (100). Найдено, %: C 66.69; H 4.61; N 15.79. C₂₀H₁₆N₄O₃. Вычислено, %: C 66.66; H 4.48; N 15.55.

Этил-3-фенил-5-[1-(4-хлорфенил)-1*H*-1,2,3-триазол-4-ил]-1,2-оксазол-4-карбоксилат (3j). Выход 0.24 г (61%), светло-бежевый порошок, т. пл. 130–133 °С. ИК спектр, v, см⁻¹: 3173, 1718, 1500, 1135, 824. Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 1.17 (3H, т, *J* = 7.1, OCH₂CH₃); 4.25 (2H, к, *J* = 7.1, OCH₂CH₃); 7.26–7.56 (3H, м, H Ar); 7.56–7.85 (4H, м, H Ar); 8.03–8.06 (2H, м, H Ar); 9.46 (1H, с, H-5). Спектр ЯМР ¹³С, δ , м. д.: 13.5 (OCH₂CH₃); 61.3 (O<u>C</u>H₂CH₃); 108.5 (C-4'); 122.4; 125.3 (C-5); 127.4; 128.3; 128.9; 129.9; 130.1; 133.8; 134.8; 135.2; 160.8 (C=O); 162.1 (C-3'); 163.5 (C-5'). Масс-спектр, *m/z* (*I*_{отн}, %): 396 [M(³⁷Cl)]⁺ (4), 394 [M(³⁵Cl)]⁺ (10), 368 (27), 366 (39), 217 (33), 145 (42), 113 (27), 111 (100), 77 (38), 76 (18), 75 (41). Найдено, %: С 60.86; Н 3.64; N 14.28. С₂₀H₁₅ClN₄O₃. Вычислено, %: С 60.84; Н 3.83; N 14.19.

Этил-5-(1-бензил-1*H*-1,2,3-триазол-4-ил)-3-фенил-1,2-оксазол-4-карбоксилат (3k). Выход 0.22 г (62%), бесцветный порошок, т. пл. 161–163 °С. ИК спектр, v, см⁻¹: 3116, 1624, 1067, 696. Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 0.66 (3H, т, *J* = 7.1, OCH₂C<u>H</u>₃); 3.77 (2H, к, *J* = 7.1, OC<u>H₂</u>CH₃); 5.25 (2H, с, NCH₂); 6.88–7.11 (8H, м, H Ph); 7.18–7.20 (2H, м, H Ph); 8.21 (1H, с, H-5). Спектр ЯМР ¹³С, δ, м. д.: 13.6 (OCH₂C<u>H₃); 54.4 (NCH₂); 61.1 (OCH₂CH₃); 108.0 (C-4'); 126.4; 127.9; 128.0; 128.4; 129.0; 129.2; 129.3; 129.7; 134.0; 136.0; 161.8 (C=O); 162.6 (C-3'); 164.8 (C-5'). Масс-спектр, *m/z* ($I_{отн}$, %): 374 [M]⁺ (5), 91 (100), 77 (17), 65 (15). Найдено, %: С 67.37; H 5.15; N 14.61. C₂₁H₁₈N₄O₃. Вычислено, %: С 67.37; H 4.85; N 14.96.</u>

Метил-3-(2,6-дихлорфенил)-5-[1-(4-нитрофенил)-1*H***-1,2,3-триазол-4-ил]-1,2-оксазол-4-карбоксилат (31)**. Выход 0.38 г (82%), кремовый порошок, т. пл. 205–207 °С. ИК спектр, v, см⁻¹: 3188, 1732, 1522, 1504, 1346, 780. Спектр ЯМР ¹H, δ, м. д. (*J*, Гц): 3.71 (3H, с, OCH₃); 7.59 (3H, с, H Ar); 8.37 (2H, д, *J* = 9.1, H Ar); 8.49 (2H, д, *J* = 9.1, H Ar); 8.49 (2H, д, *J* = 9.1, H Ar); 9.75 (1H, с, H-5). Спектр ЯМР ¹³С, δ, м. д.: 52.5 (OCH₃); 108.9 (C-4'); 121.6; 125.5; 126.4; 126.7; 128.3; 132.7; 134.3; 135.1; 140.2; 147.3; 158.9 (C=O); 160.0 (C-3'); 163.9 (C-5'). Масс-спектр, *m/z* (*I*_{отн}, %): 459 [M(³⁵Cl)]⁺ (4), 399 (19), 398 (15), 396 (42), 213 (65), 211 (100), 189 (25), 146 (18), 143 (45), 76 (43). Найдено, %: С 49.41; H 2.53; N 14.93. С₁₉H₁₁Cl₂N₅O₅. Вычислено, %: С 49.59; H 2.41; N 15.22.

Метил-1-бензил-(4-фторфенил)-1*H,***3'***H***-4,4'-бис(1,2,3триазол)-5'-карбоксилат (3m). Выход 0.22 г (59%), бесцветный порошок, т. пл. 160–162 °С. ИК спектр, v, см⁻¹: 3070, 1707, 1513, 1220, 852. Спектр ЯМР ¹H, δ, м. д. (***J***, Гц): 3.33 (3H, с, ОСН₃); 5.22 (2H, уш. с, NCH₂); 6.55–6.84 (2H, м, H Ar); 6.90 (5H, уш. с, H Ar); 7.09 (2H, уш. с, H Ar); 8.23 (1H, с, H-5). Спектр ЯМР ¹³С, δ, м. д. (***J***, Гц): 52.5 (ОСН₃); 53.3 (NCH₂); 116.5 (д,** *J* **= 23.0); 127.4; 128.2; 128.3; 128.6 (д,** *J* **= 9.0); 128.8; 132.3; 132.5 (д,** *J* **= 4.0); 133.0; 135.7; 136.1; 160.7 (С=О); 162.5 (д,** *J* **= 246.0, С–F). Масс-спектр,** *m/z* **(***I***_{отн}, %): 378 [M]⁺ (3), 228 (59), 226 (36), 158 (18), 95 (100). Найдено, %: С 60.44; H 3.85; N 22.06. С₁₉H₁₅FN₆O₂. Вычислено, %: С 60.31; H 4.00; N 22.21.**

Рентгеноструктурное исследование соединения 3i. Кристаллы соединения 3i ($C_{20}H_{16}N_4O_3$, *M* 360.12), пригодные для PCA, получены медленным упариванием раствора соединения 3i в EtOH. Исследование фрагмента бесцветного кристалла проведено на монокристальном рентгеновском дифрактометре Xcalibur 3 по стандартной процедуре (МоКа-излучение, графитовый монохроматор, ω -сканирование с шагом 1°, 295(2) K). Для расшифровки и уточнения структуры использован программный пакет SHELXTL.⁴⁰ Структура расшифрована прямым методом в программе ShelXS и уточнена полноматричным МНК по F^2 в программе ShelXL в анизотропном приближении для неводородных атомов. Положения атомов водорода рассчитаны и включены в уточнение по модели "наездник". Полный набор рентгеноструктурных данных для соединения **3i** депонирован в Кембриджском банке структурных данных (депонент CCDC 1580192).

Работа выполнена при финансовой поддержке РНФ (грант 15-13-10031).

Список литературы

- 1. De Carvalho da Silva, F.; Cardoso, M. F. C.; Ferreira, P. G.; Ferreira, V. F. *Top. Heterocycl. Chem.* **2015**, *40*, 117.
- Leban, J.; Baumgartner, R.; Saeb, W.; Chevrier, C. WO Patent 2012101261.
- Li, W.-T.; Wu, W.-H.; Tang, C.-H.; Tai, R.; Chen, S.-T. ACS Comb. Sci. 2011, 13, 72.
- Olesen, P. H.; Sørensen, A. R.; Ursø, B.; Kurtzhals, P.; Bowler, A. N.; Ehrbar, U.; Hansen, B. F. J. Med. Chem. 2003, 46, 3333.
- 5. Lu, R. J.; Pickens, J. C.; Tucker, J. A.; Zinevitch, T.; Sviridov, S.; Konoplev, V. WO Patent 2007103456.
- 6. Leclerc, J.-P.; Li, C. S.; Ramtohul, Y. K. WO Patent 2010025553.
- Hirose, T.; Sunazuka, T.; Noguchi, Y.; Yamaguchi, Y.; Hanaki, H.; Sharpless, K. B.; Omura, S. *Heterocycles* 2006, 69, 55.
- Sapountzis, I.; Ettmayer, P.; Klein, C.; Mantoulidis, A.; Steegmaier, M.; Steurer, S.; Waizenegger, I. WO Patent 2009003998.
- Patil, P.; Madhavachary, R.; Kurpiewska, K.; Kalinowska-Tłuścik, J.; Dömling, A. Org. Lett. 2017, 19, 642.
- Sinn, S.; Biedermann, F.; De Cola, L. Chem.-Eur. J. 2017, 23, 1965.
- 11. Kaur, T.; Gautam, R. N.; Sharma, A. Chem.-Asian J. 2016, 11, 2938.
- Liu, Y.; Yan, W.; Chen, Y.; Petersen, J. L.; Shi, X. Org. Lett. 2008, 10, 5389.
- 13. Watkinson, M. Top. Heterocycl. Chem. 2012, 28, 109.
- 14. Potratz, S.; Mishra, A.; Bäuerle, P. Beilstein J. Org. Chem. 2012, 8, 683.
- van Steenis, D. J. V. C.; David, O. R. P.; van Strijdonck, G. P. F.; van Maarseveen, J. H.; Reek, J. N. H. *Chem. Commun.* 2005, 4333.
- Kulhánek, J.; Ludwig, M.; Bureš, F.; Tydlitát, J. Chem. Heterocycl. Compd. 2017, 53, 46. [Химия гетероцикл. соединений 2017, 53, 46.]
- 17. Kostyuchenko, A. S.; Drozdova, E. A.; Fisyuk, A. S. Chem. Heterocycl. Compd. 2017, 53, 92. [Химия гетероцикл. соединений 2017, 53, 92.]
- Horčic, M.; Kozmík, V.; Svoboda, J.; Novotná, V.; Pociecha, D. J. Mater. Chem. C 2013, 1, 7560.
- 19. Kim, M.-H.; Nam, Y.-K.; Choi, E.-J. J. Inf. Disp. 2017, 18, 31.
- Tornøe, C. W.; Chistensen, C.; Meldal, M. J. Org. Chem. 2002, 67, 3057.
- Rostovtsev, V. V.; Green, L. G., Fokin V. V.; Sharpless, B. K. Angew. Chem., Int. Ed. 2002, 41, 2596.
- 22. Crowley, J. D.; McMorran, D. A. Top Heterocycl. Chem. 2012, 28, 31.
- 23. Lee, S.; Flood, A. H. Top Heterocycl. Chem. 2012, 28, 85.
- 24. Zheng, T.; Rouhanifard, S. H.; Jalloh, A. S.; Wu, P. Top *Heterocycl. Chem.* 2012, 28, 163.
- Bakulev, V. A.; Dehaen, W. *The Chemistry of 1,2,3-Thiadiazoles*; John Wiley & Sons Inc.: Hoboken, Heidelberg, New York, Dordrecht, London, 2004, 241 p..
- Mignani, S.; Zhou, Y.; Lecourt, T.; Micouin, L. Top Heterocycl. Chem. 2012, 28, 185.

- Krivopalov, V. P.; Shkurko, O. P. Russ. Chem. Rev. 2005, 74, 339. [Vcnexu xumuu 2005, 74, 369.]
- 28. Bakulev, V. A.; Morzherin, Yu. Yu.; Lebedev, A. T.; Dankova, E. F.; Kolobov, M. Yu.; Shafran, Yu. M. *Bull. Soc. Chim. Belg.* **1993**, *102*, 493.
- 29. Bakulev, V. A. Rus. Chem. Rev. 1995, 64, 99. [Vcnexu xumuu 1995, 64, 107.]
- 30. Shafran, Yu. M.; Bakulev, V. A.; Mokrushin, V. S.; Alexeev, S. G. Chem. Heterocycl. Compd. **1984**, 20, 1038. [Химия гетероцикл. соединений **1984**, 1266.]
- Bakulev, V. A.; Chiang, Y.; Kresge, A. J.; Meng, Q.; Morzherin, Y. Y.; Popik, V. V. J. Am. Chem. Soc. 2001, 123, 2681.
- 32. Bakulev, V. A.; Beryozkina, T. V. Chem. Heterocycl. Compd. 2016, 52, 4. [Химия гетероцикл. соединений 2016, 52, 4.]
- Bakulev, V. A.; Efimov, I. V.; Belyaev, N. A.; Rozin, Yu. A.; Volkova, N. N.; El'tsov, O. S. Chem. Heterocycl. Compd. 2012, 47, 1593. [Химия гетероцикл. соединений 2011, 1900.]

- 34. Bakulev, V. A.; Efimov, I. V.; Belyaev, N. A.; Zhidovinov, S. S.; Rozin, Yu. A.; Volkova, N. N.; Khabarova, A. A.; El'tsov, O. S. *Chem. Heterocycl. Compd.* **2013**, *48*, 1880. [Химия гетероцикл. соединений **2012**, 2002.]
- Beryozkina, T. V.; Zhidovinov, S. S.; Shafran, Y. M.; Eltsov, O. S.; Slepukhin, P. A.; Leban, J.; Marquez, J.; Bakulev, V. A. *Tetrahedron* 2014, *70*, 3915.
- 36. Maruani, A.; Alom, S.; Canavelli, P.; Lee, M. T. W.; Morgan, R. E.; Chudasama, V; Caddick, S. *Chem. Commun.* 2015, *51*, 5279.
- Berry, M. T.; Castrejon, D.; Hein, J. E. Org. Lett. 2014, 16, 3676.
- Bakulev, V. A.; Beryozkina, T. V.; Tomas, J.; Dehaen, W. Eur. J. Org. Chem. 2018, 262.
- 39. Murata, S.; Mori, Y.; Satoh, Y.; Yoshidome, R.; Tomioka, H. *Chem. Lett.* **1999**, 597.
- 40. Sheldrick, G. M. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, A64, 112.