

Химия гетероциклических соединений 2018, 54(9), 887-891

Исследования в области хиназолинов 7*. Алкилирование 2-арил-4,4-дифенил-3,4-дигидрохиназолинов иодистым метилом

Елена В. Громачевская¹, Елена А. Кайгородова², Леонид Д. Конюшкин³, Геннадий Д. Крапивин¹*

¹ Кубанский государственный технологический университет,

ул. Московская, 2, Краснодар 350072, Россия; e-mail: krapivingd@mail.ru

2 Кубанский государственный аграрный университет,

ул. Калинина, 13, Краснодар 350044, Россия; e-mail: e_kaigorodova@mail.ru

³ Институт органической химии им. Н. Д. Зелинского РАН,

Ленинский пр., 47, Москва 119992, Россия; e-mail: leonidk@chemical-block.com

Поступило 3.06.2018 Принято 13.07.2018

Взаимодействие 2-арил-4,4-дифенил-3,4-дигидрохиназолинов с иодистым метилом в ацетоне в присутствии гидроксида калия при 40 °C приводит к образованию соответствующих 1-метил-4,4-дифенил-1,4-дигидрохиназолинов и иодидов 1,3-диметил-4,4-дифенил-1,4-дигидрохиназолинов и иодидов 1,3-диметил-4,4-дифенил-1,4-дигидрохиназолинов и иодидов 1,3-диметил-2-(7-метокси-1,3-бензодиоксол-5-ил)-4,4-дифенил-1,4-дигидрохиназолина.

Ключевые слова: иодиды 1,3-диметил-4,4-дифенил-1,4-дигидрохиназолин-3-ия, иодистый метил, 1-метил-4,4-дифенил-1,4-дигидрохиназолины, алкилирование.

Соединения хиназолинового ряда, включающие и дигидрохиназолиновые циклы, обладают широким спектром фармакологической активности и рядом других полезных свойств. Они используются при лечении и профилактике сахарного диабета, ожирения,^{2,3} применяются как антивирусные препараты^{4–6} и в комбинационной химиотерапии.^{4,7–9} Некоторые производные 3,4(1,4)-дигидрохиназолинов предложены как инженерно-технические материалы: электролюминесцентные элементы,¹⁰ оптические диски¹¹ и красящие вещества.¹² Поэтому считаем целесообразным продолжать начатое нами ранее изучение свойств дигидрохиназолинов.^{1,13,14}

В литературе имеются сведения об алкилировании (арилировании) дигидрохиназолинов соответствую-

щими галогенидами в ДМФА и в присутствии NaH.^{9,15} Взаимодействие 3-бензоил-2-метил-3,4-дигидрохиназолин-4-карбонитрила (**1a**) с иодистым алкилом (арилом) приводит к 4-алкил(арил)-3-бензоил-2-метил-3,4-дигидрохиназолин-4-карбонитрилам (**2a**) (схема 1).¹⁵ При метилировании иодистым метилом 2-метил-4-фенил-6-хлоро-3,4-дигидрохиназолина (**1b**) (положение N-3 свободно) образуется 2,3-диметил-4-фенил-6-хлоро-3,4-дигидрохиназолин (**2b**).⁹

Описано метилирование замещенных 3,4-дигидрохиназолин-2(1*H*)-онов, в частности – 8-хлор-1*H*-спиро-[хиназолин-4,1'-циклогексан]-2(3*H*)-она (**3**а), которое осуществляется в ДМФА путем последовательной обработки NaH в атмосфере N₂ и иодистым метилом (схема 2).¹⁶ При этом выделен продукт N(1)-метилирования – гетероцикл **4**. Для получения N(3)-метилированного изомера **5** авторы¹⁶ вводили в положение

^{*} Сообщение 6 см.¹

Схема 2

N-1 исходного реагента 3b бензильную группу, далее проводили N(3)-метилирование и снятие бензильной защиты. Таким образом получены 1-метил-(3-метил)-8-хлор-1*H*-спиро[хиназолин-4,1'-циклогексан]-2(3*H*)-оны 4, 5 с выходами 43 и 17% соответственно. Полученные соединения проявляют ингибиторную активность по отношению к различным энзимам. 16,17

При изучении свойств исследуемых соединений описаны реакции алкилирования 3,4-дигидрохиназолинов 6 диметилсульфатом (мягким электрофилом), приводящие к продуктам 1,3-диметилирования 7 с раскрытием гетероцикла, что характерно для молекул дигидрохиназолинов, не содержащих в положении С-2 гетероцикла активного метиленового звена (схема 2).^{1,13,14}

Как видно, однозначного ответа по вопросам метилирования дигидрохиназолинов и их производных в литературе не приводится, что послужило предпосылкой для дальнейшего исследования реакционной способности замещенных 3,4-дигидрохиназолинов и получения новых потенциальных биологически активных веществ.

Нами проведено метилирование полученных ранее^{1,13,14} 2-арил-4,4-дифенил-3,4-дигидрохиназолинов ба-е иодистым метилом (жестким электрофилом) в системе КОН-Ме₂CO^{18,19} (схема 3). В результате получены продукты 8а-е, выделенные из фильтрата, и иодиды 9а-е, выделенные из осадка. Структуры полученных соединений установлены методами ИК спектроскопии, спектроскопии ЯМР ¹Н и ¹³С, с исполь-

NH

,Me

зованием двумерных корреляционных методик, а также масс-спектрометрии и элементного анализа.

В ИК спектрах соединений 8а-е присутствуют полосы поглощения при 1600–1615 см⁻¹, характерные для валентных колебаний азометиновой группы,²⁰ что указывает на сохранение гетероцикла, а в спектрах ЯМР ¹Н имеются сигналы протонов группы NCH₃ в

Таблица 1. Результаты экспериментов по гетероядерной корреляции (спектры ${}^{1}\text{H}{-}{}^{13}\text{C}$ HSQC и ${}^{1}\text{H}{-}{}^{13}\text{C}$ HMBC) для соединения **8а***

Положение атома	Спектр ЯМР ¹ Н, б, м. д.	Спектр ¹ Н– ¹³ С HSQC, δ, м. д.	Спектр ¹ H– ¹³ С НМВС, б, м. д.
NCH ₃	3.07	36.2	154.6; 139.8
OCH ₃	3.84	56.9	143.5
2	6.05	102.2	136.5; 148.7
8	6.51	128.2	139.8; 67.2
6	6.76	103.8	154.6; 143.5; 136.5
4	6.79	109.8	154.6; 136.5; 103.8

* В таблице не приведены данные гетероядерной корреляции по части ароматической структуры ((C₆H₅)₂) молекулы, как не имеющие в данном случае структурного значения.

области 3.05–3.07 м. д. Спектр дигидрохиназолина **8e** содержит сигналы протонов трех *N*-метильных групп (при 2.53 и 2.91 м. д.), что свидетельствует об *N*,*N*-диметилировании первичной аминогруппы, входящей в состав исходного 3,4-дигидрохиназолина **6e**. Это подтверждают и данные спектров ЯМР ¹³С соединений **8a–e**, где зарегистрированы сигналы атомов углерода группы NCH₃: по одному для дигидрохиназолинов **8a–d** (в области 36.1–36.3 м. д.) и три – для продукта **8e** при 40.3 и 45.2 м. д.

Отметим, что сигналы протонов группы OCH₂O продукта **8e** не эквивалентны и в спектре ЯМР ¹Н имеют вид двух синглетов при 5.97 и 6.02 м. д. Возможно, в данном случае значение геминальной КССВ близко к нулю, что и определяет вид этих сигналов в спектре.²¹

В корреляционном спектре ${}^{1}\text{H}{-}{}^{13}\text{C}$ HMBC соединения **8a** (табл. 1) характеристичным является кросс-пик 3.07/139.8 м. д., доказывающий что *N*-метильная группа спиново связана с атомом углерода C-8a, то есть метилирование протекает по атому азота N-1, а не по атому N-3 гетероцикла, как это показано на рис. 1.

Анализ масс-спектров соединений **8а–е** показывает присутствие во всех спектрах пиков однозарядных молекулярных ионов [M]⁺ с относительными интенсивностями от 12% для 2-(4-бромфенил)-1-метил-4,4-дифенил-1,4-дигидрохиназолина (**8d**) до 33% для 1-метил-2,4,4-трифенил-1,4-дигидрохиназолина (**8c**).

Начальное направление фрагментации $[M]^+$ *N*-метилдигидрохинозолинов **8а**–е характеризуется потерей метильного радикала (катион Φ_1), а также конкурентным разрывом связи между атомом C-4 гетероцикла и фенилом, приводящим к катионам $[Ph]^+$ и $[M-Ph]^+$. Последний, имеющий максимальную интенсивность в спектрах соединений **8а–d**, элиминирует молекулу нитрила (распад RDA),²² образуя характеристический катион Φ_2 (*m*/*z* 194), пик которого присутствует в спектрах всех исследуемых соединений.

Только в случае распада $[M]^+$ дигидрохиназолина **8e** основным направлением является перегруппировочный процесс с расщеплением гетероцикла и образованием катион-радикала нитрила Φ_3 (*m*/*z* 190 (37%)); кроме этого отмечается пик катиона Φ_4 (*m*/*z* 272 (100%), RDA+H) (схема 4).

Рисунок 1. Структурно значимые корреляции в спектре ${}^{1}H-{}^{13}C$ НМВС соединения **8a** (б, м. д).

Следовательно, на основании данных спектроскопии ЯМР и масс-спектрометрии можно считать, что соединения **8а–е** являются продуктами N(1)-монометилирования соответствующих дигидрохиназолинов **6а–е** (схема 3).

Как известно,^{1,22} молекулы дигидрохиназолинов в растворах находятся в состоянии таутомерного равновесия форм H-1 и H-3, что дает основание предположить возможность метилирования дигидрохиназолинов **6а**-е иодистым метилом как по положению N-1, так и по положению N-3 гетероцикла. Удивительно, что N(1)-метил-1,4-дигидрохиназолины **8а**-е не метилируются иодистым метилом в отдельных экспериметах – все попытки получения соответствующих солей **9а**-е непосредственно из дигидрохиназолинов **8а**-е оказались безуспешными, что показано на примере соединения **8с** (схема 3).

Возможно, в ходе реакции образуются не зарегистрированные нами N(3)-метил-4,4-дифенил-3,4-дигидрохиназолины **A**, которые значительно быстрее подвергаются второму метилированию, что в конечном итоге и приводит к образованию солей **9а–е**. Последние при щелочном гидролизе претерпевают превращения с раскрытием гетероцикла и образованием амидов **7а–е**, физико-химические и спектральные характеристики которых соответствуют описанным нами ранее¹ при метилировании дигидрохиназолинов диметилсульфатом.

Соли хиназолиния **9b,с** выделены из осадков и охарактеризованы как индивидуальные вещества. В

спектрах ЯМР ¹H и ¹³C солей **9b,с** зафиксированы сигналы двух метильных групп, непосредственно связанных с атомами азота²¹ при 2.89, 3.40 (NC<u>H</u>₃) и 38.3, 41.3 (N<u>C</u>H₃) м. д. в спектре соединения **9b** и соответственно при 2.06, 3.05 (NC<u>H</u>₃) и 31.1, 36.1 (N<u>C</u>H₃) м. д. в спектре соли **9c**. Но, главное, положение сигнала атома углерода C-2 гетероцикла, несущего частичный положительный заряд, в спектрах ЯМР ¹³C в области 205.7–207.1 м. д. однозначно доказывает солевую форму соединений **9b,с** (схема 3).

Таким образом, показано, что метилирование иодистым метилом 2-арил-4,4-дифенил-3,4-дигидрохиназолинов в ацетоне в присутствии гидроксида калия позволяет получать 1-метил-4,4-дифенил-1,4-дигидрохиназолины, которые не удалось получить при метилировании тех же соединений диметилсульфатом.

Экспериментальная часть

ИК спектры записаны на приборе PerkinElmer Spectrum Two с использованием насадки НВПО. Спектры ЯМР ¹Н и ¹³С зарегистрированы на спектрометре Agilent 400/54 (400 и 100 МГц соответственно) в ДМСО-*d*₆, внутренний стандарт ТМС. Спектры $^{1}\text{H}-^{13}\text{C}$ HSQC и $^{1}\text{H}-^{13}\text{C}$ HMBC соединения **8a** записаны на спектрометре Agilent 400/54. Масс-спектры записаны на приборе Varian CH-6 с применением метода прямого ввода образца в ионный источник при 50-180 °C, ионизация ЭУ (70 эВ). Элементный анализ выполнен на CHN-анализаторе Hewlett Packard HP-185B. Температуры плавления определены на нагревательном аппарате Stuart SMO 30. Контроль за ходом реакций осуществлен методом TCX на пластинах Silufol UV-254 (элюент PhH-Me₂CO, 9:1, для соединений 8а-е; АсОН-Me₂CO, 1:1, для соединения 9b и AcOH-Me₂CO, 9:1, для соединения 9с), проявитель – пары иода.

Исходные соединения **6а**-е получены согласно описанной методике,¹³ их физико-химические характеристики соответствуют приведенным в литературе.^{1,13,14}

Синтез соединений 7, 8 а-е, 9b,с (общая методика). К раствору 1.12 ммоль соответствующего 3,4(1,4)-дигидрохиназолина 6а-е в 10 мл Me₂CO при комнатной температуре добавляют 126 мг (2.24 ммоль) порошка КОН. Затем при перемешивании добавляют 318 мг (0.14 мл, 2.24 ммоль) MeI. Реакцию проводят при 35–40 °C в течение 6–8 ч (контроль TCX). Выпавший осадок отфильтровывают, фильтрат сушат над Na₂SO₄, упаривают при пониженном давлении досуха, твердый остаток перекристаллизовывают из EtOH (соединения 8a,d,e) или петролейного эфира (соединение 8c). Очистка продукта 8b осуществляется методом колоночной хроматографии (сорбент – силикагель марки L 40/100, элюент PhH–Me₂CO, 9:1, отбор фракции с R_f 0.32).

Выделение солей хиназолиния **9а**–е осуществляют путем последовательного промывания водой соответствующих реакционных осадков (для удаления неорганических веществ), а после высушивания – петролейным эфиром. Соли **9b,с** оказались достаточно чистыми для анализа. Эти и другие выделенные соли **9а,d,е** подвергают щелочному гидролизу – заливают избытком (10–15 мл) 25% водного раствора аммиака и оставляют в закрытой емкости на 24 ч при комнатной температуре. Далее образовавшуюся суспензию экстрагируют Et_2O (3 × 20 мл). Органические вытяжки объединяют, сушат над Na_2SO_4 , растворитель упаривают при пониженном давлении, сырые остатки перекристаллизовывают из EtOH с выделением амидов **7а–е**.

Физико-химические характеристики соединений 7a-e совпадают с представленными в литературе.¹ Соли 9a,d,e как аналитически чистые образцы не выделялись, а сразу были гидролизованы до соответствующих амидов 7a,d,e, структура которых подтверждает структуру исходных солей.

1-Метил-2-(7-метокси-1,3-бензодиоксол-5-ил)-4,4-дифенил-1,4-дигидрохиназолин (8а). Выход 376 мг (75%), бесцветные кристаллы, т. пл. 223-225 °С. Rf 0.79. ИК спектр, v, см⁻¹: 1615 (С=N). Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 3.07 (3H, c, NCH₃); 3.84 (3H, c, OCH₃); 6.05 (2H, с, CH₂); 6.51 (1H, д, J = 7,7, H-8); 6.76 (1H, с, H-6'); 6.79 (1Н, с, Н-4'); 7.03–7.29 (12Н, м, Н Рh, Н-5,7); 7.38 (1Н, д. д. *J* = 8.7, *J* = 8.1, H-6). Спектр ЯМР ¹³С, б, м. д.: 36.2 (NCH₃); 56.9 (OCH₃); 67.2 (C-4); 102.2 (C-2'); 103.8 (C-6'); 109.8 (C-4'); 113.2 (C-5); 123.0 (C-6); 126.9 (2C Ar); 127.5 (C Ar); 127.9 (4C Ar); 128.1 (2C Ar); 128.2 (C-8); 128.6 (4C Ar); 130.1 (C-5a); 136.5 (C-7a); 139.8 (C-8a); 143.5 (C-7'); 148.3 (C-5); 148.7 (C-3a); 154.6 (C-2). Maccспектр, *m/z* (*I*_{отн}, %): 448 [M]⁺ (15), 433 [М–СН₃] (4), 371 [M-C₆H₅] (100), 271 (10), 270 (25), 254 (14), 194 (19), 185 (56), 177 (7), 165 (48), 127 (12), 91 (10), 77 (62). Найдено, %: С 77.45; Н 5.47; N 6.31. С₂₉H₂₄N₂O₃. Вычислено. %: С 77.66: Н 5.39: N 6.25.

1-Метил-2-(4,7-диметокси-1,3-бензодиоксол-5-ил)-4,4-дифенил-1,4-дигидрохиназолин (8b). Выход 134 мг (25%), бесцветные кристаллы, т. пл. 168-170 °С. Rf 0.32. ИК спектр, v, см⁻¹: 1610 (С=N). Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 3.05 (3H, c, NCH₃); 3.77 (3H, c, OCH₃); 3.82 (3H, с, ОСН₃); 6.12 (2H, с, CH₂); 6.52 (1H, д, *J* = 7.3, H-8); 6.90 (1H, с, H-6'); 7.00-7.30 (12H, м, H Ph, H-5,7); 7.35-7.42 (1H, м, H-6). Спектр ЯМР ¹³С, δ, м. д.: 36.3 (NCH₃); 56.8 (OCH₃); 60.0 (OCH₃); 68.3 (C-4); 102.8 (C-2'); 105.7 (C Ar); 114.1 (C Ar); 123.0 (C Ar); 127.2 (C Ar); 127.9 (2C Ar); 128.1 (4C Ar); 128.6 (C Ar); 129.4 (2C Ar); 129.6 (4C Ar); 130.1 (C Ar); 135.5 (C Ar); 140.2 (C Ar); 141.3 (C Ar); 143.1 (C Ar); 148.0 (C Ar); 148.7 (C Ar); 151.1 (C-2). Масс-спектр, m/z ($I_{\text{отн}}$, %): 478 [M]⁺ (15), 463 [M–CH₃] (3), 401 [M–C₆H₅] (100), 371 (12), 270 (10), 254 (7), 245 (9), 201 (7), 194 (8), 165 (7), 142 (15), 127 (9), 123 (6), 95 (12), 77 (11). Найдено, %: С 75.45; Н 5.28; N 5.81. С₃₀Н₂₆N₂O₄. Вычислено, %: С 75.30; Н 5.48; N 5.85.

1-Метил-2,4,4-трифенил-1,4-дигидрохиназолин (8с). Выход 272 мг (65%), бесцветные кристаллы, т. пл. 185– 186 °С. $R_{\rm f}$ 0.81. ИК спектр, v, см⁻¹: 1600 (С=N). Спектр ЯМР ¹H, δ, м. д. (*J*, Гц): 3.07 (3H, с, NCH₃); 6.55 (1H, д. д, *J* = 6.3, *J* = 1.2, H-8); 7.05–7.30 (12H, м, H Ph, H-5,7); 7.39 (1H, д. д. д. *J* = 6.6, *J* = 6.3, *J* = 1.2, H-6); 7.46–7.55 (5H, м, H Ph). Спектр ЯМР ¹³С, δ, м. д.: 36.1 (NCH₃); 67.1 (C-4); 112.9 (C Ar); 123.7 (C Ar); 126.9 (2C Ar); 127.3 (C Ar); 127.7 (2C Ar); 127.9 (4C Ar); 128.3 (2C Ar); 128.6 (4C Ar); 129.4 (2C Ar); 130.1 (C Ar); 135.9 (C Ar); 139.7 (C Ar); 148.3 (C Ar); 155.0 (C Ar); 156.7 (C-2). Масс-спектр, m/z (I_{0TH} , %): 374 [M]⁺ (33), 359 [M–CH₃] (11), 297 [M–C₆H₅] (100), 281 (18), 270 (17), 254 (10), 194 (16), 187 (24), 165 (13), 91 (6), 77 (5). Найдено, %: С 86.81; H 5.65; N 7.37. С₂₇H₂₂N₂. Вычислено, %: С 86.60; H 5.92; N 7.48.

2-(4-Бромфенил)-1-метил-4,4-дифенил-1,4-дигидрохиназолин (8d). Выход 202 мг (40%), бесцветные кристаллы. Физико-химические характеристики соответствуют описанным в литературе.¹

N,N-Диметил-6-(1-метил-4,4-дифенил-1,4-дигидрохиназолин-2-ил)-1,3-бензодиоксол-5-иламин (8е) получают по общей методике из 469 мг (1.12 ммоль) дигидрохиназолина 6е, 250 мг (4.48 ммоль) КОН и 636 мг (0.28 мл, 4.48 ммоль) МеІ. Выход 284 мг (55%), бесцветные кристаллы, т. пл. 233-234 °С. Rf 0.78. ИК спектр, v, см⁻¹: 1600 (C=N). Спектр ЯМР ¹Н б, м. д. (*J*, Гц): 2.53 (6Н, с, N(CH₃)₂); 2.91 (3H, c, NCH₃); 5.97 (1H, c, OCH₂O); 6.02 (1Н, с, ОСН₂О); 6.52 (1Н, д. д, J = 7.5, J = 1.2, Н-8); 6.98– 7.30 (14H, м, H Ph, H-5,7,4',7'); 7.35 (1H, д. д. д. J = 8.1, J = 7.5, J = 1.2, H-6). Спектр ЯМР ¹³С, δ , м. д.: 40.3 (NCH₃); 45.2 (N(CH₃)₂); 74.1 (C-4); 101.3 (C-2'); 102.3 (C Ar); 115.4 (C Ar); 122.6 (C Ar); 123.4 (C Ar); 124.0 (C Ar); 126.6 (2C Ar); 127.5 (C Ar); 128.1 (4C Ar); 128.3 (2C Ar); 128.7 (4C Ar); 131.3 (C Ar); 139.2 (C Ar); 142.0 (C Ar); 142.8 (C Ar); 143.8 (C Ar); 147.3 (C Ar); 152.5 (C-2). Масс-спектр, *m/z* (*I*_{отн}, %): 461 [M]⁺ (32), 446 [M–CH₃] (5), 384 [M-C₆H₅] (8), 273 (25), 272 [M-C₁₀H₉N₂O₂] (100), 270 (19), 254 (6), 194 (26), 190 (37), 180 (5), 176 (7), 91 (3), 77 (2). Найдено, %: С 78.25; Н 5.73; N 9.22. С₃₀Н₂₇N₃O₂. Вычислено. %: С 78.07: Н 5.90: N 9.10.

Иодид 1,3-диметил-2-(4,7-диметокси-1,3-бензодиоксол-5-ил)-4,4-дифенил-1,4-дигидрохиназолин-3-ия (9b). Выход 437 мг (63%), желто-оранжевые кристаллы, т. пл. 212–215 °C. $R_{\rm f}$ 0.85. ИК спектр, v, см⁻¹: 700–770 (Г), 1554, 1608, 2400–2500 (C=N⁺). Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 2.89 (3H, c, NCH₃); 3.40 (3H, c, NCH₃); 3.80 (3H, c, OCH₃); 3.84 (3H, c, OCH₃); 6.16 (1H, c, OCH₂O); 6.18 (1H, c, OCH₂O); 6.78 (1H, π , J = 7.7, H-8); 7.15 (1H, c, H-6); 7.30–7.33 (2H, м, H-5,7); 7.35–7.57 (11H, м, H Ph, H-6). Спектр ЯМР ¹³С, δ, м. д.: 38.3 (NCH₃); 41.3 (NCH₃); 57.4 (OCH₃); 60.2 (OCH₃); 74.5 (C-4); 103.5 (C-2'); 107.8 (C Ar); 113.0 (C Ar); 116.6 (C Ar); 127.9 (C Ar); 128.1 (2C Ar); 128.2 (2C Ar); 129.2 (2C Ar); 129.3 (2C Ar); 129.5 (2C Ar); 129.6 (C Ar); 130.1 (C Ar); 130.9 (2C Ar); 134.0 (C Ar); 134.5 (C Ar); 138.4 (C Ar); 139.1 (C Ar); 140.2 (C Ar); 140.5 (C Ar); 205.7 (C-2). Maccспектр, m/z (Iотн, %): 478 [М-СН₃I] (12), 461 (4), 401 [M-CH₃I-C₆H₅] (100), 386 [M-CH₃I-C₆H₅-CH₃] (11), 371 (12), 270 (13), 245 (6), 201 (7), 165 (6), 142 (17), 84 (19), 77 (4). Найдено, %: С 60.25; Н 4.51; N 4.63. С₃₁Н₂₉IN₂O₄. Вычислено, %: С 60.01; Н 4.71; N 4.51.

Иодид 1,3-диметил-2,4,4-трифенил-1,4-дигидрохиназолин-3-ия (9с). Выход 161 мг (28%), бесцветные кристаллы, т. пл. 230–232 °С. *R*_f 0.69. ИК спектр, v, см⁻¹: 700–750 (Г), 1600, 2350–2420 (С=N⁺). Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 2.06 (3H, с, NCH₃); 3.05 (3H, с, NCH₃); 6.53 (1H, д, J = 7.8, H-8); 7.00–7.09 (5H, м, H Ar); 7.14– 7.22 (3H, м, H Ar); 7.23–7.29 (4H, м, H Ar); 7.37 (1H, т, J = 7.8, H-6); 7.43–7.49 (3H, м, H Ar); 7.50–7.55 (2H, м, H Ar). Спектр ЯМР ¹³С, δ , м. д.: 31.1 (NCH₃); 36.1 (NCH₃); 67.1 (C-4); 112.9 (C Ar); 123.1 (C Ar); 126.9 (2C Ar); 127.4 (C Ar); 127.9 (4C Ar); 128.2 (C Ar); 128.3 (C Ar); 128.6 (4C Ar); 128.7 (2C Ar); 129.4 (2C Ar); 130.1 (C Ar); 135.8 (C Ar); 139.6 (C Ar) 148.2 (C Ar); 155.1 (C Ar); 207.1 (C-2). Масс-спектр. m/z (I_{OTH} , %): 374 [M–CH₃I] (24), 297 [M–CH₃I–C₆H₃] (100), 282 [M–CH₃I–C₆H₅–CH₃] (11), 270 (5), 194 (5), 179 (6), 165 (7), 142 (32), 118 (10), 91 (6), 77 (4). Найдено, %: C 65.31; H 4.68; N 5.57. C₂₈H₂₅IN₂. Вычислено, %: C 65.12; H 4.88; N 5.42.

Исследование выполнено при финансовой поддержке Министерства образования и науки РФ (грант 4.6087.2017/БЧ).

Список литературы

- Gromachevskaya, E. V.; Kaigorodova, E. A.; Konyushkin, L. D. *Chem. Heterocycl. Compd.* 2017, 53, 545. [Химия гетероцикл. соединений 2017, 53, 545.]
- 2. Pfrengle, W.; Frank, M; Klein, T. US Patent 20158962636.
- 3. Pfrengle, W.; Frank, M; Klein, T. WO Patent 2013010964.
- Vandyck, K.; Verschueren, W. G.; Raboisson, P. J.-M. B. US Patent 20159126986.
- Vandyck, K.; Verschueren, W. G.; Raboisson, P. J.-M. B. WO Patent 2013098313.
- Vandyck, K.; Verschueren, W. G.; Raboisson, P. J.-M. B. WO Patent 2012013643.
- 7. Goldfarb, D. S. US Patent 20090163545.
- 8. Cox, D. US Patent 19713631035.
- 9. Sherlock, M. N. US Patent 19693466284.
- 10. Hyun, S. Y.; Jung, S. U.; Park, S. J. KR Patent 2016020159.
- 11. Miyazato, M.; Shiozaki, H.; Ishido, T.; Ogiso, A. JP Patent 2007008051.
- 12. Bali, H.; Gunzenhauser, S.; Fletcher, I. J.; Bececovic, D. US Patent 19833314195.
- 13. Gromachevskaya, E. V.; Kaigorodova, E. A.; Pushkareva, K. S.; Krapivin, G. D. *Chem. Heterocycl. Compd.* **2013**, *48*, 1492. [Химия гетероцикл. соединений **2012**, 1603.]
- Gromachevskaya, E. V.; Krapivin, G. D.; Kvitkovsky, F. V.; Chein, A. O.; Kul'nevitch, V. G. Chem. Heterocycl. Compd. 2001, 37, 588. [Химия гетероцикл. соединений 2001, 640.]
- Higashino, T.; Sato, S.; Suge, H.; Tanji, K.; Miyashita, A.; Katori, T. *Chem. Pharm. Bull.* **1988**, *36*, 930.
- Bernardelli, P.; Ducrot, P.; Lorthiois, E.; Vergne, F. WO Patent 2002074754.
- 17. Smethurst, C.; Engelhardt, H.; Gianni, D.; Reiser, U. WO Patent 2014154762.
- Vlasova, E. V.; Stoyanov, V. M.; El'chaninov, M. M.; Lukyanov, B. S. Chem. Heterocycl. Compd. 2010, 46, 681. [Химия гетероцикл. соединений 2010, 849.]
- 19. Kikugawa, Y. Synthesis 1981, 124.
- 20. Кросс, А. Введение в практическую инфракрасную спектроскопию; Изд-во иностр. лит.: Москва, 1961, с. 111.
- Преч, Э. Определение строения органических соединений. Таблицы спектральных данных; Преч, Э.; Бюльман, Ф.; Аффольтер, К., Ред.; Мир: Москва, 2006, с. 439.
- 22. Gromachevskaya, E. V.; Kaigorodova E. A.; Firgang, S. I.; Krapivin, G. D. *Chem. Heterocycl. Compd.* **2005**, *41*, 1045. [Химия гетероцикл. соединений **2005**, 1222.]