

Химия гетероциклических соединений 2018, 54(10), 905-922

ОБЗОР

0), 905–922

Стабилизированные азометин-илиды на основе индено[1,2-*b*]хиноксалинонов в реакциях [3+2]-циклоприсоединения с электрофильными алкенами

Владислав Ю. Коротаев¹*, Николай С. Зимницкий¹, Алексей Ю. Барков¹, Игорь Б. Кутяшев¹, Вячеслав Я. Сосновских¹

¹ Институт естественных наук и математики Уральского федерального университета им. первого Президента России Б. Н. Ельцина, пр. Ленина, 51, Екатеринбург 620000, Россия e-mail: korotaev.vladislav@urfu.ru

Поступило 23.07.2018 Принято после доработки 20.09.2018

В обзоре обобщены и систематизированы все имеющиеся в литературе данные по использованию стабилизированных азометинилидов на основе 11*H*-индено[1,2-*b*]хиноксалин-11-она и 6*H*-индено[1,2-*b*]пиридо[3,2-*e*]пиразин-6-она в синтезе спиропирролидинов и спиропирролизидинов. Обсуждаются условия проведения реакций, а также регио- и стереоселективность процесса [3+2]-циклоприсоединения. Приведены сведения о биологической активности полученных продуктов. Библиография - 62 ссылки.

Ключевые слова: 6*H*-индено[1,2-*b*]пиридо[3,2-*e*]пиразин-6-он, 11*H*-индено[1,2-*b*]хиноксалин-11-он, стабилизированные азометинилиды, электрофильные алкены, биологическая активность, 1,3-диполярное циклоприсоединение, многокомпонентные реакции.

1,3-Диполярное циклоприсоединение (1,3-ДЦ) стабилизированных азометин-илидов (АИ), генерируемых in situ из α-аминокислот или бензиламинов и карбонильных соединений, по активированной двойной связи электронодефицитных алкенов представляет собой удобный одностадийный метод получения пирролидинов и пирролизидинов, 1-5 структурный фрагмент которых присутствует во многих природных и синтетических биологически активных соединениях. Высокая регио- и стереоселективность процесса [3+2]-циклоприсоединения ([3+2]-ЦП) с участием этих илидов делает его незаменимым инструментом в синтезе сложных гетероциклических молекул, содержащих до четырех новых хиральных центров с заданными расположением и пространственной ориентацией заместителей из относительно простых и коммерчески доступных предшественников. 6-10

Среди стабилизированных АИ можно выделить группу важных с практической точки зрения илидов 1–4

на основе циклических карбонильных соединений, взаимодействие которых с активированными алкенами приводит к образованию спиропирролидинов или спиропирролизидинов, содержащих спироатом углерода в α-положении к атому азота (рис. 1). Повышенный интерес к этим илидам в первую очередь обусловлен тем, что многие полученные из них аддукты 1,3-ДЦ обладают высокой противоопухолевой, антибакте-

Рисунок 1. Стабилизированные азометин-илиды на основе циклических карбонильных соединений.

^{*} Здесь и далее в номере фамилия автора, с которым следует вести переписку, отмечена звездочкой.

Рисунок 2. Существующие и потенциальные медицинские препараты с фрагментом хиноксалина.

риальной, фунгицидной и другими видами биологической активности.^{3,5} Реакционная способность АИ **1–3** на основе изатина, аценафтенхинона и нингидрина достаточно полно освещена в опубликованных за последние 5 лет обзорах,^{3–5} в то время как сведения о реакциях [3+2]-ЦП с участием инденохиноксалинонового илида **4a** в этих же обзорах представлены лишь единичными примерами, а данные об инденопиридопиразиновом илиде **4b** отсутствуют вообще.

Вместе с тем фрагмент хиноксалина присутствует во многих биоактивных молекулах (рис. 2), а некоторые производные 11H-индено[1,2-b]хиноксалин-11-она (**5a**) зарекомендовали себя в качестве перспективных противораковых агентов, ^{11,12} противовоспалительных препаратов¹³ и средств для лечения диабета второго типа.¹⁴ Недавно противоопухолевая активность была обнаружена и у 6H-индено[1,2-b]пиридо[3,2-e]пиразин-6-она (**5b**).¹⁵ Поэтому введение этих фармакофоров в молекулы органических соединений является весьма актуальной задачей.

С другой стороны, исходные для синтеза АИ **4a,b** 11*H*-индено[1,2-*b*]хиноксалин-11-он (**5a**) и 6*H*-индено [1,2-*b*]пиридо[3,2-*e*]пиразин-6-он (**5b**) могут быть получены из нингидрина и *о*-фенилендиамина¹⁶ или 2,3-диаминопиридина¹⁷ с почти количественными выходами в мягких условиях (схема 1). Этот факт в сочетании с легкой генерацией илидов **4a,b** из соединений **5a,b** позволяет проводить обычно трехкомпонентную

Схема 1

реакцию ЦП в четырех-, а иногда и в пятикомпонентном варианте с генерацией *in situ* как диполя (соответствующего АИ 4), так и диполярофила (электрофильного алкена).

Первое сообщение¹⁸ об использовании АИ **4a** для получения спиропирролизидинов появилось в 2004 г. В 2017 г. нами было показано,¹⁹ что в аналогичные реакции вступают и инденопиридопиразиноновые илиды **4b**. В настоящее время это новое и перспективное направление органического синтеза продолжает динамично развиваться, что в первую очередь обусловлено чрезвычайно широким ассортиментом диполярофилов, способных реагировать с илидами **4a**,**b**. В представленном обзоре, включающем работы с 2004 до середины 2018 г., впервые систематизированы все имеющиеся в литературе данные по реакциям 1,3-ДЦ с участием АИ **4a**,**b** и электрофильных алкенов, а также сведения о биологической активности полученных спиропирролидинов и спиропирролизидинов.

Стабилизированные АИ **4а,b** обычно генерируют *in situ* из инденохиноксалинонов **5а,b** и α -аминокислот или аминов при температурах от комнатной и выше в зависимости от активности диполярофила. В качестве растворителя чаще всего используют доступные спирты (MeOH, EtOH, *i*-PrOH). Образующиеся диполи имеют S-образную конфигурацию (схема 2). Бо́льшая термодинамическая стабильность S-илидов по сравнению с W-илидами надежно подтверждена квантовохимическими расчетами.²⁰⁻²³ В силу этой особенности строения АИ **4** реакции 1,3-ДЦ с их участием обычно приводят к продуктам с *транс*-расположением заместителя R¹ и хиноксалинового фрагмента.

Механистические аспекты и связанные с ними вопросы регио- и стереоселективности процесса [3+2]-ЦП обсуждаются в нескольких обзорах²⁴⁻²⁶ и оригинальных работах.²⁰⁻²² В подавляющем большинстве случаев в реакциях илидов **4a,b** с электрофильными алкенами образуются индивидуальные регио- и стереоизомеры соответствующих спироциклоаддуктов, что свидетельствует в пользу согласованного асинхронного ЦП. Однако варьирование природы заместителей в реагентах (например, при переходе от пролина к саркозину)

или изменение условий (например, замена растворителя) может поменять механизм процесса на двустадийный цвиттер-ионный. На схеме 3 показаны четыре возможных переходных состояния (ПС), образующихся в ходе согласованного 1,3-ЦП и определяющих регио- и стереохимию конечных продуктов **A**–**D**.

В условиях орбитального контроля при отсутствии неблагоприятных диполь-дипольных и стерических взаимодействий между заместителями более предпочтительными являются эндо-ПС **TS-1** и **TS-2**, в которых ориентирующая группа (EWG), сопряженная с π -связью диполярофила, направлена внутрь треугольника, образованного атомами C-1, N и C-3 диполя. Экзо-ПС **TS-3** и **TS-4** энергетически менее выгодны и реализуются редко.

Весь материал обзора структурирован по классам используемого диполярофила (электрофильного алкена). Следует отметить, что в целом ряде статей, видимо по невнимательности авторов, обнаружено несоответствие между данными РСА и указанными стереохимическими формулами. В связи с этим при описании стереохимии продуктов ЦП в первую очередь мы основывались на результатах рентгеноструктурного анализа, депонированных авторами в Кембриджском банке структурных данных (ССDС).²⁷ Несоответствующие структурам ССDС стереохимические формулы были исправлены.

α,β-Непредельные кетоны

Реакции 1,3-ДЦ АИ **4а**,**b**, полученных на основе саркозина, пролина и тиазолидин-3-карбоновой кислоты (тиапролина), с α,β-непредельными кетонами представлены наибольшим количеством примеров, а их

региохимия подчиняется, за небольшим исключением,²⁸ правилу: менее замещенный конец стабилизированного АИ (атом C-1) преимущественно связывается с более электрофильным центром активированного алкена (атом β -C) (схема 3, структуры A и C).

Недавно нашей группой была изучена трехкомпонентная реакция 1,3-ДЦ с участием арилиденацетонов **6** и АИ **4**, генерируемых из инденохиноксалинонов **5а,b** и саркозина или пролина при нагревании в *i*-PrOH (схема 4).²⁹

Схема 4

7 Ar = Ph, $4-O_2NC_6H_4$; 8 Ar = Ph, $2-HOC_6H_4$, $3,4-(MeO)_2C_6H_3$, 2-HO-4-BrC₆H₃, 2,4-Cl₂C₆H₃, $4-O_2NC_6H_4$ X = CH, N

8'

X = CH, Ar = Ph (**8**:**8'** = 86:14) X = CH, Ar = 3,4-(MeO)₂C₆H₃ (**8**:**8'** = 80:20) X = N, Ar = 3,4-(MeO)₂C₆H₃ (**8**:**8'** = 76:24) ЦП протекало регио- и стереоселективно с образованием спиропирролидинов 7 или спиропирролизидинов 8 в виде индивидуальных эндо-изомеров, стереохимия которых однозначно доказана с помощью метода РСА. Лишь в трех реакциях с участием пролиновых АИ наряду с продуктами 8 образовывались незначительные количества региоизомерных эндоспироциклоаддуктов 8' (схема 4).²⁹

Аналогично реагируют с инденохиноксалиноновыми АИ на основе саркозина/пролина и халконы 10 (схема 5, табл. 1).^{30–32} Процесс проводили в кипящем ЕtOH, а исходные инденохиноксалиноны 5 генерировали *in situ* из нингидрина и *о*-фенилендиаминов 9. Выходы целевых продуктов 11а–і и 12а–f составили 75–93%. В работе³⁰ было установлено, что использование микроволнового излучения и ультразвука, а также замена EtOH на ДМСО не оказывают заметного влияния на выходы спиропирролидинов 11а–h. Эндо-конфигурация аддуктов 11а–i и 12а–f подтверждена 1D и 2D экспериментами NOESY, ^{31,32} а также методом PCA.³⁰

Схема 5

Таблица 1. Выходы спироциклоаддуктов 11а-і и 12а-f

Аддукт	\mathbb{R}^1	R ²	Ar	Выход, %	Ссылка
11a	Н	Н	Ph	89	30
11b	Н	Me	Ph	93	30
11c	Н	MeO	Ph	84	30
11d	Н	Cl	Ph	87	30
11e	Me	Н	Ph	88	30
11f	Me	Me	Ph	91	30
11g	Me	MeO	Ph	84	30
11h	Me	Cl	Ph	86	30
11i	Н	MeO	4-MeO ₂ CNHC ₆ H ₄	87	31
12a	Н	Н	Ph	75	32
12b	Me	Н	Ph	80	32
12c	Me	Me	Ph	77	32
12d	Н	F	Ph	75	32
12e	Me	Н	$4-FC_6H_4$	80	32
12f	Me	F	$4-FC_6H_4$	82	32

В трехкомпонентной реакции непредельных кетонов **13а–с** с инденохиноксалиноном **5а** и L-пролином при любых условиях образовывались только эндо-циклоаддукты **14а–с** (схема 6, табл. 2).³³ Гетероциклические халконы **13а–с** оказались настолько активными, что ЦП завершалось уже через 2–4 мин.

Method A: MeOH, R,)))) Method B: MeOH, 80–85°C Method C: direct fusion without solvent

a R = furan-2-yl **b** R = thiophen-2-yl **c** R = pyridin-2-yl

Таблица 2. Выходы спироциклоаддуктов 14а-с

	Me	год А	Me	год В	Метод С	
Аддукт	Время, мин	Выход, %	Время, мин	Выход, %	Время, мин	Выход, %
14a	2	73	6	71	4	64
14b	3	78	6	68	4	59
14c	3	69	4	62	3	52

1,3-ДЦ АИ 4а, генерированного из инденохиноксалинона 5а и саркозина³⁴ или пролина,³⁵ по активированной экзоциклической двойной связи α,β -непредельного кетона 15 приводило к образованию с выходами 80 и 88% соответственно диспироциклоаддуктов 16 и 17, отличающихся ориентацией хиноксалинового фрагмента и ферроценильного заместителя относительно плоскости пирролидинового цикла. В реакции с участием саркозинового АИ по данным РСА был выделен продукт 16 с *транс*-расположением этих объемных заместителей, в то время как аналогичный процесс с участием пролинового илида привел исключительно к *цис*-изомеру 17 (схема 7).

Таблица 3. Выходы спироциклоаддуктов 19, 20 и 21

Ar ¹	Ar ²	Выход аддукта 19 , %	Ar ¹	Ar ²	Выход аддукта 20 , %	Ar ¹	Ar ²	Выход аддукта 21 , %
Fc	Ph	86	Fc	Ph	80	Fc	Ph	88
Fc	$4-ClC_6H_4$	90	Fc	$4-O_2NC_6H_4$	86	Fc	$4-FC_6H_4$	94
Fc	4-MeC ₆ H ₄	83	Fc	4-MeOC ₆ H ₄	78	Fc	$4-ClC_6H_4$	90
Fc	Фуран-2-ил	85	Fc	Фуран-2-ил	82	Fc	$2-ClC_6H_4$	90
Fc	Тиофен-2-ил	83	Fc	Тиофен-2-ил	80	Fc	$4-MeC_6H_4$	89
Fc	2,2'-Битиофен-2"-ил	82	Fc	Пиридин-4-ил	90	Fc	Фуран-2-ил	92
Ph	Fc	84	Fc	Fc	83	Fc	Тиофен-2-ил	90
$4\text{-}ClC_6H_4$	Fc	86				Fc	Пиридин-4-ил	93
4-MeC ₆ H ₄	Fc	87				$4-ClC_6H_4$	Fc	92
Fc	Fc	84				$4\text{-}BrC_6H_4$	Fc	90

Группой индийских химиков было исследовано 1,3-ДЦ илидов **4a** на основе саркозина,³⁶ L-пролина³⁷ и L-тиапролина³⁷ к α,β-непредельным кетонам 18, содержащим ферроценильный заместитель (Fc) при карбонильном атоме углерода или/и в β-положении. ЦП проводили в четырехкомпонентном варианте, получая инденохиноксалинон 5a in situ (схема 8, табл. 3). В реакциях с АИ из саркозина³⁶ дополнительная активация с помощью ультразвука способствовала сокращению времени процесса более чем в 4 раза и увеличению выхода продуктов 19 на 12-14%. Наименее активный илил на основе тиапролина³⁷ реагировал с кетонами 18 при 140 °С в ионной жидкости 22. В ДМФА и ДМСО при этой же температуре выходы аддуктов 21 понижались на 22-37%, а время реакции увеличивалось до 7-9 ч. Спироциклоаддукты 19-21 получены с высокими выходами независимо от донорно-акцепторных свойств заместителей Ar^1 и Ar^2 в диполярофиле. Во всех случаях соответствующий АИ присоединялся к атому В-С диполярофила своим менее замещенным углеродным атомом. Эндо-стереохимия аддуктов 19-21 подтверждена с помощью 2D экспериментов NOESY и PCA. Относительные конфигурации асимметрических углеродных атомов в соединениях 19-21 приведены в соответствие с данными PCA.

Изучено также³⁸ [3+2]-ЦП илида **4a**, генерируемого *in situ* из нингидрина, *o*-фенилендиамина и саркозина, к

производным стероидного гормона эстрона 23а-h в различных условиях с получением продуктов 24а-h (схема 9, табл. 4). Наилучшие результаты были получены в условиях метода С, когда процесс проводили при 120 °С в ионной жидкости 22 (табл. 4). Ее каталитическая активность, по мнению авторов

Схема 9

	R	Выход, %				
лддукт	K -	Метод А	Метод В	Метод С		
24a	Н	46	60	83		
24b	4-Me	43	58	80		
24c	4-MeO	40	54	78		
24d	4-Cl	_	_	82		
24e	3-F	_	_	85		
24f	2-Cl	_	_	84		
24g	3,4-(MeO) ₂	_	_	76		
24h	3,4,5-Me ₃	-	_	78		

Таблица 4. Выходы спиростероидов 24а-h

Рисунок 3. Активация диполярофилов 23а-h ионной жидкостью 22.

исследования, обусловлена активацией диполярофила за счет образования водородной связи с атомом кислорода карбонильной группы (рис. 3).

Ли с сотр.³⁹ разработали регио- и стереоселективный однореакторный способ получения диспиропирролидинов **26**, в котором *in situ* генерируется диполь и диполярофил (схема 10, табл. 5, метод А). Ранее⁴⁰ некоторые из аддуктов **26** с выходами 82–90% были синтезированы из 2-арилиден-1,3-индандионов **25** и АИ **4a** кипячением в ЕtOH в течение 0.5–1 ч в присутствии TiO₂ (метод В). Стереохимия продуктов **26** надежно подтверждена методом PCA.³⁹ В работе⁴⁰ ошибочно постулируется *экзо*-конфигурация аддуктов.

1,3-ДЦ илидов 4а по экзоциклической двойной связи производных изатина, индан-1,3-диона, 3,4-дигидронафталин-1(2*H*)-она и хроман-4-она в различных условиях было исследовано группой Рагхунатана. ^{41,42} Во всех случаях процесс проводили в четырехкомпонентном варианте, генерируя инденохиноксалинон 5а из нингидрина и *о*-фенилендиамина. Реакция саркозинового АИ 4a с (*E*)-3-(2-оксоарилиден)-2-оксиндолами 27 в кипящем МеОН привела к получению диспироаддуктов 28а–е с выходами 82–90% (схема 11, табл. 6).⁴¹

Продукты **32–35** с такой же стереохимией пирролидинового цикла с высокими выходами были синтезированы из непредельных кетонов **27**, **29–31** и АИ **4а** на основе L-пролина с использованием в качестве катализатора вольфрамкремниевой кислоты (H₄[Si(W₃O₁₀)₄]), нанесенной на силикагель, и MeCN в качестве растворителя (схема 12, табл. 6).⁴²

Таблица 5. Выходы спироциклоаддуктов 26

R	Выход, %	R	Выход, %
Ph	86 (90*)	4-HOC ₆ H ₄	82
$4-FC_6H_4$	90	4-MeOC ₆ H ₄	83 (82*)
$4\text{-}ClC_6H_4$	88 (85*)	4-MeC ₆ H ₄	85 (82*)
$4\text{-}BrC_6H_4$	87	3-HOC ₆ H ₄	82
$4-O_2NC_6H_4$	92 (88*)	3-MeOC ₆ H ₄	81
$3-FC_6H_4$	87	3-MeC ₆ H ₄	84
$3-ClC_6H_4$	85	3,4-(MeO) ₂ C ₆ H ₃	80
$3\text{-}BrC_6H_4$	84	3,4-(OCH ₂ O)C ₆ H ₃	82
$3-O_2NC_6H_4$	89	Фуран-2-ил	89
$2\text{-}ClC_6H_4$	81	Et	85
$2,\!4\text{-}Cl_2C_6H_3$	80	<i>n</i> -Pr	87

* Выход по методу В.

Схема 11

Пространственное строение диспироаддуктов 28 и 32–35 подтверждают данные РСА,⁴³ согласно которым хиноксалиновый фрагмент и атом водорода 7'а-СН в пирролизидинах 32–35 находятся в *транс*-положении друг к другу (схема 12). Поскольку W-АИ неустойчивы, продукты 28 и 32–35, по-видимому, образуются из соответствующих S-илидов 4а в результате несогласованного [3+2]-ЦП через цвиттер-ионные интермедиаты I и II (схема 13).

В работах^{44,45} сообщается о синтезе гибридных диспирогетероциклов **37**, **38** и **40** из (*E*)-3-арилиден-1-метилпиперидин-4-онов **36** и (*E*,*E*)-1-алкил-3,5диарилиденпиперидин-4-онов **39**. Так, кипячение смеси нингидрина, *о*-фенилендиамина, соответствующего арилиденпиперидинона **36** и саркозина или тиапролина

R = H, Me, MeO, F, Cl, Br

в МеОН в течение 3 ч ведет к образованию спироциклических конъюгатов **37** или **38** с выходами 50–67% (схема 14).⁴⁴ Следует отметить, что пролиновый АИ **4a** в указанных условиях с арилиден-пиперидонами **36** не реагировал.

Реакцию с участием (E,E)-1-алкил-3,5-диарилиденпиперидин-4-онов **39** и менее активного АИ **4a** из саркозина проводили при 100 °С, используя [bmim]Вг в качестве ионной жидкости (схема 15).⁴⁵ Присоединение второй молекулы диполя не происходило, вероятно,

Таблица 6. Выходы диспироциклоаддуктов 28, 32-35

Аддукт	Ar	Выход, %	Аддукт	Ar	Выход, %	Аддукт	Ar	Выход, %
28a	Ph	90	32e	4-MeOC ₆ H ₄	86	34c	$4-MeC_6H_4$	86
28b	$4-ClC_6H_4$	84	33a	Ph	87	34d	$4-MeOC_6H_4$	88
28c	$4\text{-BrC}_6\text{H}_4$	88	33b	$4-ClC_6H_4$	86	35a	Ph	86
28d	$4-MeC_6H_4$	82	33c	$4-O_2NC_6H_4$	92	35b	$4-ClC_6H_4$	88
28e	$4-MeOC_6H_4$	82	33d	4-MeC ₆ H ₄	87	35c	$4-MeC_6H_4$	85
32a	Ph	86	33e	4-MeOC ₆ H ₄	87	35d	4-MeOC ₆ H ₄	87
32b	$4-ClC_6H_4$	87	33f	4-Me ₂ NC ₆ H ₄	86	35e	4-Me ₂ NC ₆ H ₄	85
32c	$4\text{-BrC}_6\text{H}_4$	88	34a	Ph	88			
32d	$4-MeC_6H_4$	85	34b	$4-ClC_6H_4$	85			

 $\begin{array}{l} {\sf R} = {\sf Me}, {\sf Bn}; {\sf Ar} = {\sf Ph}, 2\text{-}{\sf ClC}_6{\sf H}_4, 2\text{-}{\sf BrC}_6{\sf H}_4, 4\text{-}{\sf ClC}_6{\sf H}_4, \\ {\sf 4}\text{-}{\sf BrC}_6{\sf H}_4, 2\text{,}4\text{-}{\sf Cl}_2{\sf C}_6{\sf H}_3, 3\text{-}{\sf O}_2{\sf NC}_6{\sf H}_4, 3\text{-}{\sf MeC}_6{\sf H}_4, 4\text{-}{\sf MeC}_6{\sf H}_4, \\ {\sf 4}\text{-}{\sf Me}_2{\sf NC}_6{\sf H}_4, 4\text{-}{\sf i}\text{-}{\sf PrC}_6{\sf H}_4, 4\text{-}{\sf MeOC}_6{\sf H}_4, 1\text{-}{\sf naphthyl}, 2\text{-thienyl} \end{array}$

из-за стерических затруднений. Региохимия и эндо-конфигурация аддуктов **37**, **38** и **40** подтверждены с помощью PCA.^{44,45}

1,3-ДЦ инденохиноксалиноновых АИ на основе саркозина и пролина к [(Z,Z)-2,4-дибензилиден]дигидротиофен-3(2*H*)-онам **41** протекало с участием только одной из двух экзоциклических двойных связей. Соответствующие циклоаддукты **42** и **43** получены с выходами 86–95%, а их эндо-стереохимия установлена методом РСА (схема 16).⁴⁶ Наблюдаемая хемоселективность, по-видимому, обусловлена низкой электрофильностью экзоциклической двойной связи в положе-

Схема 16

 $\label{eq:R} \begin{array}{l} \mathsf{R} = \mathsf{H}, \, \mathsf{Me}, \, \mathsf{CI}; \, \mathsf{Ar} = \mathsf{Ph}, \, 4\text{-}\mathsf{CIC}_6\mathsf{H}_4, \, 4\text{-}\mathsf{MeC}_6\mathsf{H}_4, \, 4\text{-}\mathsf{t}\text{-}\mathsf{BuC}_6\mathsf{H}_4, \\ 4\text{-}\mathsf{MeOC}_6\mathsf{H}_4, \, 2\text{-}\mathsf{BrC}_6\mathsf{H}_4, \, 3\text{-}\mathsf{BrC}_6\mathsf{H}_4, \, 2\text{-}\mathsf{3}\text{-}\mathsf{CI}_2\mathsf{C}_6\mathsf{H}_3, \, 2\text{,}4\text{-}\mathsf{CI}_2\mathsf{C}_6\mathsf{H}_3 \\ \end{array}$

нии 2 из-за выраженного +M-эффекта сульфанильной группы. Примечательно, что в условиях реакции исходные для получения АИ 4 несимметричные инденохиноксалиноны **5a** (R = Me) образовывались в виде индивидуальных региоизомеров.

Совсем недавно мы сообщили о синтезе аддуктов 45, содержащих фрагмент 1,3-дикетона, используя (*E*)-1,5-диарилпент-4-ен-1,3-дионы 44 в качестве диполярофилов (схема 17).⁴⁷ Процесс проводили при нагревании в *i*-PrOH. Более активные АИ, генерируемые из пролина, реагировали с ендионами 44 уже при 35 °C, тогда как 1,3-ДЦ тиапролиновых АИ происходило при 65 °C; саркозиновые илиды не вступали в реакцию ЦП. Как и в предыдущем примере, присоединение АИ происходило по более электрофильной двойной связи арилиденацетонового фрагмента. Циклоаддукты 45 в растворе ДМСО и в твердом состоянии существуют исключительно в енольной форме, а их *эндо*-стереохимия надежно подтверждена методом PCA.⁴⁷

Схема 17

Единственным примером присоединения АИ 4 к β -электрофильному центру α , β -непредельного кетона своим более замещенным атомом С-3 (схема 3, структура **B**) является четырехкомпонентная реакция с участием нингидрина, диаминов **9**, L-пролина и халконов **46**, изученная Ражендраном и сотр. (схема 18).²⁸ По этой методике с высокими выходами был синтезирован ряд спиропирролизидинов **47**, содержащих фармакофорный фрагмент 2-хлорхинолина. Регио- и стерео-

Схема 18

Таблица 7. Антиоксидантная и цитотоксическая активность аддуктов 47

\mathbf{R}^1	R^2	Антиокси, І	дантная аі С ₅₀ , мкг/м	Цитотоко IC ₅₀ ,	сичность, мкМ	
		ДППГ	NO	O_2^-	MGF-7	A-549
Н	6-Me	6.13	5.87	4.43	33 ± 1.4	24 ± 1.0
Н	7-Me	5.82	4.56	5.69	23 ± 0.5	36 ± 1.5
Н	8-Me	3.42	2.68	4.12	17 ± 1.6	19 ± 0.2
Н	6-MeO	3.32	5.51	3.45	28 ± 1.5	24 ± 1.5
Н	6,8-Me ₂	2.96	1.34	4.01	15 ± 1.9	16 ± 1.8
Н	Н	7.23	9.52	8.54	35 ± 1.5	37 ± 1.7
COPh	6-Me	8.4	6.95	10.11	25 ± 1.4	32 ± 1.0
COPh	7-Me	6.71	5.98	8.65	24 ± 1.5	32 ± 0.9
COPh	8-Me	3.6	5.24	3.4	18 ± 1.3	20 ± 1.5
COPh	6-MeO	3.2	5.43	3.9	26 ± 1.3	24 ± 0.5
COPh	6,8-Me ₂	3.56	3.43	3.8	16 ± 0.5	17 ± 1.8
COPh	Н	8.24	6.32	9.54	30 ± 0.7	33 ± 1.4

химия продуктов **47** подтверждена с помощью метода РСА и указывает на согласованное *эндо*-ЦП АИ **4**а к халконам **46**.

Соединения **47** проявили высокую антиоксидантную активность по отношению к 1,1-дифенил-2-пикрилгидразилу (ДППГ), монооксиду азота и супероксиду, а также выраженную цитотоксическую активность к клеткам линий карциномы легких человека А-549 и рака молочной железы человека МСF-7, сравнимую с препаратом доксорубицином.²⁸ Наибольшей активностью обладают пирролизидины **47** с донорными заместителями в положениях 6 и 8 хинолинового цикла (табл. 7). С помощью молекулярного докинга было установлено, что противораковая активность аддуктов **47** обусловлена их способностью связываться с рецепторами эпидермального фактора роста 1М17, вызывая апоптоз и некроз раковых клеток.

Производные а,β-непредельных карбоновых кислот

Подобно α,β -непредельным кетонам, эфиры, нитрилы и амиды α,β -непасыщенных карбоновых кислот проявляют высокую активность по отношению к стабилизированным АИ **4a,b**. В большинстве случаев АИ присоединяется к наиболее электрофильному атому β -C диполярофила своим менее замещенным атомом C-1 (схема 3). В то же время известны примеры обратной региоселективности, в которых диполь атакует молекулу диполярофила более замещенным атомом C-3.

Эфиры акриловой и метакриловой кислот 48 были успешно использованы в регио- и стереоселективном синтезе спиропирролизидинов 49а–f (схема 19, табл. 8).⁴⁸ Процесс проводили в кипящем EtOH, генерируя AU 4 *in situ* из нингидрина, соответствующего *о*-фенилендиамина 9 и пролина. Реакция ЦП завершалась уже через 25 мин, а выходы продуктов 49 составили 75– 82%. *Транс*-расположение водородных атомов 2'-CH и 7'а-CH, установленное с помощью 1D эксперимента NOESY, указывает на экзо-1,3-ДЦ. Поскольку конфигурацию спироатома углерода установить не удалось,

Таблица 8. Выходы спироциклоаддуктов 49а-f

Аддукт	\mathbb{R}^1	\mathbb{R}^2	R ³	Выход, %
49a	Н	Me	Н	75
49b	Н	Et	Н	80
49c	Me	Me	Н	77
49d	Me	Et	Н	75
49e	Н	Et	Me	80
49f	Me	Et	Me	82

возможен как согласованный, так и цвиттерионный механизм процесса ЦП.

Экзо-1,3-ДП наблюдалось и в четырехкомпонентной реакции с участием илидов **4a** на основе L-пролина и *N*-арилмалеимидов **50** (схема 20, табл. 9).^{18,49} Как при

Таблица 9. Выходы спироциклоаддуктов 51а-f

A	\mathbf{D}^1	\mathbf{P}^2	Мет	од А	Мете	од В
Аддукт	к	к	Время, ч	Выход, %	Время, мин	Выход, %
51a	Н	Н	3	80	4	90
51b	Н	Me	2.5	82	3	93
51c	Me	Н	2.5	80	3	91
51d	Me	Me	2	86	3	95
51e	Н	Cl	3.5	76	5	87
51f	Me	Cl	3.5	79	5	89

обычном нагревании в ДМСО (метод А), так и под воздействием микроволнового излучения (метод В) процесс ЦП приводил к образованию одного диастереомера циклоаддуктов **51а–f**, строение которого подтверждено 1D экспериментом NOESY. Как и в предыдущем случае, конфигурацию четвертичного углеродного атома в пирролизидиновом цикле установить не удалось. В условиях метода В время реакции сокращалось в несколько десятков раз, а выходы целевых продуктов **51а–f** увеличивались в среднем на 10%.

В работах^{50,51} исследовалось ЦП инденохиноксалиноновых АИ 4а к продуктам реакции Бейлиса-Хиллмана, полученным из эфиров акриловой кислоты и ароматических альдегидов. Трехкомпонентная реакция с участием ферроценового производного 52, инденохиноксалинона 5а и саркозина или пролина привела к получению спиропирролидина 53 и спиропирролизидина **54** с одинаковыми выходами – 83% (схема 21).⁵⁰ В обоих случаях АИ присоединялся к наиболее электрофильному атому β-С алкена своим менее замещенным атомом С-1. Стереохимия продуктов 53 и 54 установлена методом РСА, выполненном для аналогичных аддуктов, полученных в этой же работе из АИ 1 на основе саркозина/пролина и изатина. Конфигурация спироатома углерода в соединениях 53 и 54 приведена в соответствие с данными РСА. Транс-расположение метоксикарбонильной группы и хиноксалинового фрагмента в аддуктах 53 и 54 указывает на согласованное эндо-присоединение как саркозинового, так и пролинового АИ. Следует отметить, что оба диастереомера имеют анти-расположение гидроксильной и сложноэфирной группы.

Схема 21

Полученные продукты проявили выраженную антибактериальную активность по отношению к различным патогенным грамположительным и грамотрицательным бактериям, сравнимую с таковой известного антибиотика тетрациклина (табл. 10).⁵⁰

При использовании в качестве диполярофилов близких по структуре акрилатов **55** независимо от условий региохимия процесса циклоприсоединения

Таблица 10. Минимальная ингибирующая концентрация соединений 53, 54 и тетрациклина, нг/мл

Π	Соеди	Т	
Патоген —	53	54	— тетрациклин
Enterococcus faecalis	35	60	15
Bacillus cereus	70	65	30
Staphylococcus aureus	85	100	35
Salmonella typhi	65	70	30
Escherichia coli	40	55	30
Proteus mirabilis	75	85	35

менялась на противоположную и АИ атаковал двойную связь своим более замещенным углеродным атомом (схема 22, табл. 11).⁵¹ Максимальные выходы аддуктов 56 и 57 были достигнуты при проведении реакции без растворителя в смеси с измельченным монтмориллонитом К-10 (гетерогенный катализ) в сочетании с микроволновым облучением (табл. 11). Стереохимию пирролидинового фрагмента и *анти*-расположение сложноэфирной и гидроксильной групп относительно друг друга подтверждают данные РСА для близкого по структуре *эндо*-аддукта, полученного в аналогичных условиях из АИ **3** на основе пролина и нингидрина.⁵¹ Относительная конфигурация спироатома углерода в соединениях **56** и **57** приведена в соответствие со стереохимией аддуктов **53** и **54**.

Таблица 11. Выходы спироциклоаддуктов 56 и 57

	Метод А		Метод В		Метод С	
Аддукт	Время, ч	Выход, %	Время, мин	Выход, %	Время, мин	Выход, %
56	5.5	30	30	40	10	70
57	3.5	32	40	55	10	77

Такая же регионаправленность процесса [3+2]-ЦП наблюдалась и в реакциях инденохиноксалиноновых АИ **4a** на основе бензиламина или пролина с 3-циано-

2*H*-хроменами **58**.⁵² При апробировании двух методик – простое кипячение в EtOH в течение 5 ч и кипячение в EtOH с одновременным облучением микроволнами – было продемонстрировано преимущество последней (выходы возрастали на 14–16%). У хроменопирролидинов **59** и хроменопирролизидинов **60** эндо-конфигурация, которая подтверждена с помощью 2D эксперимента NOESY и PCA (схема 23, табл. 12). В работах^{53–55} изучалось 1,3-ДЦ АИ **4а,b** к арилиден-

В работах⁵³⁻⁵⁵ изучалось 1,3-ДЦ АИ **4а,b** к арилиденмалононитрилам **61** и арилиденциануксусным эфирам **62** в различных условиях. Группой китайских химиков разработан регио- и стереоселективный метод синтеза спиропирролидинов **63** (выходы 80–92%) и **64** (выходы 62-81%), основанный на пятикомпонентной реакции, в которой инденохиноксалинон **5а** и нитрилы **61, 62** генерируют *in situ* (схема 24, табл. 13, метод А).⁵³ Последние получают по реакции Кнёвенагеля из соответствующих бензальдегидов и малононитрила или циануксусного эфира. Из-за низкой активности саркозинового АИ процесс проводят при 100 °С в герметичном реакторе, используя EtOH в качестве растворителя. *Транс*-ориентация арильного заместителя и объемного хиноксалинового фрагмента в аддуктах **63** и **64** подтверждена методом PCA.

В работе⁵⁴ сообщается о получении спиропирролидинов **63** и **64**, содержащих *N*-фенилкарбаматную группу в арильном заместителе (Ar = 4-PhNHCO₂C₆H₄), с выходами 78 и 75% соответственно. В данном случае аналогичную пятикомпонентную реакцию проводили

Таблица 12. Выходы спироциклоаддуктов 59 и 60

n	Выход		Аддукт 60		
K	аддукта 59, %	K	Время, ч	Выход, %	
Н	78	Н	10	85	
8-Cl	78	2-Cl	10	89	
6,8-Cl ₂	82	2,4-Cl ₂	5	86	
8-Br	78	2-Br	8	89	
8-Br-6-MeO	80	2-Br-4-MeO	10	80	
6-MeO	78	4-MeO	10	88	
7-MeO	80	3-MeO	5	90	
6-EtO	83	4-EtO	5	85	

Таблица 13. Выходы спиропирролидинов 63 и 64

Ar	Х	Выход*, %	Ar	Х	Выход*, %	Ar	Х	Выход*, %
Ph	CN	87 (64**)	4-MeOC ₆ H ₄	CN	83	$3-FC_6H_4$	CO ₂ Et	75
$4-FC_6H_4$	CN	90	$4-MeC_6H_4$	CN	85	$3-ClC_6H_4$	CO_2Et	74
$4-ClC_6H_4$	CN	88 (61**)	3-MeOC ₆ H ₄	CN	84	$3-BrC_6H_4$	CO ₂ Et	74
$4-BrC_6H_4$	CN	87	3,4-(MeO) ₂ C ₆ H ₃	CN	82	$2-FC_6H_4$	CO ₂ Et	74
$3-FC_6H_4$	CN	86	Фуран-2-ил	CN	89	$2-ClC_6H_4$	CO_2Et	73
$3\text{-BrC}_6\text{H}_4$	CN	84	4-PhNHCO ₂ C ₆ H ₄	CN	78***	$4-O_2NC_6H_4$	CO_2Et	81
$2-FC_6H_4$	CN	83	4-PhNHCO ₂ C ₆ H ₄	CO ₂ Et	75***	$4-MeC_6H_4$	CO ₂ Et	65
$2-ClC_6H_4$	CN	81	Ph	CO ₂ Et	71	$4-MeOC_6H_4$	CO ₂ Et	62
$2\text{-BrC}_6\text{H}_4$	CN	80	$4-FC_6H_4$	CO ₂ Et	78	Фуран-2-ил	CO_2Et	70
$2,4-Cl_2C_6H_3$	CN	80 (66**)	4-ClC ₆ H ₄	CO ₂ Et	79			
$4-O_2NC_6H_4$	CN	92 (64**)	$4-BrC_6H_4$	CO ₂ Et	77			

* Выход по методу А.

** Выход по методу С.

*** Выход по методу В.

при кипячении в смеси EtOH с ионной жидкостью, в качестве которой использовался [bmim]Br (схема 24, табл. 13, метод B).

Недавно⁵⁵ ряд спиропирролидинов **63** с выходами 61-66% был синтезирован трехкомпонентной реакцией с участием инденохиноксалинона **5а**, саркозина и арилиденмалононитрилов **61** при нагревании в *i*-PrOH (схема 24, табл. 13, метод С). Использование данного растворителя позволило провести процесс циклоприсоединения в мягких условиях (50 °C) без применения специального оборудования и ионных жидкостей.

1,3-ДЦ АИ **4а,b**, генерируемых из пролина, к нитрилам **61** приводит к образованию региоизомерных спиропирролизидинов **65** и/или **66** с *цис*-ориентацией хиноксалинового и арильного фрагментов в молекуле. Регионаправленность этого процесса зависит от донорноакцепторных свойств заместителя в ароматическом цикле диполярофила (схема 25, табл. 14).⁵⁵

Было обнаружено,⁵⁵ что трехкомпонентная реакция нитрилов **61** с незамещенным бензольным циклом и электроноакцепторными заместителями, пролина и хиноксалинонов **5а,b** при нагревании в *i*-PrOH в течение 2–3 сут приводит к спиропирролизидинам **65а–d,i–k** (выходы 56–86%), которые образуются в результате присоединения АИ к β-углеродному атому нитрила атомом С-1 (схема 25, табл. 14). При участии в ЦП нитрилов **61**, содержащих один или два электронодонорных заместителя в бензольном цикле, региохимия процесса неожиданно меняется, и образуются только спироциклоаддукты **66f,h,l–n** (выходы 60–88%), за исключением смеси аддуктов **65g** и **66g** с преобладанием региоизомера **66g** (62%).

Еще более неожиданным является образование аддукта 65е в реакции 2-(4-метоксибензилиден)малононитрила с АИ из инденохиноксалинона 5а и аддукта 661 в аналогичной реакции с АИ из инденопиридопиразинона 5b (схема 25, табл. 14). Регио- и стереохимия продуктов надежно подтверждена спектроскопией ЯМР ¹Н и ¹³С и РСА.

В работе²¹ четырехкомпонентной реакцией [3+2]-ЦП с участием хиральных амидов кротоновой и коричной

Таблица 14. Соотношения и выходы региоизомеров 65 и 66

Аддукт	X R		Соотношение 65:66	Выход, %	
65a	СН	Ph	100:0	75	
65b	СН	4-Cl	100:0	84	
65c	СН	$4-NO_2$	100:0	79	
65d	СН	2,4-Cl ₂	100:0	86	
65e	СН	4-MeO	100:0	71	
66f	СН	4-HO	0:100	74	
65g + 66g	СН	3,4-(MeO) ₂	38:62	86	
66h	СН	4-HO-3-MeO	0:100	60	
65i	Ν	Ph	100:0	56	
65j	Ν	4-Cl	100:0	66	
65k	Ν	2,4-Cl ₂	100:0	60	
661	Ν	4-MeO	0:100	76	
66m	Ν	4-HO	0:100	62	
66n	Ν	3,4-(MeO) ₂	0:100	88	

кислот **67** и АИ **4a**, генерируемых *in situ* из нингидрина, *о*-фенилендиаминов **9** и α-аминокислот, осуществлен асимметрический синтез спиропирролидинов **68** и **69** с высокими выходами и оптической чистотой более 99% (схема 26). Квантово-химические

расчеты, проведенные методом DFT/B3LYP с использованием базисов 6-31G(d) и 6-31G(d,p), указывают на то, что процесс ЦП протекает по механизму согласованного асинхронного эндо-присоединения, причем атака азометин-илидом диполярофила, существующего преимущественно в (Z)-конформации, происходит с si-стороны. Абсолютные конфигурации продуктов установлены с помощью PCA.²¹

Сопряженные нитроалкены

 α,β -Непредельные нитросоединения проявляют наибольшую активность к АИ **4а,b**. Отличительной особенностью этих диполярофилов является противоположная регионаправленность реакций с циклическими и ациклическими АИ: ациклические АИ на основе саркозина или бензиламина обычно атакуют молекулу диполярофила своим менее замещенным атомом C-1 (схема 3), тогда как АИ, генерируемые из пролина и тиапролина, присоединяются к атому β -C нитроалкена более замещенным атомом C-3.

Так, четырехкомпонентная реакция нингидрина, *о*-фенилендиамина, L-пролина и соответствующего β -нитростирола **70**, проводимая в кипящем EtOH (метод A) или при микроволновом нагреве в отсутствие растворителя (метод B), с высокими выходами приводила к спиропирролизидинам **71** (схема 27).⁵⁶ Использование микроволнового облучения сокращало время процесса до 7–10 мин и практически не влияло на выходы целевых продуктов. Независимо от условий аддукты **71** представляли собой индивидуальные эндоизомеры, образующиеся в результате атаки AU своим более замещенным углеродным атомом, а их строение однозначно подтверждено методом PCA.

Схема 27

 $\begin{array}{l} \mbox{Method A: EtOH, Δ, 4-5.5 h, 78-93\%$} \\ \mbox{Method B: 80°C, MW, 7-10 min, 83-96\%$} \\ \mbox{Ar = Ph, 2-FC_6H_4, 2-CIC_6H_4, 2-BrC_6H_4, 3-BrC_6H_4, 4-FC_6H_4, 4-CIC_6H_4, 4-BrC_6H_4, 2-CIC_6H_3, 4-Me_2NC_6H_4, 4-MeC_6H_4, 2-MeOC_6H_4, 4-MeOC_6H_4, 3,4,5-(MeO)_3C_6H_2, 3,4-(OCH_2O)C_6H_3, 2-O_2N-4,5-(OCH_2O)C_6H_2, 3-O_2NC_6H_4, 4-O_2NC_6H_4, 2- furyl, 2-thienyl, 1-naphthyl} \\ \end{array}$

Нами разработан альтернативный способ получения спиропирролизидинов 71, в котором трехкомпонентную реакцию с участием инденохиноксалинона 5а, нитростиролов **70а-е** и пролина проводили при нагреве в *i*-PrOH.¹⁹ По этой методике были синтезированы спиропирролизидины **71а-е**, в том числе и с гидроксильными группами в бензольном цикле, а также спироаддукты **72а-е**, содержащие фрагмент инденопиридопиразинона (схема 28, табл. 15).

a Ar = Ph, **b** Ar = 2-HOC₆H₄, **c** Ar = 4-HO-3-MeOC₆H₃, **d** Ar = 3,4-(MeO)₂C₆H₃, **e** Ar = 2,4-Cl₂C₆H₃

Таблица 15. Выходы спиропирролизидинов 71 и 72

Аддукт 71	Выход, %	Аддукт 72	Выход, %
71a	70	72a	84
71b	84	72b	48
71c	82	72c	61
71d	94	72d	84
71e	77	72e	70

Следует отметить, что некоторые спиропирролизидины 71 способны ингибировать ацетилхолинэстеразу (АХЭ) при низких значениях IC₅₀ (табл. 16) и могут применяться для лечения нейродегенеративных расстройств, таких как болезнь Альцгеймера. В частности, пирролизидин 71, содержащий 3,4-метилендиоксигруппу в арильном заместителе, по своей активности в 20 раз превосходит известный медицинский препарат галантамин.

Гладко реагирует с β-нитростиролами **70** и тиапролиновый AU, образуя соответствующие спироциклоаддукты **73** с выходами 65–93% (схема 29).²⁰ Процесс ЦП проводили при кипячении в EtOH в течение 5 ч. Регио- и стереохимия продуктов **73** надежно подтверждена с помощью PCA. Расчеты методом DFT с использованием гибридных потенциалов B3LYP, wB97xD, M06-2X и базиса 6-31G(d,p) свидетельствуют в пользу согласованного эндо-1,3-ДЦ.

Таблица 16. Ингибиторная активность аддуктов 71 по отношению к АХЭ

Ar	IC ₅₀ , мкМ	Ar	IC ₅₀ , мкМ
$2-MeOC_6H_4$	7.3 ± 2.2	$4-O_2NC_6H_4$	4.4 ± 1.9
3,4-(OCH ₂ O)C ₆ H ₃	0.05 ± 0.01	2-Фурил	3.0 ± 0.2
$2-ClC_6H_4$	5.3 ± 3.9	2-Тиенил	5.4 ± 2.7
$2-BrC_6H_4$	14.0 ± 0.5		

 $\begin{array}{l} {\rm Ar}={\rm Ph},\, 4{\rm -MeC}_6{\rm H}_4,\, 2{\rm -MeOC}_6{\rm H}_4,\, 4{\rm -MeOC}_6{\rm H}_4,\, 3{\rm -BrC}_6{\rm H}_4,\\ {\rm 4-FC}_6{\rm H}_4,\, 4{\rm -ClC}_6{\rm H}_4,\, 4{\rm -BrC}_6{\rm H}_4,\, 4{\rm -CNC}_6{\rm H}_4,\, 2{\rm -O}_2{\rm NC}_6{\rm H}_4,\\ {\rm 2-furyl},\, 2{\rm -thienyl},\, 1{\rm -naphthyl} \end{array}$

При переходе к АИ на основе саркозина регионаправленность реакции ЦП меняется таким образом, что атака молекулы нитростирола менее замещенным атомом С азометин-илида становится более предпочтительной, однако региоселективность реакции при этом понижается. Действительно, взаимодействие нитростиролов **70a,d,e** с АИ **4a,b**, образующимися *in situ* из инденохиноксалинонов **5a,b** и саркозина, в аналогичных условиях приводила к образованию спиропирролидинов **74а–е** с выходами 33–46%, из которых аддукты **74b,d,e** представляли собой смеси, содержащие региоизомеры **74'b,d,e** в количестве от 20 до 36% (схема 30, табл. 17).¹⁹

Схема 30

70 a Ar = Ph, **d** Ar = 3,4-(MeO)₂C₆H₃, **e** Ar = 2,4-Cl₂C₆H₃

Таблица 17. Соотношение региоизомеров и выходы спиропирролидинов 74а-е

Нитростирол 70	Инден 5	Аддукт 74	Соотношение 74:74'	Выход, %
70a	5a	74a	100:0	46
70d	5a	74b+74'b	64:36	43
70e	5a	74c	100:0	46
70a	5b	74d+74'd	68:32	33
70e	5b	74e+74'e	80:20	45

Диполярофилы **70** с гидроксильной группой в арильном заместителе с илидом из саркозина не реагировали. *Эндо*-стереохимия региоизомерных продуктов **74** и **74'** однозначно подтверждена методами PCA и 2D экспериментом NOESY.

Такая же регионаправленность 1,3-ДЦ наблюдалась в реакциях АИ на основе инденохиноксалинона **5а** и бензиламинов с 3-метил-4-нитро-5-стирилизоксазолами 75 (схема 31, табл. 18).⁵⁷ Процесс проводили при кипячении в МеОН, а илиды генерировали *in situ* из нингидрина, *о*-фенилендиаминов 9 и бензиламинов. Аддукты 76 были получены с выходами 70–92%. Независимо от природы заместителей в реагентах преобладающим всегда являлся эндо-изомер 76. В то же время реакции алкенов 75 с илидами из 7-метилзамещенного инденохиноксалинона (R = Me) отличались меньшей стереоселективностью. В этом случае в качестве побочного продукта образовывался экзоизомер 76', содержание которого не превышало 50% (схема 31, табл. 18). Эндо-конфигурация основных изомеров 76 подтверждена методом РСА.

Схема 31

Таблица 18. Соотношение стереоизомеров и выходы спиропирролидинов 76

R	Ar^1	Ar ²	Соотношение 76:76'	Выход, %
Н	Ph	Ph	>20:1	85
Н	$4-ClC_6H_4$	Ph	>20:1	88
Н	$4\text{-}BrC_6H_4$	Ph	>20:1	86
Н	$2\text{-BrC}_6\text{H}_4$	Ph	>20:1	80
Н	$4-MeOC_6H_4$	Ph	>20:1	80
Н	$2\text{-EtOC}_6\text{H}_4$	Ph	>20:1	70
Н	9-Антрил	Ph	>20:1	90
Н	2-Фурил	Ph	>20:1	75
Н	2-Тиенил	Ph	>20:1	80
Н	$4-ClC_6H_4$	$4-FC_6H_4$	>20:1	91
Н	$2\text{-BrC}_6\text{H}_4$	$4-FC_6H_4$	>20:1	88
Me	$4\text{-}BrC_6H_4$	Ph	5:1	92
Me	$4-MeC_6H_4$	Ph	6.5:1	79
Me	9-Антрил	Ph	2.3:1	91
Me	2-Фурил	Ph	2:1	72
Me	$4-FC_6H_4$	$4\text{-}\mathrm{FC}_6\mathrm{H}_4$	1:1	88
Me	$4-ClC_6H_4$	$4\text{-MeOC}_6\text{H}_4$	1:1	75
Me	$2\text{-}ClC_6H_4$	$4-MeOC_6H_4$	6.5:1	73
Me	$2\text{-BrC}_6\text{H}_4$	4-MeOC ₆ H ₄	2:1	78
Me	2-EtOC ₆ H ₄	4-MeOC ₆ H ₄	2:1	70

1,3-ДЦ саркозинового и пролинового АИ, генерированных на основе инденохиноксалинона **5a**, по активированной двойной связи β -нитростирольного фрагмента 3-нитро-2*H*-хроменов **77а,b** с гликозильным заместителем в положении 2 было исследовано Рагхунатаном и Рао.⁵⁸ Оба илида присоединялись к атому С-4 хромена своим более замещенным атомом С с образованием с выходами 81–86% хромено-пирролидинов **78а,b** и хроменопирролизидинов **79а,b** в виде индивидуальных *эндо*-изомеров с *цис*-расположением заместителя R и нитрогруппы. Их стереохимия установлена с помощью PCA (схема 32).

Нами было изучено [3+2]-ЦП АИ **4а,b** к (*E*)-1-нитро-3,3,3-трифтор(трихлор)-3-нитропропенам.⁵⁹ Оказалось, что замена арильного заместителя в β-нитростиролах на тригалогенметильную группу кардинальным образом изменяет регионаправленность процесса ЦП. Действительно, взаимодействие нитроалкенов **80a,b** с АИ, генерируемыми *in situ* из инденохиноксалинонов **5a,b** и саркозина, при нагревании в *i*-PrOH (60 °C) в течение 2 сут в результате присоединения АИ к атому C-2 алкена своим менее замещенным углеродным атомом приводило к получению с выходами 32–40% *эндо*-спиропирролидинов **81а–d** или их смесей с *экзо*изомерами **81'а,с**, образующихся без примеси региоизомеров (схема 33, табл. 19).

Аддукты 82а-d с такой же регио- и стереохимией с выходами 76-82% были выделены в аналогичной реакции с участием более активного АИ на основе пролина. В этом случае процесс полностью завершался уже через 12 ч при 45 °C, а побочными продуктами

являлись региоизомеры 82'а, b, содержание которых не превышало 6% (схема 33, табл. 19). Стереохимия эндопирролидинов 81а-d и эндо-пирролизидинов 82а-d однозначно подтверждена методом РСА. Отнесение соединений 81'а, с к ряду экзо-изомеров, а также

Таблица 19. Соотношения изомеров и выходы продуктов 81 и 82

R	Х	Продукт	Соотношение 81:81'	Выход, %	R	Х	Продукт	Соотношение 82:82'	Выход, %
CF ₃	СН	81a + 81'a	84:16	40	CF ₃	СН	82a + 82'a	96:4	86
CCl_3	CH	81b	100:0	34	CCl ₃	СН	$\mathbf{82b} + \mathbf{82'b}$	94:6	76
CF ₃	Ν	81c + 81'c	85:15	34	CF ₃	Ν	82c	100:0	89
CCl ₃	Ν	81d	100:0	32	CCl ₃	Ν	82d	100:0	82

установление эндо-конфигурации минорных региоизомеров **82'а,b** выполнено на основании 2D экспериментов NOESY. Отметим, что изменение регионаправленности процесса ЦП при переходе от нитростиролов к частично галогенированным нитропропенам **80**а,b ранее уже наблюдалось в их реакциях с АИ **1** на основе изатина.⁶⁰

Циклические диполярофилы

В этой главе рассмотрены реакции АИ **4а,b** с алкенами, у которых ориентирующая электроноакцепторная группа является частью циклической системы, а также с замещенными циклопропенами, обладающими высокой энергией напряжения цикла.

В работе⁶¹ описано использование в реакциях циклоприсоединения в качестве диполярофила бензо[b]тиофен-1,1-диоксида (83) (схема 34). 1,3-ДЦ илидов, генерируемых ИЗ инденохиноксалинона 5a И саркозина/пролина в кипящем МеОН в течение 1 ч приводило к получению спироциклоаддуктов 84 и 85 с такой же региохимией, как и у продуктов, полученных в реакциях этих илидов с β-нитростиролами. Оба аддукта имеют эндо-ориентацию сульфодиоксидного и хиноксалинового фрагментов (установлено с помощью РСА и 1D экспериментов NOESY). В то же время транс-расположение водородного атома За-СН и хиноксалинового цикла в пирролизидине 85 свидетельствует в пользу цвиттер-ионного пути его образования (согласованный процесс исключен, поскольку W-илиды нестабильны). Конфигурация четвертичного атома углерода в аддукте 85 приведена в соответствие с данными РСА.

Схема 34

Примером хемо-, регио- и стереоселективного циклоприсоединения является взаимодействие АИ **4a** на основе саркозина, L-пролина и L-пипеколиновой кислоты с 2-гликозилзамещенным метил-4-хромон-3-карбоксилатом **87** (схема 35).⁶² Последний получают *in situ* из предшественника **86** действием NaOMe в среде MeCN при нагревании. В этих же условиях из инденохиноксалинона **5a** и α-аминокислот генерируют АИ 4a, который присоединяется исключительно по двойной связи гликозильного фрагмента диполярофила 87. Из-за стерических затруднений ЦП с участием связи C=C хромона не происходило. Аддукты 88 и 89a,b были получены с выходами 72–84% в результате присоединения соответствующего АИ к диполярофилу своим менее замещенным атомом С. Стереохимия продуктов 88 и 89a,b надежно установлена методом РСА. *Транс*-расположение ориентирующей группы (хромонового цикла), атома водорода 9а-СН (в аддуктах из пролина) и хиноксалинового фрагмента в пирролидиновом цикле указывает на согласованное эндо-1,3-ДЦ всех илидов (схема 35). Конфигурация гликозильного фрагмента приведена в соответствие с данными РСА.

Схема 35

В работе²² изучено трехкомпонентное 1,3-ДЦ АИ на основе инденохиноксалинонов **5a** к циклопропенам **90**. [3+2]-ЦП илидов, генерируемых из бензиламинов, к 1,2-дифенилциклопропенам **90** при кипячении в МеОН в течение 1 сут привело к получению азаспиробицикло-[3.1.0]гексанов **91** с выходами 60–94% (схема 36).²²

По аналогичной методике из АИ на основе инденохиноксалинонов **5a** и α -аминокислот с высокими выходами были синтезированы аддукты **92–94** (схема 37).²²

Из ди- и трипептидов глицина и инденохиноксалинона **5a** с высокими выходами получены спироаддукты **95** и **96** (схема 38).

Схема 38

Продукты 91–96 получены в виде индивидуальных стереоизомеров, стереохимия которых установлена с помощью метода РСА. Квантово-химические расчеты, проведенные для реакции пролинового илида инденохиноксалинона 5а с 1,2-дифенилциклопропеном показали, что процесс ЦП протекает по механизму согласованного эндо-присоединения (относительно sp³-гибридизованного атома углерода в циклопропене) с участием S-илида.²²

Некоторые из соединений **91–96** проявили противоопухолевую активность к клеткам линии К562 лейкемии человека в концентрациях 10–25 µM, сравнимую с таковой известного препарата иматиниба. Самая высокая активность обнаружена у аддуктов на основе илидов из L-аспарагина и L-глутамина.²²

Широкий спектр соединений, полученных в реакциях 1,3-диполярного циклоприсоединения с использованием стабилизированных азометин-илидов на основе 11*H*-индено[1,2-*b*]хиноксалин-11-она и 6*H*-индено[1,2-*b*]пиридо[3,2-е]пиразин-6-она за относительно небольшой период времени, свидетельствует о богатом синтетиеском потенциале этих азометин-илидов. В настоящее время в данной области гетероциклической химии идет процесс накопления фактического материала, в то время как некоторые теоретические вопросы, такие как разная регионаправленность процесса циклоприсоединения одних и тех же азометин-илидов к α,β-непредельным кетонам (арилиденацетонам, халконам) и β-нитростиролам, до конца не выяснены. Остается неясной и причина получения разных региоизомеров при замене арильного заместителя в нитростироле на тригалогенметильную группу. Появление данного обзора может способствовать дальнейшим изысканиям в области теории реакций 1,3-диполярного циклопри-Высокая биологическая активность, соединения. обнаруженная у многих спироинденохиноксалинонов, позволяет рассчитывать на продолжение активных исследований в этой области органического синтеза.

Работа выполнена при финансовой поддержке Министерства образования и науки Российской Федерации (соглашение 02.А03.21.0006) и Российского фонда фундаментальных исследований (проект № 18-33-00635).

Список литературы

- Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products; Padwa, A.; Pearson, W. H., Eds.; Wiley: New York, 2002, vol. 59, p 169.
- 2. Tsuge, O.; Kanemasa, S. Adv. Heterocycl. Chem. 1989, 45, 231.
- Arumugam, N.; Suresh Kumar, R.; Almansour, A. I.; Perumal, S. Curr. Org. Chem. 2013, 17, 1929.
- Singh, M. S.; Chowdhury, S.; Koley, S. *Tetrahedron* 2016, 72, 1603.
- Döndas, H. A.; Retamosa, M. G.; Sansano, J. M. Synthesis 2017, 49, 2819.
- Pandey, G.; Banerjee, P.; Gadre, S. R. Chem. Rev. 2006, 106, 4484.
- 7. Nájera, C.; Sansano, J. M. J. Organomet. Chem. 2014, 771, 78.
- 8. Adrio, J.; Carretero, J. C. Chem. Commun. 2014, 50, 12434.
- 9. Nájera, C.; Sansano, J. M. Curr. Top. Med. Chem. 2014, 14, 1271.
- 10. Hashimoto, T.; Maruoka, K. Chem. Rev. 2015, 115, 5366.
- 11. Tseng, C.-H.; Chen, Y.-R.; Tzeng, C.-C.; Liu, W.; Chou, C.-K.; Chiu, C.-C.; Chen, Y.-L. *Eur. J. Med. Chem.* **2016**, *108*, 258.
- Zhang, C.; Li, S.; Ji, L.; Liu, S.; Li, Z.; Li, S.; Meng, X. Bioorg. Med. Chem. Lett. 2015, 25, 4693.
- Schepetkin, I. A.; Kirpotina, L. N.; Khlebnikov, A. I.; Hanks, T. S.; Kochetkova, I.; Pascual, D. W.; Jutila, M. A.; Quinn, M. T. *Mol. Pharmacol.* 2012, *81*, 832.
- Khan, M. S.; Munawar, M. A.; Ashraf, M.; Alam, U.; Ata, A.; Asiri, A. M.; Kousar, S.; Khan, M. A. *Bioorg. Med. Chem.* 2014, 22, 1195.
- Zhang, C.; Li, S.; Ji, L.; Liu, S.; Li, Z.; Li, S.; Meng, X. Bioorg. Med. Chem. Lett. 2015, 25, 4693.
- 16. Ruhemann, S. J. Chem. Soc. 1910, 97, 1438.
- 17. Israel, M.; Jones, L. C.; Modest, E. J. J. Heterocycl. Chem. 1972, 9, 255.
- Azizian, J.; Karimi, A. R.; Dastkhan, R.; Mohammadi, A. A.; Mohammadizadeh, M. R. J. Chem. Res. 2004, 347.
- Barkov, A. Y.; Zimnitskiy, N. S.; Korotaev, V. Y.; Kutyashev, I. B.; Moshkin, V. S.; Sosnovskikh, V. Ya. Chem. Heterocycl. Compd. 2017, 53, 451. [Химия гетероцикл. соединений 2017, 53, 451.]
- 20. Hamzehloueian, M.; Sarrafi, Y.; Aghaei, Z. RSC Adv. 2015, 5, 76368.
- Shahrestani, N.; Salahi, F.; Tavakoli, N.; Jadidi, K.; Hamzehloueian, M.; Notash, B. *Tetrahedron: Asymmetry* 2015, 26, 1117.
- Filatov, A. S.; Knyazev, N. A.; Ryazantsev, M. N.; Suslonov, V. V.; Larina, A. G.; Molchanov, A. P.; Kostikov. R. R.; Boitsov, V. M.; Stepakov, A. V. Org. Chem. Front. 2018, 5, 595.
- Sobhi, C.; Nacereddine, A. K.; Djerourou, A.; Ríos-Gutiérrez, M; Domingo, L. R. J. Phys. Org. Chem. 2017, 30, 3637.
- 24. Kuznetsov, M. L. Russ. Chem. Rev. 2006, 75, 935. [Успехи химии 2006, 75, 1045.]
- 25. Coldham, I.; Hufton, R. Chem. Rev. 2005, 105, 2765.
- 26. Shevelev, S. A.; Starosotnikov, A. M. *Chem. Heterocycl. Compd.* **2013**, *49*, 92. [Химия гетероцикл. соединений **2013**, 102.]
- 27. The Cambridge Crystallographic Data Centre (CCDC) https:// www.ccdc.cam.ac.uk
- Mani, K. S.; Kaminsky W.; Rajendran, S. P. New J. Chem. 2018, 42, 301.
- Barkov, A. Y.; Zimnitskiy, N. S.; Kutyashev, I. B.; Korotaev, V. Y.; Sosnovskikh, V. Ya. Chem. Heterocycl. Compd. 2017, 53, 1315. [Химия гетероцикл. соединений 2017, 53, 1315.]
- Moemeni, M.; Arvinnezhad, A.; Samadi, S.; Tajbakhsh, M.; Jadidi, K.; Khavasi, H. R. J. Heterocycl. Chem. 2012, 49, 190.
- Velikorodov, A. V.; Stepkina, N. N. Russ. J. Org. Chem. 2016, 52, 1788. [*Журн. орган. химии* 2016, 52, 1797.]

- 32. Mohammadizadeh, M. R.; Firoozi, N. Bull. Korean Chem. Soc. 2009, 30, 1877.
- Nishtala, V. B.; Nanuboli, J. B.; Basavoju, S. Res. Chem. Intermed. 2017, 43, 1365.
- 34. Kathivaran, S.; Raghunathan, R. J. Heterocycl. Chem. 2014, 51, 906.
- Babu, A. R. S.; Gavaskar, D.; Raghunathan, R. *Tetrahedron Lett.* 2012, 53, 6676.
- 36. Babu, A. R. S.; Gavaskar, D.; Raghunathan, R. J. Organomet. Chem. 2013, 745-746, 409.
- Gavaskar, D.; Babu, A. R. S.; Raghunathan, R.; Dharani, M.; Balasubramanian, S. J. Organomet. Chem. 2014, 768, 128.
- Gavaskar, D.; Babu, A. R. S.; Raghunathan, R.; Dharani, M.; Balasubramanian, S. *Steroids* 2016, 109, 1.
- 39. Liu, F.-H.; Song, Y.-B.; Zhai, L.-J.; Li, M. J. Heterocycl. Chem. 2015, 52, 322.
- 40. Babu, A. R. S.; Raghunathan, R. Synth. Commun. 2009, 39, 347.
- 41. Babu, A. R. S.; Raghunathan, R. Synth. Commun. 2008, 38, 1433.
- 42. Babu, A. R. S.; Raghunathan, R. Tetrahedron Lett. 2006, 47, 9221.
- Gayathri, D.; Aravindan, P. G.; Velmurugan, D.; Ravikumar, K.; Babu, A. R. S. Acta Crystallogr., Sect. E: Crystallogr: Commun. 2005, 61, 3124.
- 44. Malathi, K.; Kanchithalaivan, S.; Kumar, R. R.; Almansour, A. I.; Kumar, R. S.; Arumugam, N. *Tetrahedron Lett.* 2015, 56, 6132.
- 45. Rajesh, S. M.; Bala, B. D.; Perumal, S. *Tetrahedron Lett.* **2012**, *53*, 5367.
- 46. Rani, M. A.; Kumar, S. V.; Malathi, K.; Muthu, M.; Almansour, A. I.; Kumar, R. S.; Kumar, R. R. ACS Comb. Sci. 2017, 19, 308.
- 47. Зимницкий, Н. С.; Коротаев, В. Ю.; Барков, А. Ю.; Кутяшев, И. Б.; Сосновских, В. Я. В кн. От синтеза полиэтилена до стереодивергентности: развитие химии за 100 лет. Материалы междунар. науч. конф.; Пермь, 2018, с. 120.
- Karsalary, A. A.; Mohammadizadeh, M. R.; Hasaninejad, A. R.; Mohammadi, A. A.; Karimi, A. R. J. Iran. Chem. Soc. 2010, 7, 45.
- Azizian, J.; Karimi, A. R.; Mohammadi, A. A.; Mohammadizadeh, M. R. Synthesis 2004, 2263.
- Kathiravan, S.; Raghunathan, R.; Suresh, G.; Siva, G. V. Med. Chem. Res. 2012, 21, 3170.
- 51. Ramesh, E.; Kathiresan, M.; Raghunathan, R. Tetrahedron Lett. 2007, 48, 1835.
- 52. Pattanaik, P.; Nayak, S.; Mishra, D. R.; Panda, P.; Raiguru, B. P.; Mishra, N. P.; Mohapatra, S.; Mallampudi, N. A.; Purohit, C. S. *Tetrahedron Lett.* **2018**, *59*, 2688.
- Li, M.; Gong, F.-M.; Wen, L.-R.; Li, Z.-R. Eur. J. Org. Chem. 2011, 3482.
- 54. Velikorodov, A. V.; Stepkina, N. N.; Shustova, E. A.; Ionova, V. A. *Russ. J. Org. Chem.* **2015**, *51*, 674. [Журн. орган. химии **2015**, *51*, 693.]
- 55. Barkov, A. Y.; Zimnitskiy, N. S.; Kutyashev, I. B.; Korotaev, V. Y.; Sosnovskikh, V. Ya. *Chem. Heterocycl. Compd.* **2018**, *54*, 43. [*Химия гетероцикл. соединений* **2017**, *53*, 43.]
- 56. Akondi, A. M.; Mekala, S.; Kantam, M. L.; Trivedi, R.; Chowhan, L. R.; Das, A. *New J. Chem.* **2017**, *41*, 873.
- Reddy, M. S.; Chowhan, L. R.; Kumar, N. S.; Ramesh, P.; Mukkamala, S. B. *Tetrahedron Lett.* 2018, 59, 1366.
- 58. Rao, J. N. S.; Raghunathan, R. Tetrahedron Lett. 2015, 56, 2276.
- Barkov, A. Y.; Zimnitskiy, N. S.; Korotaev, V. Y.; Kutyashev, I. B.; Moshkin, V. S.; Sosnovskikh, V. Ya. J. Fluorine Chem. 2017, 204, 37.
- Barkov, A. Y.; Zimnitskiy, N. S.; Korotaev, V. Y.; Kutyashev, I. B.; Moshkin, V. S.; Sosnovskikh, V. Ya. *Tetrahedron* 2016, *72*, 6825.
- Lakshmi, N. V.; Thirumurugan, P.; Jayakumar, C.; Perumal, P. T. Synlett 2010, 955.
- 62. Rao, J. N. S.; Raghunathan, R. Tetrahedron Lett. 2015, 56, 1539.