И. В. Украинец*, Е. В. Моспанова^а, А. А. Давиденко⁶, А. А. Ткач, О. В. Горохова

4-ГИДРОКСИХИНОЛОНЫ-2

179*. СИНТЕЗ, СТРОЕНИЕ И ПРОТИВОВОСПАЛИТЕЛЬНАЯ АКТИВНОСТЬ 4-ГИДРОКСИ-1-МЕТИЛ-2-ОКСО-1,2-ДИГИДРОХИНОЛИН-3-ИЛУКСУСНОЙ КИСЛОТЫ И ЕЁ ПРОИЗВОДНЫХ

Осуществлён синтез, изучено строение и кислотные свойства 4-гидрокси-1метил-2-оксо-1,2-дигидрохинолин-3-илуксусной кислоты. Предложены препаративные методики её этерификации и амидирования. Приводятся результаты изучения противовоспалительных свойств синтезированных соединений.

Ключевые слова: 4-гидрокси-2-оксо-1,2-дигидрохинолин-3-илуксусные кислоты, амидирование, противовоспалительная активность, РСА, этерификация.

Боль и воспаление относятся к наиболее распространённым симптомам, сопровождающим многочисленные патологические состояния. Для устранения этих проявлений в настоящее время широко используются нестероидные противовоспалительные средства [2, 3]. При всех своих положительных качествах большинство препаратов этой группы, к сожалению, не лишены и существенных недостатков, ограничивающих их практическое применение и снижающих эффективность фармакотерапии воспалительных заболеваний в целом. Прежде всего, к таковым относятся высокая токсичность, порой недостаточная активность и, кроме того, ряд побочных эффектов – ульцерогенное действие, повышение артериального давления, нарушения кроветворения и др. Исходя из этого, проблема изыскания новых противовоспалительных средств, отвечающих все более возрастающим требованиям эффективности и безопасности, не теряет своей актуальности.

Предпосылкой к проведению настоящего исследования стали обнаруженные нами ранее противовоспалительные свойства производных 1Н-4гидрокси-2-оксо-1,2-дигидрохинолин-3-илуксусной кислоты, причём, если её сложные эфиры высокой активностью не отличались [4], 6-метилпиридин-2-иламид продемонстрировал антиэкссудативный эффект выше вольтарена при значительно более низкой токсичности [5]. С целью установления структурно-биологических закономерностей в этом ряду

^{*} Сообщение 178 см. [1].

соединений нами получены N-метилированные аналоги описанных ранее производных. Для этого метиловый эфир N-метилантраниловой кислоты (1) ацилировали β -метоксикарбонилпропионилхлоридом, после чего образовавшийся анилид 2 обрабатывали метилатом натрия в метиловом спирте. Как известно [6], такие реакции обычно приводят к образованию смеси двух гетероциклов: хинолина 3 и бензазепина 4, хотя при осуществлении сложноэфирной конденсации в относительно более высококипящем толуоле не исключено образование ещё и незначительного количества бихинолина [7]. Тем не менее, если синтез проводился с целью получения именно хинолиновых производных, то разделять реакционную смесь не обязательно и даже нерационально, поскольку щелочной гидролиз сложных эфиров и хинолин- и бензазепинкарбоновых кислот 3а и 4 даёт один и тот же конечный продукт [6, 8] – в данном случае 4-гидрокси-1-метил-2-оксо-1,2-дигидрохинолин-3-илуксусную кислоту (5).

3 a R = Me, b R = Et, c R = CH₂CH=CH₂, d R = Pr, e R = *i*-Pr, f R =Bu, g R = *i*-Bu, h R = C₅H₁₁, i R = *i*-C₅H₁₁

При сравнении кислотных свойств 1H-4-гидрокси-2-оксо-1,2-дигидрохинолин-3-карбоновой кислоты и её ближайшего гомолога – соответствующей хинолин-3-илуксусной кислоты – было замечено, что разделяющий карбоксильную группу и хинолоновое ядро метиленовый мостик вопреки всем ожиданиям не снижает, а наоборот, усиливает более чем на порядок кислотность СООН и почти на 2 порядка групп 4-ОН. Предполагалось, что причина этого необычного эффекта кроется в невозможности реакционных центров хинолинуксусной кислоты образовывать прочные внутримолекулярные водородные связи, благодаря чему их кислотные свойства заметно возрастают [9]. Аналогичная зависимость сохраняется и в паре N-метилзамещённых производных **5** и **6**.

Проведённые нами рентгеноструктурные исследования показали, что у 4-гидрокси-1-метил-2-оксо-1,2-дигидрохинолин-3-илуксусной кислоты (5) (см. рисунок, табл. 1 и 2) и у её этилового эфира **3b** [10] действительно формируются совершенно иные системы водородных связей (в основном межмолекулярных), чем у соответствующих карбокси- [11] и алкоксикар-бонилхинолинов [12].

Так, в частности, обнаружено, что в симметрически независимой части элементарной ячейки кислоты 5 находятся две молекулы (**A** и **B**), различающиеся некоторыми геометрическими параметрами. Бициклический фрагмент в обеих молекулах плоский с точностью 0.02 Å. Планарная карбоксильная группа при атоме C(10) расположена практически перпендикулярно плоскости бицикла (торсионный угол C(9)–C(8)–C(10)–C(11) 77.3(1)° в молекуле **A** и –92.1(1)° в **B**) и несколько некопланарна связи C(8)–C(10) (торсионный угол C(8)–C(10)–C(11)–O(3) 8.5(2)° в **A** и 10.8(2)° в **B**).

Атом водорода 4-гидроксигруппы в молекуле A развернут в сторону заместителя при атоме C(8), что приводит к возникновению всего лишь укороченных внутримолекулярных контактов H(10B)…H(2OA) 2.13 Å (сумма ван-дер-ваальсовых радиусов 2.34 Å [13]) и H(5A)…O(2A) 2.39 Å (2.46 Å). Заметное отталкивание между пространственно сближенными заместителями вызывает увеличение валентных углов C(7)–C(8)–C(10) и O(2)–C(7)–C(8) до 124.4(1)° и 125.3(1)°, а также уменьшение углов C(9)–C(8)–C(10) и O(2)–C(7)–C(6) до 115.8(1)° и 113.6(1)° соответственно.

Рис. 1. Строение молекул А и В хинолинуксусной кислоты 5 с нумерацией атомов

В молекуле **В** атом водорода 4-гидроксигруппы ориентирован в сторону бензольного кольца, что также обусловливает появление укороченных внутримолекулярных контактов $H(5B)\cdots H(2OB)$ 2.06 (2.34) и $H(10D)\cdots O(2B)$ 2.41 Å (2.46 Å). При этом изменения экзоциклических валентных углов при атоме C(7) по сравнению с молекулой **A** происходят в противоположном направлении – угол O(2)-C(7)-C(8) уменьшается до 116.0(1)°, а угол O(2)-C(7)-C(6) увеличивается до 123.1(1)°, хотя углы при атоме C(8) остаются близкими к 120°.

Таблица 1

Связь	l, Å	Связь	l, Å
N(1A)-C(9A)	1.384(2)	N(1A)-C(1A)	1.400(2)
N(1A)-C(12A)	1.466(2)	O(1A)-C(9A)	1.254(1)
O(2A)-C(7A)	1.347(1)	O(3A)–C(11A)	1.222(2)
O(4A)–C(11A)	1.316(2)	C(1A)–C(6A)	1.408(2)
C(1A)–C(2A)	1.412(2)	C(2A)–C(3A)	1.380(2)
C(3A)–C(4A)	1.384(2)	C(4A)–C(5A)	1.375(2)
C(5A)–C(6A)	1.409(2)	C(6A)–C(7A)	1.445(2)
C(7A)-C(8A)	1.360(2)	C(8A)-C(9A)	1.445(2)
C(8A)-C(10A)	1.503(2)	C(10A)-C(11A)	1.497(2)
N(1B)-C(9B)	1.377(2)	N(1B)-C(1B)	1.395(2)
N(1B)-C(12B)	1.473(2)	O(1B)–C(9B)	1.252(1)
O(2B)-C(7B)	1.343(1)	O(3B)–C(11B)	1.223(2)
O(4B)–C(11B)	1.318(2)	C(1B)–C(2B)	1.409(2)
C(1B)-C(6B)	1.415(2)	C(2B)–C(3B)	1.377(2)
C(3B)–C(4B)	1.387(2)	C(4B)–C(5B)	1.382(2)
C(5B)-C(6B)	1.404(2)	C(6B)–C(7B)	1.445(2)
C(7B)–C(8B)	1.360(2)	C(8B)-C(9B)	1.437(2)
C(8B)-C(10B)	1.503(2)	C(10B)–C(11B)	1.505(2)

Длины связей (l) в структуре хинолинуксусной кислоты 5

Таблица 2

Угол	ω, град.	Угол	ω, град.
C(9A)-N(1A)-C(1A)	122.35(9)	C(9B)–N(1B)–C(1B)	122.29(10)
C(9A)-N(1A)-C(12A)	118.06(11)	C(9B)-N(1B)-C(12B)	118.08(11)
C(1A)-N(1A)-C(12A)	119.60(11)	C(1B)-N(1B)-C(12B)	119.62(11)
N(1A)-C(1A)-C(6A)	118.99(10)	N(1B)-C(1B)-C(2B)	120.89(11)
N(1A)-C(1A)-C(2A)	122.41(11)	N(1B)-C(1B)-C(6B)	119.85(10)
C(6A)-C(1A)-C(2A)	118.59(12)	C(2B)-C(1B)-C(6B)	119.27(11)
C(3A)-C(2A)-C(1A)	120.50(13)	C(3B)-C(2B)-C(1B)	119.91(13)
C(2A)-C(3A)-C(4A)	121.06(13)	C(2B)-C(3B)-C(4B)	121.19(14)
C(5A)-C(4A)-C(3A)	119.30(14)	C(5B)-C(4B)-C(3B)	119.85(13)
C(4A)-C(5A)-C(6A)	121.41(14)	C(4B)-C(5B)-C(6B)	120.60(13)
C(1A)-C(6A)-C(5A)	119.12(12)	C(5B)-C(6B)-C(1B)	119.15(12)
C(1A)-C(6A)-C(7A)	118.92(10)	C(5B)-C(6B)-C(7B)	123.05(11)
C(5A)-C(6A)-C(7A)	121.96(11)	C(1B)-C(6B)-C(7B)	117.80(10)
O(2A)-C(7A)-C(8A)	125.34(11)	O(2B)-C(7B)-C(8B)	116.02(11)
O(2A)-C(7A)-C(6A)	113.60(10)	O(2B)-C(7B)-C(6B)	123.06(10)
C(8A)-C(7A)-C(6A)	121.05(10)	C(8B)-C(7B)-C(6B)	120.92(10)
C(7A)-C(8A)-C(9A)	119.83(11)	C(7B)-C(8B)-C(9B)	120.73(11)
C(7A)-C(8A)-C(10A)	124.37(10)	C(7B)-C(8B)-C(10B)	120.21(11)
C(9A)-C(8A)-C(10A)	115.76(10)	C(9B)-C(8B)-C(10B)	119.05(10)
O(1A)-C(9A)-N(1A)	121.18(10)	O(1B)-C(9B)-N(1B)	119.05(10)
O(1A)-C(9A)-C(8A)	120.22(11)	O(1B)-C(9B)-C(8B)	122.67(11)
N(1A)-C(9A)-C(8A)	118.59(10)	N(1B)-C(9B)-C(8B)	118.27(10)
C(11A)-C(10A)-C(8A)	113.11(10)	C(8B)-C(10B)-C(11B)	113.69(11)
O(3A)–C(11A)–O(4A)	122.76(12)	O(3B)–C(11B)–O(4B)	122.84(12)
O(3A)-C(11A)-C(10A)	123.69(11)	O(3B)C(11B)C(10B)	123.51(11)
O(4A)-C(11A)-C(10A)	113.55(11)	O(4B)-C(11B)-C(10B)	113.64(12)

Валентные углы (ф) в структуре хинолинуксусной кислоты 5

Связи C(8)–C(7) 1.360(2) в **A** и **B**, а также O(1)–C(9) 1.254(1) в **A** и 1.252(1) Å в **B** удлинены по сравнению с их средними значениями [14] 1.326 и 1.210 Å, соответственно, а связь C(8)–C(9) 1.445(2) в **A** и 1.437(2) Å в **B** укорочена (среднее значение 1.455 Å), чему способствует образование межмолекулярных водородных связей O(2A)–H(2OA)…O(1B)' (*x*–1, *y*, *z*–1) H…O 1.75 Å, O–H…O 162° и O(2B)–H(2OB)…O(1A)' H…O 1.80 Å, O–H…O 156°. Следует отметить, что длина связи O(2)–C(7) 1.347(1) Å **A** и 1.343(1) Å **B** сравнима с её средним значением 1.333 Å. Аналогичный эффект наблюдался и в ранее изученных близких по структуре соединениях [10, 15].

Между атомами N-метильного заместителя и соседними карбонильной группой и атомом водорода в *пери*-положении бензольного кольца обнаружено достаточно сильное отталкивание [укороченные внутримолекулярные контакты $H(2) \cdots C(12) 2.56$ в A и 2.50 в B (2.87); $H(2) \cdots H(12C) 2.11$ в A и 2.31 в B (2.34); $H(12C) \cdots C(2) 2.59$ в A и 2.78 в B (2.87); $H(12B) \cdots O(1) 2.29$ в A и 2.19 Å в B (2.46 Å)].

1177

Таблица З

Co-		Ha	айдено,	%	Т		Противо-
еди-	Брутто-	Выч	численс	o, %	1. IIJI.,	Выход,	воспалительная
не-	формула	0		N	۰C	%	активность.
ние		C	Н	N			Снижение отёка, %
30	C.H.NO.	63.23	5 / 1	5 57	170_181	96	12.7
Ja	C13111314O4	<u>63.15</u>	$\frac{5.41}{5.30}$	<u>5.66</u>	179-101	70	12.7
		05.15	5.50	5.00			
3b	$C_{14}H_{15}NO_4$	<u>64.47</u>	<u>5.88</u>	<u>5.43</u>	184–186	93	45.5
		64.36	5.79	5.36			
30	CicHicNO	66.05	5 64	5 21	131-133	94	52.5
50	01511151104	65.93	5 53	5.13	151 155		52.5
		05.75	5.55	5.15			
3d	$C_{15}H_{17}NO_4$	<u>65.36</u>	<u>6.13</u>	<u>4.97</u>	138–140	91	20.4
		65.44	6.22	5.09			
3e	C15H17NO4	65 56	617	5.00	177-179	80	3.1
20	01311/1104	65 44	$\frac{6.27}{6.22}$	$\frac{5.00}{5.09}$	111 112	00	0.1
	~ ~ ~ ~ ~ ~		0.22	0.07			
3f	$C_{16}H_{19}NO_4$	<u>66.32</u>	<u>6.71</u>	<u>4.95</u>	164–166	89	46.2
		66.42	6.62	4.84			
3g	C16H19NO4	66.30	6.54	4.77	109-111	90	27.3
- 8	- 10 17 - 4	66.42	6.62	4.84			
		(7.44	7 10	4.5.4	05.05	00	
3h	$C_{17}H_{21}NO_4$	<u>67.44</u>	<u>7.10</u>	<u>4.54</u>	95-97	88	44.5
		67.31	6.98	4.62			
3i	C17H21NO4	67.42	7.09	4.51	106-108	85	9.6
	1, 21 4	67.31	6.98	4.62			
					1	I	

Характеристики сложных эфиров 4-гидрокси-1-метил-2-оксо-1,2-дигидрохинолин-3-илуксусной кислоты 3а-i*

* Противовоспалительная активность (снижение отёка, %) препарата сравнения вольтарена 49.8.

В кристалле молекулы кислоты **5** образуют димеры за счёт межмолекулярных водородных связей O(4A)–H(4OA)···O(3A)' (1–*x*, 1–*y*, 1–*z*) H···O 1.75 Å, O–H···O 177° и O(4B)–H(4OB)···O(3B)' (2–*x*, –*y*, 2–*z*) H···O 1.77 Å, O–H···O 175°. Образование димеров, по-видимому, обусловливает некоторое удлинение связи O(3)–C(11) до 1.222(2) в **A** и до 1.223(2) Å в **B** по сравнению с её средним значением 1.210 Å. Димеры, в свою очередь, образуют бесконечные цепочки вдоль кристаллографического направления [1 0 1] за счёт упомянутых выше межмолекулярных водородных связей O(2A)–H(2OA)···O(1B)' и O(2B)–H(2OB)···O(1A)'. В кристалле обнаружена межмолекулярная водородная связь C(10A)–H(10B)···O(1B)' (*x*–1, *y*, *z*–1) H···O 2.33 Å, C–H···O 153°, а также межмолекулярные укороченные контакты H(12D)···C(5B)' (2–*x*, 1–*y*, 2–*z*) 2.83 (2.87) и H(12D)···C(6B)' (2–*x*, 1–*y*, 2–*z*) 2.74 Å (2.87 Å).

Представляющие интерес для фармакологических испытаний сложные эфиры 4-гидрокси-1-метил-2-оксо-1,2-дигидрохинолин-3-илуксусной кислоты **3а-i** (табл. 3 и 4) с высокими выходами получены из хинолинуксусной кислоты **5** обычной кислотнокатализируемой этерификацией, апробированной на 1H-производных [4]. Таблица 4

Спектры ЯМР ¹Н сложных эфиров 4-гидрокси-1-метил-2-оксо-1,2-дигидрохинолин-3-илуксусной кислоты 3а-i

	ПО				Химичес	кие сдвиги, 8, 1	м. д. (<i>J</i> , Гц)	-
лине-	Un (1H. c)		Хинолоно	вое ядро		CH,COOR	N-CH,	<u>د</u>
ние		H-5	<i>L</i> -Н	H-8	9-H	(2H. c)	(3H. c)	2
		(1Н, д. д)	(1Н, т. д)	(1Н, д)	(1Н, т. д)			
За	10.23	8.00 (J = 8.2	7.59 (J = 7.7	7.45	7.24 (J = 7.6	3.65	3.59	3.57 (3H, c, CH ₃)
		и $J = 1.5$)	M J = 1.6)	(J = 8.6)	и $J = 1.3$)			
3b	10.31	8.00 (J = 8.1	7.59 (J = 7.7	7.47	7.26 (J = 7.5	3.66	3.57	4.03 (2H, \mathbf{K} , $J = 7.1$, OCH_2);
		и $J = 1.5$)	и $J = 1.5$)	(J = 8.5)	и $J = 1.3$)			1.15 (3H, T, $J = 7.1$, CH ₃)
3с	10.34	8.01 (J = 8.1	7.60 (J = 7.8	7.46	7.25 (J = 7.6	3.67	3.58	5.89 (1H, m, $C\underline{H}=CH_2$); 5.28 (1H, μ , $J = 17.5$,
		и J=1.4)	и $J = 1.5$)	(J = 8.4)	и J = 1.4)			NCH ₂ CH=C <u>H</u> -trans); 5.17 (1H, π , $J = 10.4$,
								$CH_2CH=CH_2(N)$; 4.34 (2H, μ , $J = 5.3$, NCH_2)
3d	10.09	8.01 (J = 8.0	7.60 (J = 7.7)	7.46	7.24 (J = 7.5	3.63	3.57	3.97 (2H, T , $J = 6.7$, OCH ₂); 1.56 (2H, M ,
		и $J = 1.5$)	$_{\rm M}J = 1.6)$	(J = 8.6)	и $J = 1.3$)			OCH ₂ CH ₂); 0.86 (3H, T , $J = 7.5$, CH ₃)
3e	10.21	8.00 (J = 8.1	7.59 (J = 7.8	7.46	7.24 (J = 7.5	3.59	3.57	4.88 (1H, M, CH);
		и $J = 1.4$)	$_{\rm M} J = 1.6)$	(J = 8.5)	$_{\rm M}J = 1.2)$			$1.18 (6H, \mu, J = 6.2, 2CH_3)$
3f	10.29	8.01 (J = 8.0	7.59 (J = 7.8	7.45	7.24 (J = 7.6	3.63	3.57	4.04 (2H, T, $J = 6.8$, OCH ₂); 1.54 (2H, KB, $J = 7.0$,
		и $J = 1.4$)	и $J = 1.6$)	(J = 8.4)	и $J = 1.3$)			CH ₂ CH ₂ CH ₃); 1.31 (2H, M, CH ₂ CH ₃); 0.86 (3H,
								$T, J = 7.3, CH_3$
3g	10.28	8.01 (J = 8.0	7.60 (J = 7.8	7.46	7.24 (J = 7.6	3.65	3.57	3.81 (2H, $_{\rm H}$, $J = 6.1$, OCH ₂); 1.84 (1H, M, CH);
)		и $J = 1.6$)	$_{\rm H}~J=1.4)$	(J = 8.5)	и $J = 1.2$)			$0.85 (6H, A, J = 6.8, 2CH_3)$
3h	10.26	8.00 (J = 8.1	7.59 (J = 7.7	7.45	7.24 (J = 7.5	3.63	3.57	4.00 (2H, T, $J = 6.6$, OCH ₂); 1.55 (2H, KB, $J = 6.8$,
		и $J = 1.5$)	и $J = 1.6$)	(J = 8.6)	и $J = 1.3$)			OCH ₂ CH ₃); 1.26 (4H, M, (CH ₂) ₂ CH ₃); 0.82 (3H,
								$T, J = 6.8, CH_3$
3i	10.22	8.00 (J = 8.0	7.59 (J = 7.7	7.45	7.24 (J = 7.5	3.64	3.57	4.01 (2H, T , $J = 6.4$, OCH ₂); 1.46 (1H, M, CH);
		$_{\rm H}J = 1.5)$	$_{\rm H}J = 1.4)$	(J = 8.5)	$_{\rm M}J = 1.3)$			1.25 (2H, K , $J = 6.5$, OCH ₂ CH ₂); 0.88 (6H, A , $J = 6.7$,
	_							2CH ₃)

1179

Предполагалось, что хорошо зарекомендовавший себя метод получения N–R-амидов 1H-4-гидрокси-2-оксо-1,2-дигидрохинолин-3-илуксусной кислоты также окажется приемлемым для синтеза N-алкилзамещенных аналогов. Поскольку ни 1H-хинолинуксусная кислота, ни её сложные эфиры напрямую не амидируются, то для повышения ацилирующей способности было предложено предварительно превращать их различными путями в высокоэлектрофильный 1H-3,5-дигидрофуро[3,2-*c*]хинолин-2,4-дион [16]. Однако попытки применить эти известные методики к хинолинуксусной кислоте 5 успехом не увенчались. Как оказалось, при её обработке конденсирующими агентами (хлористый тионил, N,N'-дициклогексилкарбодиимид или N,N'-карбонилдиимидазол) помимо формирования ангидрида 7 происходят более глубокие химические преобразования. В итоге получается имеющая интенсивное красное окрашивание (вероятно за счёт образования цианиновых красителей) трудноидентифицируемая смесь различных продуктов.

Не оправдал себя и представлявший в синтезе 1Н-производного препаративное значение термолиз низших алкиловых эфиров – N-метилзамещённый ангидрид 7 с удовлетворительной степенью чистоты не удалось получить и этим методом. В этом случае понять причину помогли дериватографические исследования.

Как видно из представленных выше дериватограмм, при сухом нагреве этилового эфира 1Н-4-гидрокси-2-оксо-1,2-дигидрохинолин-3-илуксусной кислоты фиксируются два последовательных процесса, чётко разделённые интервалом температур примерно в 40 °C (рис. 2, *a*). Первый из них происходит в промежутке между 195 и 227 °C, сопровождается потерей

Рис. 2. Дериватограммы этилового эфира 1Н-4-гидрокси-2-оксо-1,2-дигидрохинолин-3-илуксусной кислоты (*a*) и его N-метилзамещённого аналога **3b** (*b*):

Т – кривая термического анализа, ДТА – кривая дифференциальнотермического анализа, ТГ – термогравиметрическая кривая, ДТГ – дифференциальная термогравиметрическая кривая. Навески 100 мг

около 19% массы и соответствует выделению этанола, т. е. замыканию гидрофуранового цикла. Второй начинается при гораздо более высокой температуре в 270 °С и, судя по потере ещё приблизительно 12% массы, представляет собой декарбонилирование первоначально образовавшегося 1H-3,5-дигидрофуро[3,2-*c*]хинолин-2,4-диона.

Термическое поведение этилового эфира 4-гидрокси-1-метил-2-оксо-1,2-дигидрохинолин-3-илуксусной кислоты (**3b**) оказалось совершенно иным – здесь не наблюдаются какие-либо температурные различия между гетероциклизацией и декарбонилированием, которые протекают как единый процесс (рис. 2, *b*). В результате вместо ангидрида **7** получаем смесь окрашенных побочных продуктов.

Тем не менее, после незначительной доработки известной методики нам удалось осуществить синтез 6-метилпиридин-2-иламида 4-гидрокси-1метил-2-оксо-1,2-дигидрохинолин-3-илуксусной кислоты (8) с высоким выходом и чистотой. Для этого проводимые раздельно две реакции – превращение сложного эфира в ангидрид и амидирование – объединили в одну стадию, т. е. просто подвергли термолизу при 190–200 °С в течение 20 мин смесь эквимолярных количеств этилового эфира **3b** и 2-амино-6метилпиридина. Конечно же промежуточное образование ангидрида 7 и в таких условиях не вызывает сомнений. Однако присутствующий в реакционной смеси гетариламин сразу же реагирует с ним, формируя химически достаточно инертный конечный амид **8**, предотвращая тем самым нежелательные побочные процессы.

При поиске противовоспалительных средств одним из характерных и определяющих критериев эффективности является антиэкссудативное действие. В связи с этим, тестирование биологических свойств синтезированных соединений мы начали с изучения их влияния на экссудативную фазу острого асептического воспаления. Исследования проведены на модели каррагенинового отека у мышей [17]. В качестве препарата сравнения использовано классическое нестероидное противовоспалительное средство – вольтарен (диклофенак натрия) [2] в дозе 8 мг/кг (ED₅₀). Полученные результаты позволяют в целом констатировать положительный эффект от введения N-метильной группы. Например, исходная хинолинуксусная кислота 5 в эквимолярной вольтарену дозе способна снижать отек на 23.1%, заметно превосходя по этому показателю неалкилированный аналог [4]. Ещё более удачно проведенная модификация отразилась на антиэкссудативных свойствах сложных эфиров (табл. 3), среди которых обнаружены вещества, практически не уступающие в активности вольтарену (эфиры 3b,f,h) и даже несколько превосходящие его (аллиловый эфир 3с). В этом же ряду соединений выявлена интересная закономерность – переход от эфиров с нормальными алкильными цепями к производным изо-строения сопровождается почти полной утратой противовоспалительного действия.

Следует всё же отметить, что N-метилирование хинолонового ядра далеко не всегда положительно отражается на биологических свойствах. В частности, 6-метилпиридин-2-иламид **8** угнетает каррагениновый отёк только на 40.3%, что можно расценивать как значительный спад активности, поскольку у 1H-производного этот показатель составлял 53.0% [5].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н синтезированных соединений получали на приборе Varian Мегсигу-VX-200 (200 МГц) в ДМСО-d₆, внутренний стандарт ТМС. Исследование кислотно-основных равновесий проводили по методике [18], растворитель 80% водный диоксан. Для приготовления смешанного растворителя применяли свежеперегнанный бидистиллят, освобождённый от СО2, и диоксан для УФ спектроскопии фирмы Labscan. Титрантом служил 0.01 М водный раствор КОН, свободный от CO₂. Концентрация титруемых растворов составляла 0.0005 моль · л⁻¹ в точке полунейтрализации. Потенциометрическое титрование осуществляли на стационарном pH-метре SevenEasy S-20-К Mettler Toledo с использованием комбинированного электрода InLab 413 при 25 °C. Титрование для каждого соединения проводили трижды. Точность полученных результатов оценивали методом математической статистики [19]. Дериватографические исследования этилового эфира 1Н-4-гидрокси-2-оксо-1,2-дигидрохинолин-3-илуксусной кислоты и ее N-метилзамещенного аналога 3b проводили на комплексном термохимическом приборе Derivatograf Q-1500 D в платиновом тигле с крышкой, скорость нагрева 5 °С/мин. В работе использовали коммерческий метиловый эфир Nметил- антраниловой кислоты (1) фирмы Fluka.

4-Гидрокси-1-метил-2-оксо-1,2-дигидрохинолин-3-илуксусная кислота (5). К смеси 16.52 г (0.1 моль) метилового эфира N-метилантраниловой кислоты (1) и 14 мл (0.1 моль) триэтиламина в 150 мл CH₂Cl₂ при охлаждении и перемешивании по каплям прибавляют 16.56 г (0.11 моль) β-метоксикарбонилпропионилхлорида и оставляют на 7-8 ч при комнатной температуре. Реакционную смесь обрабатывают холодной водой (2 × 200 мл). После тщательного перемешивания органический слой отделяют. Растворитель отгоняют (в конце при пониженном давлении), одновременно удаляя оставшуюся воду в виде азеотропа. К остатку (анилид 2) прибавляют раствор метилата натрия (из 4.6 г (0.2 моль) металлического натрия и 100 мл абсолютного метанола) и кипятят 4 ч. Охлаждают. К полученной смеси метиловых эфиров хинолин- и бензазепинкарбоновых кислот За и 4 прибавляют раствор 11.22 г (0.2 моль) КОН в 200 мл воды, после чего кипятят 5 ч с одновременной отгонкой основной массы метанола. Реакционную смесь охлаждают и подкисляют разведенной (1:1) HCl до pH ≈ 4. Осадок кислоты 5 отфильтровывают, промывают холодной водой, сушат. Выход 14.22 г (61%). После перекристаллизации из этанола т. пл. 248–250 °С (с разл.). Спектр ЯМР ¹Н, δ, м. д. (Ј, Гц): протоны группы СООН из-за быстрого дейтерообмена в спектре не проявляются; 10.67 (1H, уш. с, 4-OH); 8.00 (1H, д. д, J = 8.0 и J = 1.5, H-5); 7.58 (1Н, т. д, *J* = 7.7 и *J* = 1.5, Н-7); 7.44 (1Н, д, *J* = 8.6, Н-8); 7.23 (1Н, т. д, *J* = 7.6 и *J* = 1.3, H-6); 3.59 (2H, c, CH2COOH); 3.57 (3H, c, NCH3). Найдено, %: С 61.93; Н 4.84; N 6.11. С₁₂Н₁₁NO₄. Вычислено, %: С 61.80; Н 4.75; N 6.01.

Рентгеноструктурное исследование. Кристаллы хинолинуксусной кислоты 5 триклинные (этанол), при 20 °C: a = 7.493(2), b = 12.196(3), c = 12.356(2) Å, $\alpha = 96.49(2)^{\circ}$, $\beta = 103.58(2)^{\circ}$, $\gamma = 92.60(2)^{\circ}$, V = 1087.5(4) Å³, $M_{\rm r} = 233.22$, Z = 4, пространственная группа $P\bar{1}$, $d_{\rm выч} = 1.424$ г/см³, μ (Мо $K\alpha$) = 0.108 мм⁻¹, F(000) = 488. Параметры элементарной ячейки и интенсивности 23 952 отражений (4981 независимое, $R_{\rm int} = 0.026$) измерены на дифрактометре Xcalibur-3 (Мо $K\alpha$ -излучение, CCD-детектор, графитовый монохроматор, ω -сканирование, $2\theta_{\rm max} = 55^{\circ}$).

Структура расшифрована прямым методом по комплексу программ SHELXTL [20]. Положения атомов водорода выявлены из разностного синтеза электронной плотности и уточнены изотропно. Структура уточнена по F^2 полноматричным МНК в анизотропном приближении для неводородных атомов до $wR_2 = 0.099$ по

4949 отражениям ($R_1 = 0.035$ по 3327 отражениям с $F > 4\sigma(F)$, S = 0.974). Полная кристаллографическая информация депонирована в Кембриджском банке структурных данных – депонент ССDС 756716. Межатомные расстояния и валентные углы представлены в табл. 1 и 2 соответственно.

Сложные эфиры 4-гидрокси-1-метил-2-оксо-1,2-дигидрохинолин-3-илуксусной кислоты 3a-i (общая методика). К раствору 2.33 г (0.01 моль) хинолинуксусной кислоты 5 в 20 мл соответствующего спирта прибавляют 2–3 капли конц. H₂SO₄ и кипятят 5 ч. Охлаждают и выливают в холодную воду (при получении эфиров 3f-i избыток несмешивающегося с водой спирта предварительно удаляют при пониженном давлении). Выделившийся осадок эфира 3(табл. 3 и 4) отфильтровывают, промывают холодной водой, сушат.

6-Метилпиридин-2-иламид 4-гидрокси-1-метил-2-оксо-1,2-дигидрохинолин-3-илуксусной кислоты (8). Смесь, приготовленную из 2.61 г (0.01 моль) этилового эфира 3b и 1.08 г (0.01 моль) 2-амино-6-метилпиридина, выдерживают на металлической бане из сплава Вуда при температуре 200 °С в течение 20 мин. При этом через некоторое время конечный продукт начинает кристаллизоваться из реакционной массы, которую по окончании амидирования охлаждают и тщательно растирают с 20 мл этанола. Осадок амида 8 отфильтровывают, промывают холодным этанолом, сушат. Выход 2.81 г (87%). Т. пл. 272–274 °С (ДМФА). Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 10.59 (1H, уш. с, 4-OH); 10.43 (1H, с, NH); 8.00 (1H, д, *J* = 8.1, H-5); 7.81 (1H, д, *J* = 8.2, H-3'); 7.60 (2H, м, H-7 + H-4'); 7.48 (1H, д, *J* = 8.5, H-8); 7.26 (1H, т, *J* = 7.3, H-6); 6.92 (1H, д, *J* = 7.3, H-5'); 3.76 (2H, с, С<u>H</u>₂COOH); 3.57 (3H, с, NCH₃); 2.39 (3H, с, 6'-CH₃). Найдено, %: С 66.72; H 5.21; N 12.87. С₁₈H₁₇N₃O₃. Вычислено, %: С 66.86; H 5.30; N 13.00.

Изучение противовоспалительной активности на модели каррагенинового отёка у мышей. Эксперименты проведены на белых нелинейных мышах массой 18-22 г. Изучаемые вещества вводят перорально в виде тонких водных суспензий, стабилизированных твином-80, в эквимолярных вольтарену дозах и в объёмах не более 0.3 мл на 10 г массы животного. Каждое вещество исследуют на 6 животных, имеющих одинаковую (в пределах ± 0.5 г) массу тела. Контроль- ной группе вводят очищенную воду в тех же объёмах. Через 1 ч после введения тестируемых соединений у животных моделируют асептическое воспаление путём подкожного ввода в заднюю правую лапку 0.05 ΜП свежеприготовленного 1% раствора каррагенина. Через 3 ч животных забивают дислокацией шейных позвонков и ампутируют задние лапки на уровне тазобедренных суставов. Абсо- лютную величину отёка в каждом опыте вычисляют по разнице в массе между отёчной и здоровой лапками. Специфическую активность изучаемых веществ оценивают по их способности уменьшать развитие отёка в сравнении с контролем и выражают в процентах. Статистическую обработку экспериментальных данных проводят с использованием методов вариационной статистики [21]. Досто- верность полученных результатов определяют в соответствии с t-критерием Стьюдента [22].

СПИСОК ЛИТЕРАТУРЫ

- 1. И. В. Украинец, А. А. Ткач, В. В. Кравцова, В. И. Мамчур, Е. Ю. Коваленко, *XГС*, 1050 (2010).
- 2. М. Д. Машковский, *Лекарственные средства*, РИА Новая волна: издатель Умеренков, Москва, 2009, с. 163.
- 3. A. Kleemann, J. Engel, *Pharmaceutical Substances. Synthesis, Patents, Applications, Multimedia Viewer*, Version 2.00, Georg Thieme Verlag, Stuttgart, 2001.

- 4. И. В. Украинец, О. Л. Каменецкая, С. Г. Таран, И. Ю. Петухова, Л. Н. Воронина, *XГС*, 104 (2001). [*Chem. Heterocycl. Comp.*, **37**, 100 (2001)].
- 5. О. Л. Каменецкая, Дис. канд. фармац. наук, Харьков, 2001.
- 6. T. A. Geissman, A. K. Cho, J. Org. Chem., 24, 41 (1959).
- 7. И. В. Украинец, А. А. Ткач, С. В. Шишкина, *XГС*, 1033 (2008). [*Chem. Heterocycl. Comp.*, **44**, 828 (2008)].
- 8. M. Ramesh, P. Shanmugam, Indian J. Chem., 24B, 602 (1985).
- 9. И. В. Украинец, А. А. Давиденко, Е. В. Моспанова, Л. В. Сидоренко, Е. Н. Свечникова, *XIC*, 706 (2010).
- I. V. Ukrainets, S. V. Shishkina, O. V. Shishkin, A. A. Davidenko, A. A. Tkach, Acta Crystallogr., E65, 0968 (2009).
- 11. S. V. Shishkina, O. V. Shishkin, I. V. Ukrainets, Abdel Naser Dakkah, L. V. Sidorenko, *Acta Crystallogr.*, E58, o254 (2002).
- 12. И. В. Украинец, Н. Л. Березнякова, С. В. Шишкина, *XTC*, 1359 (2007). [*Chem. Heterocycl. Comp.*, **43**, 1154 (2007)].
- 13. Ю. В. Зефиров, Кристаллография, 42, 936 (1997).
- 14. H.-B. Burgi, J. D. Dunitz, *Structure Correlation*, VCH, Weinheim, 1994, vol. 2, p. 741.
- 15. L. Jurd, M. Benson, R. Y. Wong, Aust. J. Chem., 36, 759 (1983).
- И. В. Украинец, С. Г. Таран, О. Л. Каменецкая, О. В. Горохова, Л. В. Сидоренко, А. В. Туров, *XГС*, 1532 (2000). [*Chem. Heterocycl. Comp.*, **36**, 1319 (2000)].
- С. М. Дрововоз, І. А. Зупанець, М. А. Мохорт, Л. В. Яковлєва, Б. М. Клєбанов, в кн. Доклінічні дослідження лікарських засобів: методичні рекомендації, под ред. О. В. Стефанова, Авіцена, Київ, 2001, с. 292.
- А. Альберт, Е. Сержент, Константы ионизации кислот и оснований, Химия, Москва, 1964.
- 19. Е. Н. Львовский, Статистические методы построения эмпирических формул, Высшая школа, Москва, 1988, с. 41.
- 20. G. M. Sheldrick, SHELXTL PLUS. PC Version. A System of Computer Programs for the Determination of Crystal Structure from X-ray Diffraction Data, Rev. 5.1 (1998).
- 21. С. Н. Лапач, А. В. Чубенко, П. Н. Бабич, Статистические методы в медикобиологических исследованиях с использованием Excel, Морион, Киев, 2000.
- 22. Г. Ф. Лакин, Биометрия, Высшая школа, Москва, 1990.

Национальный фармацевтический университет, Харьков 61002, Украина e-mail: uiv@kharkov.ua ^aИнститут химических технологий Восточно-украинского национального университета им. Владимира Даля, Рубежное 93003, Украина

e-mail: mospanov@rune.lg.ua

⁶Винницкий национальный медицинский университет им. Н. И. Пирогова, Винница 21018, Украина e-mail: almusel@mail.ru Поступило 01.07.2009