А. В. Задорожний, А. В. Туров, В. А. Ковтуненко*

СИНТЕЗ ЗАМЕЩЁННЫХ 4-ОКСО-3,4-ДИГИДРОТИЕНО[3,4-*d*]-ПИРИМИДИНОВ И СРАВНЕНИЕ ИХ СВОЙСТВ СО СВОЙСТВАМИ ПОЗИЦИОННО ИЗОМЕРНЫХ ТИЕНОПИРИМИДОНОВ И БЕНЗОЛЬНЫХ ИЗОСТЕРОВ

Синтезированы 2-арилметил- и 2-арилметил-3-метилзамещённые 3,4-дигидротиено[3,4-*d*]пиримидин-4-оны исходя из 2-цианометилбензойной кислоты и метилового эфира 3-амино-4-тиофенкарбоновой кислоты, полученного *in situ* из его гидрохлорида по предложенной новой методике, которая позволяет увеличить выход целевого продукта. Проведено сравнение физико-химических свойств и биологического потенциала синтезированных соединений с аналогично замещёнными 2,3-диметилтиено[2,3-*d*]пиримидинонами, тиено[3,2*d*]пиримидинонами и бензольными изостерами. Различия, связанные с положением атома серы, наиболее отчетливо отражают электронные спектры. На основании расчётных данных показано, что при переходе от производных 4-оксо-3,4-дигидробензо- пиримидина к их аналогам – тиофеновым изостерам происходят изменения в профиле биологической активности.

Ключевые слова: изостеры, позиционные изомеры, производные 4-оксо-3,4дигидротиено[3,4-*d*]пиримидина, расчёт биологической активности, циклизация.

В продолжение наших исследований в области позиционно изомерных тиенопиримидонов [1] в настоящей работе описан синтез некоторых замещённых систем тиено[3,4-*d*]пиримидин-4-она (**A**) и проведено сравнение свойств этих соединений со свойствами аналогичных известных производных систем тиено[2,3-*d*]пиримидин-4-она (**B**) и тиено[3,2-*d*]-пиримидин-4-она (**C**), а также их бензольных изостеров системы хиназолин-4-она (**D**). Производные системы **A** исследованы значительно меньше производных систем **B** и **C**. На начало 2009 г., по данным базы данных Beilstein, число упоминаний соединений рядов **A**, **B** и **C** соотносится как 1:100:40. Однако даже немногочисленные публикации свидетельствуют о широком фармакологическом профиле производных тиено[3,4-*d*]пиримидин-4-она.

Так, известны вещества, обладающие потенциальными противораковыми [2–4] и вазодилататорными [5] свойствами, а также ингибиторы альдозоредуктазы [6]. Высокого уровня фармакологических исследований достигли представители указанного ряда, проходящие испытания для лечения СПИДа [7], антагонисты H₂- [8] и H₁-гистаминовых рецепторов [9]. Производные тиено[3,4-*d*]пиримидин-4-она, имеющие в положении 2 бензильный либо модифицированный бензильный заместитель, не описаны.

Нами исходя из 2-цианометилбензойной кислоты (1) и метилового 1227

эфира 3-амино-4-тиофенкарбоновой кислоты по приведённой ниже схеме синтезированы соединения типа 3–6 системы A (серия A) – аналоги полученных нами ранее производных систем B, C и D: 3B–6B, 3C–6C [1] и 3D–6D [10, 11]. В связи с известной нестабильностью исходного аминоэфира [12] последний получали *in situ* из его гидрохлорида 2 добавлением в реакционную смесь рассчитанного количества Et_3N . Предложенная новая методика позволила увеличить выход продукта 3A до 90%.

В остальном условия получения производных **3–6** серии **A** были аналогичны описанным нами ранее условиям синтеза соединений **3–6** серий **B–D** [1, 10, 11].

Кислота **3A** – бесцветное мелкокристалическое вещество, которое подобно её аналогам **3B**–**3D** проявляет амфотерные свойства: растворяется как в 2 н. растворе щёлочи, так и отчасти в 2 н. HCl. По температуре плавления указанные кислоты располагаются в следующий ряд: $3C > 3D > 3B \approx 3A$. Иная последовательность наблюдается для этиловых эфиров 4A-4D: 4B > 4D > 4C > 4A, причём она сохраняется также в случае фенациловых эфиров 5A-5D и продуктов алкилирования эфиров 4 – метилзамещённых 6A-6D. Таким образом, среди сравниваемых соединений производные серии A являются наиболее легкоплавкими. Различий в химическом поведении, а также в выходах для позиционных изомеров 3-5 серий A-C не отмечалось.

Строение соединения 6А было установлено на основании его спектральных характеристик. Известно [13], что алкилирование достаточно изученных тиенопиримидин-4-онов возможно не только по атомам N(1), N(3) Таблица 1

ИК спектры синтезированных соединений

Соеди- нение	v, cm ⁻¹									
	O–C	С(=О)–ОН	C=N	C(4)=O	C ₆ H ₄ C=O	PhC=O				
3A	1254	_	1620	1	-					
4 A	1262	1077	1608	1681	1712	-				
5A	1280	1128	1625	1669	1692	1724				
6A	1267	1082	1598	1686		-				

но и по атому кислорода. Структура О-метилированного продукта была нами исключена на основании анализа ИК спектров и спектров ЯМР 1 Н (табл. 1 и 2 соответственно).

Ранее было показано, что алкилирование по атому N(1) приводит к сдвигу полосы валентных колебаний карбонильной группы до 1630 см⁻¹, тогда как альтернативное алкилирование по атому N(3) – к сдвигу до 1655–1660 см⁻¹ [11]. В ИК спектре соединения **6A** указанная полоса находится при 1686 см⁻¹ (см. табл. 1). Поскольку возможные 1-метил- и 3-метилзамещённые имеют одинаковые структурные фрагменты, данные спектров на ядрах ¹Н либо ¹³С не позволили сделать заключение о направлении алкилирования. Поэтому для продукта **6A** нами были сняты двумерные спектры ЯМР с гомоядерной (COSY, NOESY) и гетероядерной ¹H–¹³С корреляциями через одну (HMQC) и через 2–3 связи (HMBC) (см. табл. 3). В спектре NOESY имеется только один кросс-пик между сигналами протонов групп NCH₃ и CH₂, что свидетельствует в пользу структуры **6A**: при алкилировании по атому N(1) прослеживался бы также кросс-пик с сигналом протона H-7.

Основным доказательством в пользу структуры **6A** является корреляция сигнала протонов группы NCH₃ при 3.53 м. д. с сигналом атома углерода одной из карбонильных групп (C(4)=O или <u>C</u>OOEt), расположенным при 158.7 м. д. Такая корреляция для группы N(1)CH₃ невозможна, поскольку атомы углерода любой группы C=O удалены от неё более чем на 3 химические связи. В табл. 3 приведены корреляции HMQC, HMBC и NOESY. Сигналы протонов бензольного кольца можно отнести, если считать, что протону фенильной группы, соседнему с заместителем COOEt, соответствует химический сдвиг 7.95 м. д. Тогда отнесение остальных сигналов спиновой системы следует из корреляций COSY.

В табл. 2 приведены данные спектров ЯМР ¹Н для всех синтезированных соединений **3–6** серии **A**. Их сравнение с известными данными спектров аналогов **3–6** серий **B**, **C** [1] и **D** [10, 11] показывает, что изменение положения атома S или его замена на фрагмент CH=CH влияют на химические сдвиги сигнала протона H-3 и сигналов протонов групп 2-CH₂ и 3-CH₃: у всех соединений серии **A** указанные сигналы находятся в наиболее сильном поле, а у их аналогов соединений серии **C** – в наиболее слабом. Однако эти различия очень невелики и наиболее заметные для сигналов групп NH составляют не более 0.65 м. д.

Таблица 2

Спектры ЯМР¹Н синтезированных соединений

		м				*1		$4.16 (2H, K, {}_{3}^{3}J = 7.5, CH_{2});$	$1.16 (3H, T, ^{3}J = 7.5, CH_{3})$	5.67 (2H, c, CH ₂);	7.98 (2H, π , ³ $J = 7.5$, o-H Ph);	7.63 (1H, T, J = 7.5, p-H Ph);	/.J/ (JH, M, H AT)	$4.17 (2H, K, {}^{3}J = 7.5, CH_{2});$	1.22 (3H, T , ³ $J = 7.5$, CH ₃)	
	4COOR		'9-H	(1Н, д,	(2.7 = 7.5)	7.89		7.56–7.88 (2H, M)	8.07				7.95			
$(J, \Gamma \Pi)$	2-CH ₂ C ₆ H	4	H-5'	(1H, T,	(2.7 = 7.5)	7.51			7.49				7.39			
цвиги, ठ, м. д.		C ₆ H	H-4'	(1H, T,	(2.7 = 7.5)	7.38		Н, м)	7.70				7.51			
имические сд			Н-3'	(1Н, д,	(2.7 = 7.5)	7.35		7.42 (3	7.45				7.29			
			CH_2	(2H, c)		4.25		4.25		4.28				4.49		
	римидин-2-ил	H-7 (1H)			7.54	(A, J = 3.5)	7.56	(W)	7.57	(W)			7.39	$(\mu, {}^{3}J = 3.5)$		
ено[3,4- <i>d</i>]пи	ено[3,4- <i>d</i>]пи 11 <i>г</i>		H-5 (1H, μ , $3J = 3.5$)		8:38		8.41		8.40				8.27			
	4-Оксоти		H-3/3-CH ₃	(c)		11.71	(HI)	11.77	(HI)	11.74	(1H)			3.54	(3H)	
	_	Соеди-	нение			3A	_	4 A		54		_		6A		

* Сигнал не виден из-за примеси воды в ДМСО.

1230

Корреляции спектров HMQC и HMBC для соединения **6A**. Приведены отнесения сигналов всех атомов углерода, стрелками показаны важнейшие корреляции HMBC, которые послужили основанием для этих отнесений

ИК спектры сравниваемых соединений **3–6** серий **А–D** подобны (см. табл. 1 и [1, 10, 11]). Для всех эфиров **4–6** наблюдаются как интенсивная "эфирная полоса" валентных колебаний эфирной связи С–О–С в области 1075–1128, так и карбонильная – в области 1260–1280 см⁻¹. В спектрах кислот **3** серий **A**, **B**, **D** и эфиров **6** серий **A**, **D** поглощение групп C(4)=O и <u>CO</u>OEt проявляется в виде одной уширенной полосы.

Таблица З

Положение атома (см. рисунок)	δ, м. д.	HMQC	НМВС	NOESY
5	8.27	127.4	117.2; 125.0; 147.4; 158.7	_
6'	7.95	131.0	132.7; 138.1; 167.0	7.39
7, 5'	7.39	117.2; 127.5	125.0 (сл); 127.4; 130.5; 132.0; 147.4 (сл)	7.51; 7.95
4'	7.51	132.7	131.0; 132.0; 138.1	7.29; 7.39
3'	7.29	132.0	40.6; 127.5; 130.5; 132.7; 167.0 (сл)	4.49; 7.51
3	3.53	29.8	155.2; 158.7	4.49
1'	4.49	40.6	130.5; 132; 138.1; 155.2; 167.0 (сл)	3.53; 7.29
1"	4.17	60.9	14.6; 167.0	1.22
2"	1.22	14.6	60.9	4.17

Результаты экспериментов по гомоядерной (спектр NOESY) и гетероядерной корреляции (HMBC и HMQC) для соединения 6А

Таблица 4

λ_{\max} , нм (lg ε)							
Α	B [1]	C [1]	D [10]				
235 (4.72)	220 (4.68)	236 (4.81)	230 (4.80)				
266 (4.24)	260 (4.27)	265 (4.25)	266 (4.22)				
313 (4.30)	312 (4.41)	293 (4.40)	304 (3.94)				

Электронные спектры сложных эфиров 4 серий А–D

Эфиры 4 серий А-С интенсивно поглощают в УФ области 220-315 нм. Заметным различием их электронных спектров (см. табл. 4 и [1, 10]) длинноволновых положение максимумов поглощения является позиционных изомеров А, В (313 и 312 соответственно) и 4С (293 нм). Следует также отметить сдвиги указанных максимумов (близких по интенсивности) относительно заметно менее интенсивного максимума поглощения изостера 4D: батохромный (~ 8-9 нм) в случае соединений 4А, 4В и гипсохромный (~ 11 нм) – для соединения 4С. Спектры кислот 3А-3D отличаются от спектров их этиловых эфиров 4А-4D только интенсивностью. Алкилирование по атому N(3) также не изменяет распределения электронной плотности, что отражает подобие спектров эфиров 6 серий А-D.

Для выяснения биологического потенциала синтезированных веществ с помощью программы PASS (Prediction of Activity Spectra for Substances) [14–16] была произведена оценка спектра их биологической активности. В основу выборки активных соединений положена многоуровневая оценка ближайшего окружения атомов и сравнение рассчитанных 2D дескрипторов с набором таковых, отвечающих либо высокой активности, либо ее отсутствию. Конечный результат представляется программой как вероятность проявления соединением активности (p_a) и неактивности (p_i) в

Таблица 5

	1 1	
Соединение	Вероятный вид биологической активности	p_{a}
3A	Агонист дофаминовых Д ₄ -рецепторов	0.808
3C	Агонист дофаминовых Д₄-рецепторов Антиишемическая (церебральная) Антиишемическая	0.858 0.836 0.831
3D	Ингибитор арилалкилациламидазы	0.809
4A, 4D, 6A	Ингибитор (4S)-лимонен синтетазы	0.814-0.853
4C	Агонист дофаминовых Д ₄ -рецепторов Антиишемическая (церебральная) Антиишемическая Ингибитор (4S)-лимоненсинтетазы	0.840 0.830 0.826 0.803
5C	Антиишемическая Агонист дофаминовых Д ₄ -рецепторов	0.835 0.822
6C	Агонист дофаминовых Д₄-рецепторов Ингибитор (4S)-лимоненсинтетазы	0.838 0.807

Результаты оценки биологической активности синтезированных вещ	еств
по программе PASS	

долях единицы. Был рассчитан спектр более чем 3000 типов активностей

для каждого соединения, порогом активности было выбрано $p_a > 0.8$; $p_i < 0.2$. Из анализа результатов расчета (см. табл. 5) неожиданным оказалось, что в указанные пределы вовсе не попали соединения **3–6** серии **В**. Согласно предсказанным данным, при переходе от производных системы **D** к их тиофеновым изостерам происходят изменения в профиле биологической активности.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры (таблетки KBr) зарегистрированы на приборе Perkin-Elmer Spectrum BX. УФ спектры 5·10⁻⁵ М растворов в ДМФА получены на спектрофотометре UV-vis Spectrometer Lambda 20 Perkin-Elmer. Спектры ЯМР ¹Н и ¹³С синтезированных соединений, эксперименты по двумерной спектроскопии ЯМР ¹Н COSY, а также гетероядерные корреляционные спектры HMQC и HMBC зарегистрированы на спектрометре Varian Mercury-400 (400 и 100 МГц соответственно). Все двумерные эксперименты проводились с градиентной селекцией полезных сигналов. Время смешивания в импульсных последовательностях соответствовало ${}^{1}J_{CH} = 140.0$ и ${}^{2-3}J_{CH} = 8.0$ Гц. Количество инкрементов в спектрах COSY и HMQC составило 128, а в спектрах HMBC – 400. Спектры ЯМР ¹Н остальных соединений записаны на приборе Bruker Avance DRX 500 (500 МГц). Во всех случаях растворитель ДМСО-d₆, внутренний стандарт ТМС. Индивидуальность синтезированных соединений подтверждена с помощью массхроматографа Agilent 1100 Series с селективным детектором Agilent LC/MSD SL, образец вводился в матрице трифторуксусной кислоты, ионизация ЭУ. Температуры плавления измерены в пирексовых капиллярах в приборе Тиле и подвергались коррекции.

Гидрохлорид аминоэфира 2 получен согласно методике [12].

2-(4-Оксо-3,4-дигидротиено[3,4-d]пиримидин-2-ил)метилбензойная кислота (**3A**). К суспензии 20 ммоль гидрохлорида **2** в 5 мл хлорбензола последовательно приливают 3 мл (40 ммоль) триэтиламина, прибавляют при перемешивании 1.61 г (10 ммоль) 2-цианометилбензойной кислоты и полученную смесь кипятят 10 мин. После удаления растворителя в вакууме к остатку приливают 40 мл 1,4-диоксана и полученную суспензию кипятят 2 ч. После охлаждения осадок отфильтровывают, промывают диэтиловым эфиром и получают 2.57 г (90%) эфира **3A**. Т. пл. 270–271 °С (ДМФА). Масс-спектр, *m/z*: 287 [M⁺+1]. Найдено, %: С 58.75; Н 3.50; N 9.80; S 11.22. $C_{14}H_{10}N_2O_3S$. Вычислено, %: C 58.73; H 3.52; N 9.78; S 11.20.

Эфиры 4–6 серии А получают по методикам работы [1].

Этиловый эфир 2-(4-оксо-3,4-дигидротиено[3,4-*d*]пиримидин-2-ил)метилбензойной кислоты (4А) получают действием EtI на кислоту 3А. Выход 85%. Т. пл. 85–86 °С (ДМФА). Масс-спектр, *m/z*: 315 [M⁺+1]. Найдено, %: С 61.15; H 4.50; N 8.89; S 10.19. C₁₆H₁₄N₂O₃S. Вычислено, %: С 61.13; H 4.49; N 8.91; S 10.20.

2-Оксо-2-фенилэтиловый эфир 2-(4-оксо-3,4-дигидротиено[3,4-*d***]пиримидин-2-ил)метилбензойной кислоты (5А) получают из кислоты ЗА и фенацилбромида. Выход 92%. Т. пл. 200–201 °С (ДМФА). Масс-спектр,** *m/z***: 405 [M⁺+1]. Найдено, %: С 68.00; Н 4.12; N 7.25; S 8.29. С₂₂Н₁₆N₂O₃S. Вычислено, %: С 68.03; Н 4.15; N 7.21; S 8.25.**

Этиловый эфир 2-(3-метил-4-оксо-3,4-дигидротиено[3,4-*d*]пиримидин-2-ил)метилбензойной кислоты (6А) получают из эфира 4А и МеІ. Выход 85%. Т. пл. 115–116 °С (ДМФА). Масс-спектр, *m/z*: 329 [M⁺+1]. Найдено, %: С 62.16; Н 4.88; N 8.52; S 9.78. С₁₇Н₁₆N₂O₃S. Вычислено, %: С 62.18; Н 4.91; N 8.53; S 9.76.

Авторы благодарят фирму "Енамин" (г. Киев) за поддержку проекта.

СПИСОК ЛИТЕРАТУРЫ

- Т. Т. Кучеренко, А. В. Задорожний, В. А. Ковтуненко, XГС, 932 (2008). [Chem. Heterocycl. Comp., 44, 750 (2008)].
- 2. A. E. Shinkwin, W. J. D. Whish, M. D. Threadgill, *Bioorg. & Med. Chem.*, 7, 297 (1999).
- 3. Z. Brzozowski, F. Sączewski, Eur. J. Med. Chem., 43, 1188 (2008).
- 4. S. A. Patil, B. A. Otter, R. S. Klein, J. Heterocycl. Chem., 30, 509 (1993).
- 5. R. K. Russel, J. B. Press, R. A. Rampulla, J. Med. Chem., 31, 1786 (1988).
- K. Ogawva, I. Yamawaki, Y. I. Matsusita, N. Nomura, P. F. Kador, J. H. Kinoshita, Eur. J. Med. Chem., 28, 769 (1993).
- 7. Z. Brzozowski, F. Sączewski, J. Heterocycl. Chem., 44, 261 (2007).
- 8. M. Sugiyama, T. Sakamoto, K. Tabata, Chem. Pharm. Bull., 37, 2122 (1989).
- 9. D. T. Connor, R. J. Sorenson, W. A. Cetenko, J. Med. Chem., 27, 528 (1984).
- В. А. Ковтуненко, Т. Т. Кучеренко, О. В. Шишкин, В. М. Кисель, *XГС*, 1408 (2002). [*Chem. Heterocycl. Comp.*, **38**, 1242 (2002)].
- 11. В. А. Ковтуненко, Т. Т. Кучеренко, Р. И. Зубатюк, О. В. Шишкин, Д. А. Ющенко, *XГС*, 1532 (2007). [*Chem. Heterocycl. Comp.*, **43**, 1301 (2007)].
- 12. B. R. Baker, J. P. Joseph, R. E. Schaub, F. J. McEvoy, J. H. Williams, J. Org. Chem., 18, 138 (1953).
- 13. M. S. Manhas, S. D. Sharma, J. Heterocycl. Chem., 8, 1051 (1971).
- D. A. Filimonov, V. V. Poroikov, Yu. V. Borodina, T. Gloriozova, J. Chem. Inf. Comput. Sci., 39, 666 (1999).
- 15. V. V. Poroikov, D. A. Filimonov, Yu. V. Borodina, A. A. Lagunin, A. Kos, J. Chem. Inf. Comput. Sci., 40, 1349 (2000).
- 16. V. V. Poroikov, D. A. Filimonov, J. Comput. Aided Mol. Des., 16, 819 (2002).

Киевский национальный университет им. Тараса Шевченко, Киев 01033, Украина e-mail: vkovtunenko@univ.kiev.ua e-mail: shura_zd@ukr.net Поступило 03.04.2009 После доработки 07.12.2009 После повторной доработки 05.05.2010