И. В. Украинец*, Е. В. Моспанова^а, А. А. Давиденко⁶, С. В. Шишкина^в

4-ГИДРОКСИХИНОЛОНЫ-2

180*. СИНТЕЗ, ХИМИЧЕСКИЕ ПРЕВРАЩЕНИЯ И АНАЛЬГЕТИЧЕСКАЯ АКТИВНОСТЬ АЛКИЛАМИДОВ 1-АЛЛИЛ-4-ГИДРОКСИ-6,7-ДИМЕТОКСИ-2-ОКСО-1,2-ДИГИДРОХИНОЛИН-3-КАРБОНОВОЙ КИСЛОТЫ

Осуществлён целенаправленный синтез серии алкиламидов 1-аллил-4-гидрокси-6,7-диметокси-2-оксо-1,2-дигидрохинолин-3-карбоновой кислоты, представляющих интерес для биологических испытаний в качестве потенциальных анальгетиков. Установлено, что в присутствии эквивалента молекулярного брома указанные соединения подвергаются галогенциклизации в соответствующие алкиламиды 2-бромметил-7,8-диметокси-5-оксо-1,2-дигидро-5H-оксазоло[3,2-*a*]хинолин-4-карбоновой кислоты. Однако при избытке брома реакция проходит несколько иначе и заканчивается формированием комплексов дитрибромидов (4-алкилкарбамоил-2-бромметил-5-гидрокси-7,8-диметокси-1,2-дигидрооксазоло[3,2*a*]хино- линия) с бромом. По результатам фармакологического скрининга среди полу- ченных веществ обнаружены соединения с высокой анальгетической активностью.

Ключевые слова: 4-гидрокси-2-оксо-1,2-дигидрохинолин-3-карбоксамиды, анальгетическая активность, амидирование, бромирование, галогенциклизация, РСА.

Проблема создания мощных и одновременно безопасных лекарственных препаратов, способных эффективно купировать боли различного происхождения, не теряет своей актуальности на протяжении всей истории человечества. При изучении биологической активности гидрохлоридов (диалкиламино)алкиламидов 1-аллил-4-гидрокси-6,7-диметокси-2-оксо-1,2-дигидрохинолин-3-карбоновой кислоты было замечено, что в зависимости от строения амидной части молекулы эти соединения могут либо проявлять свойства антагонистов опиоидных рецепторов, либо оказывать совершенно противоположный эффект, значительно продлевая обезболивающее действие наркотических анальгетиков [2]. Это наблюдение и послужило предпосылкой к проведению более широких исследований по целенаправленному изысканию в ряду производных 4-гидроксихинолонов-2 веществ с новым для этого класса соединений видом фармакологического воздействия на живой организм, а именно потенциальных анальгетиков.

В первой публикации, посвященной этой проблематике, были изучены 4-R-2-оксо-1,2-дигидрохинолин-3-карбоновые кислоты [3]. Следующий

* Сообщение 179 см. [1].

этап – их амидированные производные и, в частности, рассматриваемые в настоящем сообщении алкиламиды 1-аллил-4-гидрокси-6,7-диметокси-2-оксо-1,2-дигидрохинолин-3-карбоновой кислоты **1а**–х.

Синтез объектов исследования осуществлён амидированием метилового эфира 2 соответствующими алкиламинами по известным методикам, выбор которых определяется физическими свойствами используемых аминов и их пространственным строением [4]. Все полученные таким образом алкиламиды 1a-х представляют собой не растворимые в воде кристаллические вещества без цвета, запаха и вкуса (табл. 1). Их строение подтверждено спектрами ЯМР ¹H, отнесение сигналов в которых трудностей не вызывает (табл. 2).

 $\begin{array}{l} {\bf 1} \ {\bf a} \ R = Me, \ {\bf b} \ R = Et, \ {\bf c} \ R = All, \ {\bf d} \ R = Pr, \ {\bf e} \ R = i\mbox{-}Pr, \ {\bf f} \ R = Bu, \ {\bf g} \ R = i\mbox{-}Bu, \ {\bf h} \ R = s\mbox{-}Bu, \\ {\bf i} \ R = C_5H_{11}, \ {\bf j} \ R = i\mbox{-}C_5H_{11}, \ {\bf k} \ R = C_6H_{13}, \ {\bf l} \ R = C_7H_{15}, \ {\bf m} \ R = C_8H_{17}, \ {\bf n} \ R = C_9H_{19}, \ {\bf o} \ R = C_{10}H_{21}, \\ {\bf p} \ R = C_{12}H_{25}, \ {\bf q} \ R = -(CH_2)_2OH, \ {\bf r} \ R = -(CH_2)_3OH, \ {\bf s} \ R = -(CH_2)_3OMe, \ {\bf t} \ R = -(CH_2)_3OPr\mbox{-}i, \\ {\bf u} \ R = cyclo\mbox{-}C_3H_5, \ {\bf v} \ R = cyclo\mbox{-}C_5H_9, \ {\bf w} \ R = cyclo\mbox{-}C_6H_{11}, \ {\bf x} \ R = cyclo\mbox{-}C_7H_{13} \end{array}$

Присутствие N(1)-аллильного заместителя в 4-гидрокси-2-оксохинолиновом ядре амидов 1a-x предполагает возможность синтеза на их основе соответствующих производных 2-бромметил-7,8-диметокси-5-оксо-1,2дигидро-5H-оксазоло[3,2-*a*]хинолин-4-карбоновой кислоты. Проведённые нами ранее на примере изопропиламида **1e** исследования показали, что при взаимодействии с эквимолярным количеством молекулярного брома эти соединения действительно очень легко подвергаются галогенциклизации в оксазоло[3,2-*a*]хинолины **3** [5]. Вместе с тем, специфика строения алкиламидов **1a–x**, заведомо делающая невозможным бромирование бензольной части хинолонового ядра и амидного фрагмента, позволяет выяснить ещё один интересный аспект протекания реакции бромциклизации 1-N-аллилхинолонов-2 – их поведение при обработке избытком брома.

Эксперимент проведён нами с тем же изопропиламидом 1е. При этом установлено, что после прибавления к его раствору в ледяной уксусной кислоте пятикратного избытка брома практически сразу же образуется оранжевый кристаллический продукт, явно отличающийся по свойствам от бесцветного изопропиламида 2-бромметил-7,8-диметокси-5-оксо-1,2-дигидро-5H-оксазоло[3,2-*a*]хинолин-4-карбоновой кислоты (**3**). В то же время, спектры ЯМР ¹Н обоих образцов оказались удивительно схожими.

Таблица 1

		Харан	стерист	чки алк	иламидов 1а-х	(*	
Со- еди- нение	Брутто- формула	<u>Н</u> Вы С	айдено, числено Н	<u>%</u> 0, % N	Т. пл., °С (EtOH)	Выход, %	Анальгети- ческая- активность**
1a	$C_{16}H_{18}N_2O_5$	<u>60.49</u>	<u>5.81</u>	8.92	190–192	97	32.2
1b	$C_{17}H_{20}N_2O_5$	60.37 61.53 61.44	5.70 <u>6.18</u> 6.07	8.80 <u>8.35</u> 8.43	169–171	95	24.0
1c	$C_{18}H_{20}N_2O_5$	<u>62.65</u> 62.78	0.07 <u>5.76</u> 5.85	<u>8.20</u> 8.13	162–164	94	31.7
1d	$C_{18}H_{22}N_2O_5$	$\frac{62.31}{62.42}$	<u>6.33</u> 6.40	<u>7.96</u> 8.09	157–159	91	9.7
1e	$C_{18}H_{22}N_2O_5$	$\frac{62.34}{62.42}$	<u>6.35</u> 6.40	<u>8.00</u> 8.09	168–170	82	11.5
1f	$C_{19}H_{24}N_2O_5$	<u>63.43</u> 63.32	<u>6.83</u> 6.71	<u>7.85</u> 7.77	151–153	90	11.4
1g	$C_{19}H_{24}N_2O_5$	<u>63.41</u> 63.32	<u>6.80</u> 6.71	<u>7.84</u> 7.77	156–158	93	27.9
1h	$C_{19}H_{24}N_2O_5$	<u>63.26</u> 63.32	<u>6.62</u> 6.71	<u>7.68</u> 7.77	160–162	83	26.0
1i	$C_{20}H_{26}N_2O_5$	<u>64.25</u> 64.16	<u>7.13</u> 7.00	<u>7.59</u> 7.48	147–149	89	26.3
1j	$C_{20}H_{26}N_2O_5$	<u>64.27</u> 64.16	<u>7.11</u> 7.00	<u>7.60</u> 7.48	155–157	90	28.7
1k	$C_{21}H_{28}N_2O_5$	<u>65.04</u> 64.93	<u>7.19</u> 7.27	<u>7.14</u> 7.21	126–128	87	2.2
11	$C_{22}H_{30}N_2O_5$	<u>65.52</u> 65.65	<u>7.37</u> 7.51	<u>7.08</u> 6.96	113–115	90	20.0
1m	$C_{23}H_{32}N_2O_5$	<u>66.22</u> 66.32	<u>7.83</u> 7.74	<u>6.85</u> 6.73	102–104	85	20.0
1n	$C_{24}H_{34}N_2O_5$	<u>67.07</u> 66.95	<u>8.05</u> 7.96	<u>6.44</u> 6.51	90–92	88	5.6
10	$C_{25}H_{36}N_2O_5$	<u>67.43</u> 67.54	<u>8.02</u> 8.16	<u>6.41</u> 6.30	85-87	90	7.8
1p	$C_{27}H_{40}N_2O_5$	<u>68.53</u> 68.62	<u>8.40</u> 8.53	<u>5.84</u> 5.93	81-83	92	21.8
1q	$C_{17}H_{20}N_2O_6$	<u>58.72</u> 58.61	<u>5.86</u> 5.79	<u>8.15</u> 8.04	197–199	94	60.7
1r	$C_{18}H_{22}N_2O_6$	<u>59.54</u> 59.66	<u>6.03</u> 6.12	<u>7.84</u> 7.73	164–166	91	31.0
1s	$C_{19}H_{24}N_2O_6$	<u>60.76</u> 60.63	<u>6.55</u> 6.43	<u>7.53</u> 7.44	143–145	89	15.6
1t	$C_{21}H_{28}N_2O_6$	<u>62.47</u> 62.36	<u>7.11</u> 6.98	<u>7.02</u> 6.93	105–107	87	26.9
1u	$C_{18}H_{20}N_2O_5$	<u>62.66</u> 62.78	<u>5.74</u> 5.85	<u>8.05</u> 8.13	167–169	84	14.8
1v	$C_{20}H_{24}N_2O_5$	<u>64.42</u> 64.50	<u>6.39</u> 6.50	<u>7.44</u> 7.52	174–176	85	11.4
1w	$C_{21}H_{26}N_2O_5$	<u>65.38</u> 65.27	<u>6.87</u> 6.78	<u>7.31</u> 7.25	188–190	85	31.7
1x	$C_{22}H_{28}N_2O_5$	<u>66.10</u> 65.98	<u>7.13</u> 7.05	<u>7.10</u> 6.99	171–173	81	30.2

* Анальгетическая активность Диклофенака 34.1, Кеторолака 46.4.

** Повышение порога болевой чувствительности, %.

Таблица 2

		Спектры 3	ЯМР ¹ Н алки.	ламидов 1-	аллил-4-гидрок	си-6,7-диметокси	-2-оксо-1,2-д	игидрохино.	пин-3-карбоновой кислоты 1а-х
					Химич	неские сдвиги, б, в	м. д. (Ј, Гц)		
Соеди-			Н аром.		1-N-аллиль	ный фрагмент		20CH ₃	
нение	ОН (1Н, с)	(HI)	H-5 (1H, c), H-8 (1H, c)	CH (1H, M)	CH=C <u>H</u> -cis $(1H, A)$	CH=C <u>H</u> -trans (1Н, д)	NCH ₂ (2Н, д)	(3H, c), (3H, c)	R
1	2	ε	4	5	6	7	8	6	10
1 a	17.43	10.16	7.39,	5.92	5.13 (1-10.5)	5.03	4.94	3.89, 7.87	$2.88 (3H, \mu, J = 4.9, CH_3)$
		(K, J = 4.9)	0.90		(c.01 = V)	(J = 1/.3)	(J = 4.6)	3.82	
1b	17.49	10.29	7.38,	5.92	5.15 71-1042	5.03	4.93	3.89, 7.07	3.36 (2H, κ_{B} , $J = 6.9$, NCH ₂);
		(T, J = 5.6)	06.90		(J = 10.4)	(c./1 = c)	(c. + = c)	20.0	1.13 (3H, T, $J = /.1$, CH ₃)
1c	17.11	10.42	7.40,	5.93	CM. R	CM. R	4.94	3.90, 3.20,	5.30-5.00 (4H, m, 2 CH=CH ₂);
		(T, J = 5.8)	6.91				(J = 4.7)	3.83	$4.00 (2H, T, J = 5.4, NHCH_2)$
1d	17.44	10.34	7.37,	5.91	5.15	5.04	4.93	3.89,	3.29 (2H, κ , $J = 6.6$, NCH ₂); 1.55 (2H, M ,
		(T, J = 5.6)	6.89		(J = 10.6)	(J = 17.3)	(J = 4.5)	3.82	NCH ₂ C <u>H</u> ₂); 0.91 (3H, τ , $J = 7.5$, CH ₃)
1e	17.43	10.27	7.36,	5.91	5.14	5.04	4.92	3.89,	4.08 (1H, M, CH); 1.20 (6H, $_{\rm H}$, $J = 6.8$,
		(Д, J = 7.4)	6.88		(J = 10.6)	(J = 17.4)	(J = 4.4)	3.82	2CH ₃)
1f	17.43	10.33	7.38,	5.91	5.15	5.03	4.93	3.89,	3.35 (2H, к, J = 6.9, NCH ₂); 1.53 (2H, кв,
		(T, J = 5.7)	6.90		(J = 10.6)	(J = 17.2)	(J = 4.4)	3.82	$J = 7.1$, $CH_2CH_2CH_3$); 1.34 (2H, m, CH_2 CH ₃); 0.90 (3H, τ , $J = 7.2$, CH ₃)
1g	17.40	10.42	7.37,	5.92	5.15	5.03	4.94	3.89,	3.19 (2H, T, $J = 6.3$, NCH ₂); 1.83 (1H, M,
		(T, J = 5.8)	6.89		(J = 10.5)	(J = 17.4)	(J = 4.4)	3.82	CH); 0.91 (6H, μ , $J = 6.7$, 2CH ₃)
1h	17.37	10.28	7.41,	5.93	5.16	5.07	4.94	3.90,	3.97 (1Н, м, СН); 1.56 (2Н, кв, <i>J</i> = 7.1,
		(Д, J = 7.4)	6.92		(J = 10.6)	(J = 17.6)	(J = 4.2)	3.83	CH_2CH_3); 1.18 (3H, μ , $J = 6.5$, NCHCH ₃); 0.00 (2H \pm $T = 7.4$ CH CH)
									0.20 (211, 1, 2 - 7.+, C112C <u>U</u> 3)

1348

	_								
li	17.43	10.33	7.37,	5.91	5.15	5.03	4.93	3.89,	3.35 (2H, к, J = 6.4, NCH ₂); 1.54 (2H, кв,
-		(T, J = 5.8)	6.89		(J = 10.6)	(J = 17.6)	(J = 4.2)	3.82	J = 6.4, NCH ₂ C <u>H₂</u>); 1.29 (4H, M,
									$(CH_2)_2$ CH ₃); 0.86 (3H, T, $J = 6.5$, CH ₃)
IJ	17.39	10.31	7.36,	5.90	5.14	5.02	4.93	3.88,	$3.36 (2H, K, J = 6.7, NCH_2); 1.61 (1H, M,$
		(T, J = 5.5)	6.89		(J = 10.5)	(J = 17.4)	(J = 4.2)	3.82	CH); 1.43 (2H, κ , $J = 6.8$, NCH ₂ CH ₂); 0.90
		~							$(6H, A, J = 6.7, 2CH_3)$
1k	17.44	10.31	7.34,	5.91	5.14	5.03	4.92	3.88,	3.35 (2H, к, J = 5.8, NCH ₂); 1.53 (2H, кв,
		(T, J = 5.6)	6.87		(J = 10.5)	(J = 17.5)	(J = 4.3)	3.81	J = 6.0, NCH ₂ C <u>H₂</u>); 1.27 (6H, M,
									$(CH_2)_3CH_3$; 0.84 (3H, T, $J = 6.5$, CH ₃)
11	17.45	10.32	7.36,	5.91	5.14	5.03	4.93	3.88,	3.31 (2H, K, J = 6.4, NCH ₂); 1.52 (2H, KB,
		(T, J = 5.8)	6.88		(J = 10.6)	(J = 17.5)	(J = 4.2)	3.81	J = 6.4, NCH ₂ CH ₂); 1.26 (8H, M, (CH ₂) ₄ CH ₃);
									$0.83 (3H, T, J = 6.5, CH_3)$
1m	17.44	10.33	7.39,	5.92	5.15	5.03	4.94	3.89,	3.38 (2H, к, J = 6.3, NCH ₂); 1.53 (2H, кв,
		(T, J = 5.6)	6.91		(J = 10.4)	(J = 17.2)	(J = 4.3)	3.82	J = 6.4, NCH ₂ CH ₂); 1.25 (10H, M, (CH ₂) ₅ CH ₃);
									$0.83 (3H, T, J = 6.6, CH_3)$
1n	17.42	10.32	7.36,	5.90	5.14	5.03	4.92	3.88,	3.31 (2H, K, J = 6.4, NCH ₂); 1.52 (2H, kB,
		(T, J = 5.7)	6.88		(J = 10.6)	(J = 17.5)	(J = 4.1)	3.81	J = 6.5, NCH ₂ C <u>H₂</u>); 1.24 (12H, M,
									$(CH_2)_6CH_3); 0.82 (3H, T, J = 6.5, CH_3)$
10	17.39	10.31	7.36,	5.92	5.14	5.04	4.93	3.88,	3.35 (2H, к, J = 6.4, NCH ₂); 1.51 (2H, кв,
		(T, J = 5.7)	6.88		(J = 10.6)	(J = 17.5)	(J = 4.1)	3.81	J = 6.5, NCH ₂ C <u>H₂</u>); 1.21 (14H, M,
									$(CH_2)_7CH_3)$; 0.80 (3H, T, $J = 6.6$, CH ₃)
1p	17.43	10.32	7.36,	5.91	5.15	5.03	4.93	3.88,	3.37 (2H, к, J = 6.3, NCH ₂); 1.53 (2H, кв,
		(T, J = 5.6)	6.89		(J = 10.6)	(J = 17.7)	(J = 4.0)	3.81	J = 6.5, NCH ₂ CH ₂); 1.20 (18H, m, (CH ₂) ₉ CH ₃);
									0.81 (3H, τ , $J = 6.5$, CH ₃)

Окончание таблицы 2

1	2	3	4	5	6	7	8	6	10
1q	17.37	10.41	7.41,	5.93	5.16	5.06	4.94	3.90,	4.80 (1H, T , $J = 4.8$, OH); 3.56 (2H, K, $J = 5.7$,
		(T, J = 5.4)	6.91		(J = 10.3)	(J = 17.2)	(J = 4.4)	3.83	NCH ₂); 3.42 (2H, \mathbf{K} , $J = 5.7$, NCH ₂ C <u>H₂</u>)
1r	17.40	10.30	7.39,	5.92	5.15	5.04	4.93	3.89,	4.45 (1H, T, $J = 4.6$, OH); 3.44 (4H, M,
		(T, J = 5.3)	6.90		(J = 10.4)	(J = 17.5)	(J = 4.4)	3.82	NC <u>H₂</u> CH ₂ CH ₂ O); 1.69 (2H, KB, $J = 6.5$, NCH ₂ CH ₂ CH ₂ O);
1s	17.38	10.32	7.40,	5.91	5.15	5.03	4.93	3.88.	3.39 (4H, M, NCH, CH, CH, O); 3.25 (3H, c,
		(T, J = 5.5)	6.91		(J = 10.5)	(J = 17.4)	(J = 4.3)	3.81	OCH ₃); 1.77 (2H, kB, $J = 6.5$, NCH ₂ CH ₂ CH ₂ O)
1t	17.42	10.31	7.41,	5.92	5.14	5.03	4.94	3.89,	3.51 (1H, m, CH); 3.41 (4H, m, NCH ₂ CH ₂ CH ₂ O);
		(T, J = 5.6)	6.91		(J = 10.5)	(J = 17.5)	(J = 4.2)	3.81,	1.74 (2H, kB, $J = 6.5$, NCH ₂ CH ₂ CH ₂ O);
		~							$1.08 (6H, A, J = 6.1, 2CH_3)$
1u	17.03	10.29	7.39,	5.90	5.14	5.01	4.92	3.89,	2.90 (1H, м, CH); 0.78 (2H, м, CH ₂ цикло-
		$({\tt A}, J = 4.9)$	6.90		(J = 10.5)	(J = 17.4)	(J = 4.4)	3.82	пропана); 0.60 (2Н, м, СН ₂ циклопропана)
1v	17.33	10.37	7.39,	5.91	5.16	5.05	4.91	3.89,	4.24 (1H, m, CH); 2.02–1.43 (8H, m, (CH ₂) ₄
		$({\rm A}, J = 6.6)$	6.89		(J = 10.6)	(J = 17.7)	(J = 4.5)	3.83	циклопентана)
1w	17.40	10.39	7.37,	5.91	5.15	5.03	4.93	3.88,	3.79 (1H, m, CH); 1.94–1.18 (10H, m, (CH ₂) ₅
		(A, J = 7.6)	6.90		(J = 10.6)	(J = 17.4)	(J = 4.1)	3.82	циклогексана)
1x	17.41	10.44	7.39,	5.91	5.15	5.04	4.94	3.89,	4.02 (1H, m, CH); 1.95–1.44 (12H, m,
		(A, J = 7.8)	6.91		(J = 10.6)	(J = 17.8)	(J = 4.0)	3.82	(CH ₂) ₆ циклогептана)

Наиболее существенное различие между ними – сдвиг в сильное поле и уширение сигнала протона группы NH. Следовательно, факт замыкания оксазольного цикла можно считать подтверждённым. К сожалению, из-за плохой растворимости образовавшегося вещества никакой другой полезной информации с помощью спектроскопии ЯМР получить не удалось.

Однозначное решение возникшей структурной задачи найдено нами в результате проведённого РСА, показавшего, что исследуемый продукт является дитрибромидом ди(2-бромметил-5-гидрокси-7,8-диметокси-4изопропилкарбамоил-1,2-дигидрооксазоло[3,2-*a*]хинолиния) (4). В независимой части элементарной ячейки этого соединения находятся две молекулы **A** и **B**, различающиеся некоторыми геометрическими параметрами и несущие положительный заряд, два аниона Br_3^- и нейтральная молекула брома, разупорядоченная по четырём положениям с заселённостью конформеров 70:15:14:1% (см. рисунок, табл. 3 и 4).

Хинолиновые ядра с атомами O(1), C(11), O(3) и C(13) в обеих молекулах лежат в одной плоскости с точностью 0.02 Å, несмотря на наличие укороченного внутримолекулярного контакта H(2)…C(11) 2.67 в A и 2.65 Å в B (сумма ван-дер-ваальсовых радиусов 2.87 Å [6]). Длины связей N(1)–C(9) 1.33(1) в A, 1.34(1) в B и O(1)–C(9) 1.34(1) в A, 1.33(1) Å в B несколько укорочены по сравнению с их средними значениями 1.355 и 1.370 Å [7], вследствие чего строение органического катиона можно представить как резонансный гибрид двух канонических структур 4 и 4а.

Удлинение связей C(7)–C(8) до 1.41(1) в A и 1.40(1) Å в B с одновременным укорочением связей C(8)–C(9) до 1.39(1) Å в A и B по сравнению с их средними значениями 1.340 и 1.455 Å позволяет предположить делокализацию электронной плотности в этом фрагменте вследствие сильных конъюгационных взаимодействий между π -донорной гидроксильной группой и π -акцепторным положительно заряженным фрагментом N(1)–C(9)–O(1). Пятичленный гетероцикл в молекулах A и B разупорядочен по

Два конформера (**A** и **B**) органического катиона дитрибромида дихинолиния **4** с сольватными молекулами брома и триброманионов с нумерацией атомов. Показаны наиболее заселенные части разупорядоченных фрагментов

двум конформациям конверт с заселённостью 69:31 в **A** и 66:34 % в **B**. Отклонения атома C(10) от среднеквадратичной плоскости остальных атомов цикла составляет 0.23 и -0.47 Å в молекуле **A** и 0.23 и -0.43 Å в молекуле **B**.

Заместитель при атоме С(8) практически копланарен плоскости хинолинового фрагмента (торсионный угол C(7)-C(8)-C(13)-O(2) 6(1)° в А и В). Такая конформация заместителя, очевидно, стабилизирована внутримолекулярными водородными связями N(2)-H(2)...O(1) (H···O 2.09 Å, N-H…O 135° в А и Н…O 2.11 Å, N-H…O 134° в В), O(3)-H(3)…O(2) (H…O 1.72 Å, O–H…O 146° в А и Н…O 1.71 Å, O–H…O 146° в В). Изопропильная группа находится в ар-конформации относительно связи С(13)-С(8) (торсионный угол С(14)-N(2)-С(13)-С(8) 177.7(8)° в А, 177.5(8)° в В) и развернута относительно связи С(13)–N(2) (торсионный угол C(13)-N(2)-C(14)-H(14) 39° в А и 41° в В). Заместитель при атоме С(10) во всех конформерах занимает экваториальное положение (торсионный угол C(9)–O(1)–C(10)–C(12) составляет –127(1)° в А, 159(2)° в **В**, −127(1)° в **С** и 159(3)° в **D**), а атом брома имеет *sc*-ориентацию относительно связи O(1)-C(10) (торсионный угол O(1)-C(10)-C(12)-Br(1) равен -71(1)°, -70(1)° в **A**, 59(3)°, 64(4)° в **B**). Метоксигруппы при атомах С(3) и С(4) практически копланарны плоскости ароматического цикла (торсионные углы C(18)–O(4)–C(3)–C(2) 6(2)° в А, 2(2)° в В и C(17)–O(5)– $C(4)-C(5) -2(1)^{\circ}$ в A, $-1(1)^{\circ}$ в B), несмотря на заметное отталкивание между метильными группами и атомами бензольного кольца [укороченные внутримолекулярные контакты H(2)…C(18) 2.52 в A и 2.55 Å в B (2.87 Å), H(2)…H(18A) 2.27 в A (2.34), H(18A)…C(2) 2.70 в A и 2.76 Å в B (2.87 Å), H(18C)...C(2) 2.80 в А и 2.81 Å в В (2.87 Å), H(5)...C(17) 2.49 в А и 2.52 Å в **B** (2.87 Å), H(5)…H(17A) 2.29 Å в **A** и **B** (2.34 Å), H(5)…H(17C) 2.27 Å в **A** (2.34 Å), H(17A)…C(5) 2.74 в **A** и 2.75 Å в **B** (2.87 Å), H(17C)…C(5) 2.70 в **A** и 2.76 Å в **B** (2.87 Å)].

Таблица З

Связь	l, Å	Связь	l, Å
Br(5)–Br(6)	2.362(4)	Br(5A)– $Br(6A)$	2.399(9)
Br(5B)–Br(6B)	1.85(2)	Br(6B)–Br(6C)	1.5(2)
Br(2A)-Br(3A)	2.589(2)	Br(3A)–Br(4A)	2.490(2)
Br(1A)–C(12C)	1.79(3)	Br(1A)C(12A)	2.00(2)
N(1A)-C(9A)	1.33(1)	N(1A)–C(1A)	1.38(1)
N(1A)–C(11A)	1.49(1)	N(2A)-C(13A)	1.30(1)
N(2A)–C(14A)	1.46(1)	O(1A)–C(9A)	1.34(1)
O(1A)-C(10C)	1.442(5)	O(1A)-C(10A)	1.445(5)
O(2A)–C(13A)	1.26(1)	O(3A)–C(7A)	1.32(1)
O(4A)–C(3A)	1.35(1)	O(4A)–C(18A)	1.44(1)
O(5A)–C(4A)	1.38(1)	O(5A)–C(17A)	1.41(1)
C(1A)–C(2A)	1.39(1)	C(1A)–C(6A)	1.42(1)
C(2A)–C(3A)	1.40(2)	C(3A)C(4A)	1.39(2)
C(4A)–C(5A)	1.36(1)	C(5A)–C(6A)	1.41(1)
C(6A)–C(7A)	1.43(1)	C(7A)-C(8A)	1.41(1)
C(8A)–C(9A)	1.39(1)	C(8A)–C(13A)	1.47(1)
C(10A)–C(12A)	1.538(5)	C(10A)–C(11A)	1.540(5)
C(10C)-C(12C)	1.539(5)	C(10C)-C(11A)	1.540(5)
C(14A)–C(16A)	1.51(1)	C(14A)–C(15A)	1.55(1)
Br(2B)–Br(3B)	2.596(2)	Br(3B)–Br(4B)	2.491(2)
Br(1B)–C(12D)	1.77(5)	Br(1B)–C(12B)	2.03(2)
N(1B)-C(9B)	1.34(1)	N(1B)-C(1B)	1.37(1)
N(1B)–C(11B)	1.47(1)	N(2B)C(13B)	1.31(1)
N(2B)–C(14B)	1.47(1)	O(1B)–C(9B)	1.33(1)
O(1B)–C(10D)	1.442(5)	O(1B)–C(10B)	1.442(5)
O(2B)–C(13B)	1.27(1)	O(3B)–C(7B)	1.31(1)
O(4B)–C(3B)	1.35(1)	O(4B)–C(18B)	1.44(1)
O(5B)–C(4B)	1.37(1)	O(5B)–C(17B)	1.43(1)
C(1B)–C(2B)	1.39(1)	C(1B)–C(6B)	1.40(1)
C(2B)-C(3B)	1.38(2)	C(3B)-C(4B)	1.42(2)
C(4B)-C(5B)	1.36(1)	C(5B)-C(6B)	1.42(1)
C(6B)-C(7B)	1.43(1)	C(7B)–C(8B)	1.40(1)
C(8B)-C(9B)	1.39(1)	C(8B)–C(13B)	1.48(1)
C(10B)–C(12B)	1.538(5)	C(10B)–C(11B)	1.540(5)
C(10D)-C(12D)	1.539(5)	C(10D)–C(11B)	1.541(5)
C(14B)C(16B)	1.51(1)	C(14B)–C(15B)	1.52(1)

Длины связей (*l*) в структуре дитрибромида дихинолиния 4

Таблица 4

	() - FJ		r
Угол	ω, град.	Угол	ω, град.
Br(4A)-Br(3A)-Br(2A)	179.04(7)	Br(4B)-Br(3B)-Br(2B)	179.07(7)
C(9A)-N(1A)-C(1A)	122.9(9)	C(9B)-N(1B)-C(1B)	122.4(9)
C(9A)–N(1A)–C(11A)	111.3(8)	C(9B)-N(1B)-C(11B)	111.1(8)
C(1A)-N(1A)-C(11A)	125.8(8)	C(1B)-N(1B)-C(11B)	126.5(8)
C(13A)-N(2A)-C(14A)	123.3(9)	C(13B)-N(2B)-C(14B)	123.5(8)
C(9A)-O(1A)-C(10C)	106(1)	C(9B)-O(1B)-C(10D)	107(1)
C(9A)-O(1A)-C(10A)	109.3(7)	C(9B)-O(1B)-C(10B)	109.7(8)
C(3A)-O(4A)-C(18A)	118.8(9)	C(3B)-O(4B)-C(18B)	118.9(9)
C(4A)-O(5A)-C(17A)	117.3(8)	C(4B)-O(5B)-C(17B)	117.8(8)
N(1A)-C(1A)-C(2A)	121.7(9)	N(1B)-C(1B)-C(2B)	121.3(9)
N(1A)-C(1A)-C(6A)	117.4(9)	N(1B)-C(1B)-C(6B)	118.3(9)
C(2A)C(1A)C(6A)	120.8(9)	C(2B)–C(1B)–C(6B)	120(1)
C(1A)-C(2A)-C(3A)	118.1(9)	C(3B)–C(2B)–C(1B)	119(1)
O(4A)-C(3A)-C(4A)	115(1)	O(4B)-C(3B)-C(2B)	125(1)
O(4A)-C(3A)-C(2A)	123.4(9)	O(4B)-C(3B)-C(4B)	114(1)
C(4A)-C(3A)-C(2A)	121.4(9)	C(2B)C(3B)C(4B)	120.6(9)
C(5A)-C(4A)-O(5A)	124(1)	C(5B)C(4B)O(5B)	125(1)
C(5A)-C(4A)-C(3A)	121(1)	C(5B)C(4B)C(3B)	120(1)
O(5A)-C(4A)-C(3A)	114.8(9)	O(5B)C(4B)C(3B)	114.9(9)
C(4A)-C(5A)-C(6A)	119(1)	C(4B)-C(5B)-C(6B)	119(1)
C(5A)-C(6A)-C(1A)	119.4(9)	C(5B)-C(6B)-C(1B)	119.9(9)
C(5A)-C(6A)-C(7A)	121.9(9)	C(5B)-C(6B)-C(7B)	121.1(9)
C(1A)-C(6A)-C(7A)	118.6(9)	C(1B)-C(6B)-C(7B)	119.0(9)
O(3A)-C(7A)-C(8A)	120.8(9)	O(3B)C(7B)C(8B)	119.8(9)
O(3A)-C(7A)-C(6A)	117.2(9)	O(3B)–C(7B)–C(6B)	118.9(9)
C(8A)-C(7A)-C(6A)	122.0(9)	C(8B)C(7B)C(6B)	121.3(9)
C(9A)-C(8A)-C(7A)	114.8(9)	C(9B)-C(8B)-C(7B)	115.8(9)
C(9A)-C(8A)-C(13A)	125.1(9)	C(9B)-C(8B)-C(13B)	123.9(9)
C(7A)-C(8A)-C(13A)	120.0(9)	C(7B)–C(8B)–C(13B)	120.3(9)
N(1A)-C(9A)-O(1A)	111.6(8)	N(1B)-C(9B)-O(1B)	111.3(9)
N(1A)-C(9A)-C(8A)	124(1)	N(1B)-C(9B)-C(8B)	123.2(9)
O(1A)-C(9A)-C(8A)	124.1(9)	O(1B)–C(9B)–C(8B)	125.4(9)
O(1A)-C(10A)-C(12A)	105(1)	O(1B)-C(10B)-C(12B)	107(1)
O(1A)–C(10A)–C(11A)	105.2(7)	O(1B)–C(10B)–C(11B)	104.6(8)
C(12A)-C(10A)-C(11A)	106(1)	C(12B)–C(10B)–C(11B)	105(1)
C(10A)-C(12A)-Br(1A)	108.6(8)	C(10B)-C(12B)-Br(1B)	107.9(9)
O(1A)-C(10C)-C(12C)	111(2)	O(1B)-C(10D)-C(12D)	109(2)
O(1A)-C(10C)-C(11A)	105.3(8)	O(1B)-C(10D)-C(11B)	104.5(8)
C(12C)-C(10C)-C(11A)	118(2)	C(12D)-C(10D)-C(11B)	122(3)
C(10C)-C(12C)-Br(1A)	116(2)	C(10D)-C(12D)-Br(1B)	117(3)
N(1A)-C(11A)-C(10C)	97(1)	N(1B)-C(11B)-C(10B)	101.0(8)
N(1A)-C(11A)-C(10A)	100.3(7)	N(1B)-C(11B)-C(10D)	98(1)
O(2A)-C(13A)-N(2A)	121.6(9)	O(2B)–C(13B)–N(2B)	121.0(9)
O(2A)–C(13A)–C(8A)	117.3(9)	O(2B)–C(13B)–C(8B)	117.2(9)
N(2A)–C(13A)–C(8A)	121.1(9)	N(2B)–C(13B)–C(8B)	121.8(9)
N(2A)C(14A)C(16A)	109.2(8)	N(2B)–C(14B)–C(16B)	108.3(8)
N(2A)-C(14A)-C(15A)	109.6(8)	N(2B)-C(14B)-C(15B)	110.0(8)
C(16A)C(14A)C(15A)	111.3(8)	C(16B)–C(14B)–C(15B)	113.2(8)
Br(6C)- $Br(6B)$ - $Br(5B)$	141(7)	C(10B)–C(11B)–C(10D)	25(2)

Валентные углы (ω) в структуре дитрибромида дихинолиния 4

В кристалле дитрибромид дихинолиния **4** образует стопки вдоль кристаллографического направления [0 0 1] за счёт межмолекулярных водородных связей: C(10A)–H(10A)…Br(5B)' H…Br 2.69 Å, C–H…Br 135°; C(10B)–H(10B)…Br(4A)' (x, 0.5–y, -0.5+z) H…Br 2.83 Å, C–H…Br 139°; C(12C)–H(12C)…Br(5B)' H…Br 2.56 Å, C–H…Br 132°; C(12C)–H(12D)…Br(6)' (x, 0.5–y, -0.5+z) H…Br 2.86 Å, C–H…Br 135°; C(11A)–H(11A)…Br(2A)' (x, 0.5–y, -0.5+z) H…Br 2.77 Å, C–H…Br 135°; C(10D)–H(10D)…Br(6B)' H…Br 2.79 Å, C–H…Br 132°; C(12D)–H(12G)…Br(6B)' H…Br 2.79 Å, C–H…Br 132°; C(12D)–H(12G)…Br(6B)' H…Br 2.73 Å, C–H…Br 121°.

Кроме того, в исследуемом кристалле обнаружена весьма разветвлённая сеть укороченных межмолекулярных контактов: H(10A)...Br(5)' 3.13 (сумма ван-дер-ваальсовых радиусов 3.23 Å), $H(12A)\cdots Br(6)'$ (x, 0.5-y, -0.5+z) 3.04, H(12B)...Br(4A)' (x, 0.5-y, -0.5+z) 3.16, H(12B)...Br(1A)' (x, 0.5-y, -0.5+z 2.98, H(12C)...Br(5A)' (x, 0.5-y, -0.5+z) 3.00, H(12D)...Br(5)' (x, 0.5-y, -0.5+z) 2.94, H(12D)...Br(5A)' (x, 0.5-y, -0.5+z) 3.03, $H(11A)\cdots Br(2B)'(x, 0.5-y, -0.5+z)$ 2.90, $H(11B)\cdots Br(3A)'(x, 0.5-y, -0.5+z)$ 2.91, H(11B)...Br(4A)' (x, 0.5-v, -0.5+z) 3.15, H(15A)...Br(4A)' (x, 0.5-v, -0.5+z)-0.5+z 3.14, H(17D)...Br(3A)' (x, y-1, z-1) 2.93, H(18D)...C(3B)' (x, 0.5-y, -y, z-1) 2.96, $H(10D)\cdots Br(6)'$ 3.12, $H(10D)\cdots Br(5C)'$ 1.70, $H(12E)\cdots Br(5)'$ (x, 0.5-y, -0.5+z 2.98, H(12E)...Br(5C)' 2.68, H(12F)...Br(4B)' (x, y, z-1) 3.16, $H(12F)\cdots Br(1B)'$ (x, 0.5-y, -0.5+z) 2.97, $H(10C)\cdots Br(4B)'$ (x, y, z-1) 2.90, $H(12G)\cdots Br(5C)' = 2.02, \quad H(12H)\cdots Br(5)' = (x, \quad 0.5-y, \quad -0.5+z) = 2.87,$ $H(12H)\cdots Br(6)'(x, 0.5-y, -0.5+z)$ 2.93, $H(12H)\cdots Br(5A)'(x, 0.5-y, -0.5+z)$ 3.12, $H(12H)\cdots Br(6A)'$ (x, 0.5-y, -0.5+z) 2.87, $H(12H)\cdots Br(6B)'$ 3.07, $H(12H)\cdots Br(5C)' 2.27, H(11E)\cdots Br(5C)' 2.89, H(11E)\cdots Br(3B)' (x, y, z-1)$ 2.94, $H(11E)\cdots Br(4B)'(x, y, z-1)$ 3.17, $H(11F)\cdots Br(2A)'(x, y, z-1)$ 2.96, $H(15D)\cdots Br(4B)'$ 3.18 Å, $H(17A)\cdots Br(3B)'$ (x, 1.5-y, -0.5+z) 2.90, $H(18C)\cdots Br(2A)'(x, y, z-1)$ 3.06, $Br(2A)\cdots Br(5)'(x, 0.5-y, 0.5+z)$ 2.90 (3.94) Å), $Br(2A)\cdots Br(5A)'(x, 0.5-y, 0.5+z)$ 3.28, $Br(2A)\cdots Br(5B)'(x, 0.5-y, 0.5+z)$ 3.38, $Br(2A) \cdots Br(5C)'(x, y, 1+z)$ 3.56, $Br(2B) \cdots Br(6)'$ 2.89, $Br(2B) \cdots Br(6A)'$ 3.30, Br(2B)...Br(6B)' 3.45, Br(2B)...Br(5C)' 2.96 Å. В кристалле анионы Br₃⁻ и нейтральные молекулы Br₂ образуют трёхмерную сетку.

Таким образом, по результатам проведенного РСА выявлены две новые особенности протекания реакции N(1)-аллилзамещённых 4-гидроксихинолонов-2 с молекулярным бромом. Первая из них представляет собой способность уже сформировавшихся оксазолохинолинов связывать имеющийся в реакционной смеси свободный бром. Для проявления этого эффекта избыточное количество брома совсем не обязательно, поскольку образование незначительных количеств не растворимых в ледяной уксусной кислоте оранжевых продуктов (очевидно схожих по строению с дитрибромидом дихинолиния 4) неоднократно наблюдалось нами ранее и при строгом соблюдении эквимолярных соотношений реагентов.

Особенно часто это происходит при работе с чистым бромом и, скорее

всего, в таких случаях место имеет всё тот же избыток брома, но только местный. Впрочем, предотвращать данный побочный процесс несложно – для этого достаточно вводить в реакцию не чистый бром, а его разбавленный раствор.

Вторая особенность более интересна. Связана она с необычным 5-гидроксистроением образовавшегося вещества и позволяет внести коррективы в трактовку механизма бромциклизации N(1)-аллилхинолонов-2. Поскольку до настоящего времени из 4-гидроксипроизводных получали исключительно 5-оксо-1,2-дигидрооксазоло[3,2-*a*]хинолины, считалось, что гетероциклизация проходит через биполярные 1,4-дигидроформы [8]. Позже, однако, выяснилось, что заведомо не способные к подобной таутомерии 4-метилзамещённые аналоги галогенциклизуются также легко. В результате для таких случаев был предложен отдельный механизм, предполагающий участие в процессе формирования оксазольного ядра уже совершенно иных по строению ароматических биполярных форм [9].

И только неоспоримый факт выделения 5-гидроксиоксазолохинолина 4, практически идентичного по строению бромиду 2-бромметил-4-карбокси-5-метил-1,2-дигидрооксазоло[3,2-*a*]хинолиния [9], можно рассматривать как первое экспериментальное подтверждение того, что бромциклизация 4-гидрокси- и 4-метилзамещённых N(1)-аллилхинолонов-2 проходит по единому механизму: аллильное производное $5 \rightarrow \pi$ -комплекс $6 \rightarrow$ вторичный карбкатион 7 \leftrightarrow биполярная ароматическая форма $8 \rightarrow$ бромид оксазолохинолиния 9.

Влияние заместителя в положении 4 исходного хинолина **5** сказывается только лишь на заключительной стадии. Бромиды 5-гидроксиоксазоло-1356 хинолиния 9 (R = OH) таутомеризуются в, очевидно, более устойчивые 5-оксоформы 10, которые после разбавления реакционной смеси водой быстро гидролизуются до 5-оксо-1,2-дигидро-5H-оксазоло[3,2-*a*]хинолинов 11. Дитрибромид дихинолиния 4 в силу специфики своего строения оказался достаточно устойчивым и в 5-гидроксиформе. Тем не менее, после его обработки ацетоном (для связывания избыточного брома) и далее водой получен типичный для бромциклизации 4-гидроксихинолонов продукт – изопропиламид 2-бромметил-7,8-диметокси-5-оксо-1,2дигидро-5H-оксазоло[3,2-*a*]хинолин-4-карбоновой кислоты (3). 5-Метилзамещённые бромиды оксазолохинолиния 9 (R = Me) к подобной трансформации не способны и после добавления воды остаются неизменными [9].

Анальгетические свойства алкиламидов 1-аллил-4-гидрокси-6,7-диметокси-2-оксо-1,2-дигидрохинолин-3-карбоновой кислоты **1а**–х изучали на беспородных белых крысах-самцах с использованием детально описанной нами ранее [3] стандартной модели раздражения электрическим током слизистой оболочки прямой кишки [10]. Анализ результатов скрининговых испытаний, представленных в табл. 1, убедительно подтверждает правильность выбранного нами направления – в дозе 20 мг/кг все без исключения алкиламиды **1а–х** в той или иной степени проявляют анальгетическое действие. При этом примерно половина изученных образцов практически не уступают в активности Диклофенаку. Но из всей группы следует особо отметить только одно вещество – 2-гидроксиэтиламид **1q**, который по обезболивающему эффекту значительно превосходит не только диклофенак, но и один из наиболее мощных ненаркотических анальгетиков кеторолак [11, 12].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н алкиламидов **1а–х** записаны на приборе Varian Mercury VX-200 (200 МГц), оксазолохинолинов **3** и **4** – на спектрометре Varian Mercury-400 (400 МГц). Во всех случаях растворитель ДМСО-d₆, внутренний стандарт ТМС. Исходный метиловый эфир 1-аллил-4-гидрокси-6,7-диметокси-2-оксо-1,2дигидрохинолин-3-карбоновой кислоты (**2**) синтезирован по методике работы [2], а его последующее амидирование алкиламинами проведено по методике работы [4].

Изопропиламид 2-бромметил-7,8-диметокси-5-оксо-1,2-дигидро-5Н-оксазоло[3,2-*а*]хинолин-4-карбоновой кислоты (3). Раствор 1.49 г (1 ммоль) дитрибромида дихинолиния **4** в 15 мл ацетона нагревают до кипения, прибавляют 10 мл воды и оставляют на 5–6 ч при температуре ~ 10 °С. Осадок *изо*-пропиламида **3** отфильтровывают, промывают холодной водой, сушат. Выход 0.61 г (72%). После перекристаллизации из этанола получают бесцветные триклинные кристаллы с т. пл. 269–271 °С. Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 10.12 (1H, д, *J* = 7.9, NH); 7.56 (1H, с, H-6); 6.90 (1H, с, H-9); 5.57 (1H, м, CHO); 4.64 (1H, т, *J* = 8.0, NCH); 4.30 (1H, т, *J* = 8.0, NCH); 4.03 (3H, м, CH₂–Br + C<u>H</u>(CH₃)₂); 3.96 (3H, с, OCH₃); 3.87 (3H, с, OCH₃); 1.19 (6H, д, *J* = 7.9, CH(C<u>H₃)₂</u>).

Смешанная проба с образцом изопропиламида **3**, синтезированным бромциклизацией 1N-аллильного производного **1e** [5], не даёт депрессии температуры 1357 плавления, спектры ЯМР ¹Н этих соединений идентичны.

Дитрибромид ди(2-бромметил-5-гидрокси-7,8-диметокси-4-изопропилкарбамоил-1,2-дигидрооксазоло[3,2-*а*]хинолиния) (комплекс с бромом) (4). К раствору 3.46 г (10 ммоль) изопропиламида 1-аллил-4-гидрокси-6,7-диметокси-2оксо-1,2-дигидрохинолин-3-карбоновой кислоты (1е) в 50 мл ледяной уксусной кислоты при интенсивном перемешивании прибавляют раствор 2.6 мл (50 ммоль) брома в 10 мл того же растворителя. Выделившийся оранжевый осадок соединения 4 отфильтровывают, промывают ледяной уксусной кислотой, сушат. Выход 6.49 г (87%). Т. пл. 128–130 °С. Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 8.85 (1H, уш. с, NH); 7.56 (1H, с, H-6); 7.13 (1H, с, H-9); 5.77 (1H, м, CHO); 4.87 (1H, т, *J* = 10.0, NCH); 4.58 (1H, т, *J* = 10.0, NCH); 4.16 (1H, м, C<u>H</u>(CH₃)₂); 4.08 (2H, т. д, *J* = 8.8 и *J* = 4.0, CH₂Br); 4.04 (3H, с, OCH₃); 3.93 (3H, с, OCH₃); 1.27 (6H, д, *J* = 8.0, CH(C<u>H₃)₂). Найдено, %: C 28.74; H 2.72; N 3.60. (C₁₈H₂₂BrN₂O₅)⁺₂ • (Br₃⁻)₂ • Br₂. Bычислено, %: C 28.98; H 2.97; N 3.76.</u>

Рентгеноструктурное исследование дитрибромида дихинолиния 4. Кристаллы моноклинные (AcOH), при –173 °C: a = 31.882(3), b = 18.831(2), c = 7.897(1) Å, $\beta = 90.14(1)$ °, V = 4741.1(8) Å³, $M_r = 745.93$, Z = 8, пространственная группа $P2_1/c$, $d_{\rm выч} = 2.090$ г/см³, μ (Мо $K\alpha$) = 8.508 мм⁻¹, F(000) = 2872. Параметры элементарной ячейки и интенсивности 31538 отражений (8345 независимых, $R_{\rm int} = 0.065$) измерены на дифрактометре Xcalibur-3 (Мо $K\alpha$ излучение, CCD-детектор, графитовый монохроматор, ω -сканирование, $2\theta_{\rm max} = 50^{\circ}$). Поглощение учтено аналитически ($T_{\rm min} = 0.154$, $T_{\rm max} = 0.778$).

Структура расшифрована прямым методом по комплексу программ *SHELXTL* [13]. При уточнении структуры налагались ограничения на длины связей в разупорядоченном фрагменте молекулы катиона O–C_{sp3} 1.44 Å и C_{sp3}–C_{sp3} 1.54 Å. Положения атомов водорода рассчитаны геометрически и уточнены по модели "наездника" с $U_{iso} = nU_{eq}$ неводородного атома, связанного с данным атомом водорода (n = 1.5 для метильных групп и n = 1.2 для остальных атомов водорода). Структура уточнена по F^2 полноматричным МНК в анизотропном приближении для неводородных атомов до $wR_2 = 0.146$ по 8061 отражению ($R_1 = 0.085$ по 6673 отражениям с $F > 4\sigma$ (F), S = 1.166). Полная кристаллографическая информация депонирована в Кембриджском банке структурных данных – депонент ССDС 756719. Межатомные расстояния и валентные углы представлены в табл. 3 и 4 соответственно.

СПИСОК ЛИТЕРАТУРЫ

- 1. И. В. Украинец, Е. В. Моспанова, А. А. Давиденко, А. А. Ткач, О. В. Горохова, *XГС*, 1173 (2010).
- 2. И. В. Украинец, Л. В. Сидоренко, А. А. Давиденко, А. К. Ярош, *XTC*, 560 (2010). [*Chem. Heterocycl. Comp.*, **46**, 445 (2010)].
- И. В. Украинец, А. А. Давиденко, Е. В. Моспанова, Л. В. Сидоренко, Е. Н. Свечникова, XГС, 706 (2010). [Chem. Heterocycl. Comp., 46, 559 (2010)].
- 4. И. В. Украинец, Н. Л. Березнякова, Е. В. Моспанова, *XГС*, 1015 (2007). [*Chem. Heterocycl. Comp.*, **43**, 856 (2007)].
- 5. S. V. Shishkina, O. V. Shishkin, I. V. Ukrainets, N. L. Bereznyakova, A. A. Davidenko, *Acta Crystallogr.*, **E64**, o1031 (2008).
- 6. Ю. В. Зефиров, Кристаллография, **42**, 936 (1997).

^{7.} H.-B. Burgi, J. D. Dunitz, Structure Correlation, VCH, Weinheim, 1994, vol. 2,

p. 741.

- 8. И. В. Украинец, Л. В. Сидоренко, О. В. Горохова, С. В. Шишкина, А. В. Туров, *XIC*, 736 (2007). [*Chem. Heterocycl. Comp.*, **43**, 617 (2007)].
- 9. И. В. Украинец, Н. Л. Березнякова, В. А. Паршиков, А. В. Туров, *XIC*, 1496 (2007). [*Chem. Heterocycl. Comp.*, **43**, 1269 (2007)].
- 10. Л. Н. Сернов, В. В. Гацура, Элементы экспериментальной фармакологии, ППП Типография "Наука", Москва, 2000, с. 41.
- 11. М. Д. Машковский, Лекарственные средства, РИА Новая волна, издатель Умеренков, Москва, 2009, с. 162.
- 12. A. Kleemann, J. Engel, *Pharmaceutical Substances. Synthesis, Patents, Applications, Multimedia Viewer*, Version 2.00, Georg Thieme Verlag, Stuttgart, 2001.
- 13. G. M. Sheldrick, SHELXTL PLUS. PC Version. A System of Computer Programs for the Determination of Crystal Structure from X-ray Diffraction Data. Rev. 5.1 (1998).

Национальный фармацевтический университет, Харьков 61002, Украина e-mail: uiv@kharkov.ua Поступило 01.07.2009

^аИнститут химических технологий Восточно-украинского национального университета им. Владимира Даля, Рубежное 93003, Украина e-mail: mospanov@rune.lg.ua

⁶Винницкий национальный медицинский университет им. Н. И. Пирогова, Винница 21018, Украина e-mail: almusel@mail.ru

^вНТК "Институт монокристаллов" НАН Украины, Харьков 61001, Украина e-mail: sveta@xray.isc.kharkov.com