А. П. Козаченко, О. В. Шаблыкин, А. Н. Чернега^а, В. С. Броварец*

СИНТЕЗ НОВОЙ ГЕТЕРОЦИКЛИЧЕСКОЙ СИСТЕМЫ 7,8-ДИГИДРОИМИДАЗО[1,2-c][1,3]ОКСАЗОЛО[4,5-е]ПИРИМИДИНА

При взаимодействии 2-ациламино-3,3-дихлоракрилонитрилов с этилендиамином образуются 2-(ациламиноцианометилен)имидазолидины. Последние при обработке трифторуксусной кислотой, а затем триэтилортоформиатом превращаются в новые производные оксазоло[4,5-*e*]пиримидина.

Ключевые слова: 5-аминооксазолы, 2-ациламино-3,3-дихлоракрилонитрилы, трифторуксусная кислота, триэтилортоформиат, этилендиамин, гетероциклизация.

Продолжая исследования химии 2-ациламино-3,3-дихлоракрилонитрилов **2**, мы разработали простой и удобный метод синтеза новой гетероциклической системы, в которой оксазольное кольцо аннелировано к 2,3-дигидроимидазо[1,2-*c*]пиримидиновому фрагменту.

Дихлоракрилонитрилы 2, представленные на схеме, легко получаются из доступных аддуктов хлораля с амидами карбоновых кислот 1 [1–4]. При взаимодействии их с N-нуклеофилами (первичными алифатическими и ароматическими аминами) образуются, как правило, производные 5-амино-4-цианооксазола [3, 5, 6]. Совсем по-другому происходит взаимодействие указанных реагентов с 1,4-[N,N]-динуклеофилами, например с этилендиамином. Производные 5-аминооксазола не образуются, а происходит замещение двух атомов хлора в реагентах 2 на фрагмент этилендиамина, что приводит к формированию имидазолидинового кольца и получению продуктов 3 (табл. 1).

В ИК спектрах соединений **3** имеются полосы поглощения валентных колебаний карбонильной группы в области $1652-1673 \text{ см}^{-1}$, а также полосы поглощения связи СN в области $2149-2177 \text{ см}^{-1}$ (табл. 2). В спектрах ЯМР ¹Н этих соединений регистрируются сигналы групп NH (6.55–6.85 м. д.), а также сигналы ароматических и алифатических протонов с соответствующим соотношением интегральных интенсивностей. Кроме того, одно из этих соединений **3**е получено ранее японскими исследователями [5], что не остав-ляет сомнения в строении продуктов **3**.

Вследствие выгодного расположения нитрильной группы и ациламинного остатка в соединениях **3** становится возможной внутримолекулярная циклизация под действием трифторуксусной кислоты (ср. [7–9]) в новые производные оксазола **4**, которые существуют преимущественно в таутомерной форме **5**. Попытка ввести в данную циклизацию соединение **3**е с ацетиламинным остатком не увенчалась успехом, образуется смесь

1-7 a R = Ph, b R = 2-MeC₆H₄, c R = 4-MeC₆H₄, d R = 4-ClC₆H₄; 1-3 e R = Me

неидентифицированных веществ. Характерной особенностью ИК спектров соединений **5а–d** является наличие в них трёх интенсивных полос поглощения в области 1592–1690 см⁻¹, одна из них принадлежит связи C=N имидазолидинового кольца, а две – 5-аминооксазольному фрагменту, что свойственно производным 5-аминооксазола [10]. Кроме того, в них отсутствуют синглетные сигналы в области 2100–2200 см⁻¹, что указывает на участие нитрильной группы в гетероциклизации **3**→**5**.

Наличие в соединениях 5 двух нуклеофильных центров (NH₂ и NH) было использовано нами для формирования пиримидинового цикла. Так, при нагревании производных 5-аминооксазола **5а-d** с триэтилортоформиатом довольно легко происходит замыкание пиримидинового фрагмента (ср. [11]) и с высокими выходами образуются производные новой гетероциклической системы **6**. В ИК спектрах соединений **6а-d** отсутствуют широкие полосы поглощения групп NH₂ и NH в области 2700–3600 см⁻¹, характерные для соединений **5а-d**. Вместе с тем, элементный анализ и масс-спектры указывают на вовлечение фрагмента ортоформиата в состав молекулы продуктов реакции. К тому же, в спектрах ЯМР ¹Н присутствует синглетный сигнал в области 8.14–8.15 м. д., который с большой долей вероятности можно отнести к протону H-2 пиримидинового кольца.

Таблица 1

Соеди-	Брутто- формула	<u>Найдено, %</u> Вычислено, %			Т. пл., °С*	Выход,
нение		С	Н	Ν		70
3 a	$C_{12}H_{12}N_4O$	<u>63.08</u> 63.15	<u>5.22</u> 5.30	<u>24.47</u> 24.55	213–215	52
3b	$C_{13}H_{14}N_4O$	<u>64.54</u> 64.45	<u>5.91</u> 5.82	<u>23.17</u> 23.12	258-260	58
3c	$C_{13}H_{14}N_4O$	<u>64.53</u> 64.45	<u>5.75</u> 5.82	<u>23.03</u> 23.12	245–247	60
3d	$C_{12}H_{11}ClN_4O$	<u>54.94</u> 54.87	$\frac{4.29}{4.22}$	<u>21.38</u> 21.33	224–226	62
3e	$C_7H_{10}N_4O$	<u>50.50</u> 50.59	<u>6.13</u> 6.07	<u>33.78</u> 33.71	203-205**	51
5a	$C_{12}H_{12}N_4O$	<u>63.08</u> 63.15	<u>5.22</u> 5.30	<u>24.48</u> 24.55	193–195	68
5b	$C_{13}H_{14}N_4O$	<u>64.38</u> 64.45	<u>5.75</u> 5.82	<u>23.07</u> 23.12	215–217	72
5c	$C_{13}H_{14}N_4O$	<u>64.37</u> 64.45	<u>5.74</u> 5.82	<u>23.07</u> 23.12	235–237	74
5d	C ₁₂ H ₁₁ ClN ₄ O	<u>54.80</u> 54.87	<u>4.31</u> 4.22	<u>21.41</u> 21.33	219–221	75
6a	$C_{13}H_{10}N_4O$	<u>65.62</u> 65.54	<u>4.16</u> 4.23	<u>23.60</u> 23.52	269–271	84
6b	$C_{14}H_{12}N_4O$	<u>66.59</u> 66.66	<u>4.85</u> 4.79	<u>22.29</u> 22.21	239–241	87
6c	$C_{14}H_{12}N_4O$	<u>66.57</u> 66.66	<u>4.70</u> 4.79	<u>22.28</u> 22.21	267–269	90
6d	C ₁₃ H ₉ ClN ₄ O	<u>57.32</u> 57.26	<u>3.41</u> 3.33	<u>20.62</u> 20.55	292–294	92
7a	$C_{15}H_{11}F_3N_4O_3$	<u>51.21</u> 51.14	<u>3.22</u> 3.15	<u>15.98</u> 15.90	231–233 (разл.)	68
7b	$C_{16}H_{13}F_3N_4O_3$	<u>52.54</u> 52.46	<u>3.63</u> 3.58	<u>15.36</u> 15.30	207–209 (разл.)	71
7c	$C_{16}H_{13}F_3N_4O_3$	<u>52.53</u> 52.46	<u>3.64</u> 3.58	<u>15.35</u> 15.30	225—227 (разл.)	73
7d	$C_{15}H_{10}ClF_{3}N_{4}O_{3}$	<u>46.65</u> 46.59	<u>2.68</u> 2.61	<u>14.55</u> 14.49	230—232 (разл.)	76

Характеристики синтезированных соединений

Растворители для перекристаллизации: 2-пропанол (соединения 3а-е), этанол-вода, 1:1 (соединения 5а-d), этанол (соединения 6а-d, 7а-d).
** Соответствует данным [5].

Таблица2

Соеди- нение	ИК спектр, v, см ⁻¹	$m/z [M]^+$
3 a	3a 1652* (C=O), 2177 (CN), 3100–3300 (NH ac.)	
3b	1673* (C=O), 2149 (CN), 3150–3450 (NH ac.)	242
3c	1655* (C=O), 2171 (CN), 3200-3450 (NH ac.)	242
3d	1657* (C=O), 2155 (CN), 3130-3540 (NH ac.)	262
5a	1605, 1630, 1681, 2940-3550 (NH ac.)	228
5b	1603, 1633, 1690, 2910-3470 (NH ac.)	242
5c	1592, 1638, 1678, 2740-3410 (NH ac.)	242
5d	1596, 1644, 1676, 2750–3300 (NH ac.)	262
6a	1691* (C=N)	238
6b	1694* (C=N)	252
6c	1688* (C=N)	252
6d	1688* (C=N)	272
7a	1672* (C=N), 1705 (C=O)	238
7b	1674* (C=N), 1703 (C=O)	252
7c	1677* (C=N), 1706 (C=O)	252
7d	1670* (C=N), 1710 (C=O)	272

ИК и масс-спектры синтезированных соединений

* Полоса с плечом.

Но все же эти данные не могли однозначно свидетельствовать об образовании новой гетероциклической системы. Попытки вырастить кристаллы соединений 6 для РСА не увенчались успехом, поэтому они были превращены в трифторацетаты 7a-d и для одного из этих соединений было проведено РСА. Общий вид молекулы 7b и её основные длины связей и валентные углы приведены на рисунке и в табл. 4. Центральная трициклическая система O(1)N(1-4)C(1-7) приблизительно планарна – отклонения атомов от среднеквадратичной плоскости не превышают 0.047 Å. Более того, даже экзоциклическое бензольное кольцо С(8-13), несмотря на очевидные стерические затруднения, практически копланарно данной системе (соответствующий двугранный угол составляет лишь 3.2°), что обусловлено эффективным п-п-сопряжением. Атомы N(3) и N(4) имеют плоскотригональную конфигурацию связей, соответствующая сумма валентных углов при этих атомах составляет 359.3 и 359.9°. Особенностью кристаллического строения соединения 7b является образование весьма прочной катион-анионной водородной связи N(4)-H(4)…O(3) с геометрическими параметрами N···O 2.672(4), H···O 1.92(3) Å; NHO 148(3)° (среднестатистическое межатомное расстояние N···O для водородных связей типа N-H···O составляет 2.89 Å [12].

Спектры ЯМР ¹Н синтезированных соединений

1387

Таблица 3

Соеди-	Уиминеские слонги S м л*			
нение	лимические сдвиги, 0, м. д.			
3a	3.42 (4H, м, 2CH ₂); 6.56 (1H, с, NH); 6.65 (1H, с, NH); 7.39–7.92 (5H, м, H аром.); 8.74			
	(1H, c, NH)			
3b	2.36 (3H, с, CH ₃); 3.43 (4H, м, 2CH ₂); 6.48 (1H, с, NH); 6.55 (1H, с, NH);			
	7.18–7.50 (4H, м, H аром.); 8.40 (1H, с, NH)			
3c	2.37 (3H, с, CH ₃); 3.41 (4H, м, 2CH ₂); 6.56 (1H, с, NH); 6.61 (1H, с, NH);			
	7.20–7.80 (4H, м, H аром.); 8.66 (1H, с, NH)			
3d	3.36 (4H, м, 2CH ₂); 6.66 (1H, с, NH); 6.85 (1H, с, NH); 7.52–7.93 (4H, м, Н аром.); 8.92			
	(1H, c, NH)			
5a	4.12 (4H, с, 2CH ₂); 7.64–8.00 (5H, м, Н аром.)**			
5b	2.37 (3H, с, CH ₃); 4.16 (4H, с, 2CH ₂); 7.35–7.88 (4H, м, Н аром.)**			
5c	2.40 (3H, с, CH ₃); 4.15 (4H, с, 2CH ₂); 7.36–7.92 (4H, м, Н аром.); 8.92 (1H, с,			
	NH)**			
5d	4.11 (4H, с, 2CH ₂); 7.65–8.05 (4H, м, Н аром.)**			
6a	3.98–4.12 (4H, м, 2CH ₂); 7.56–8.02 (5H, м, Н аром.); 8.14 (1H, с, Н-2 пиримид.)			
6b	2.66 (3H, с, CH ₃); 3.97-4.15 (4H, м, 2CH ₂); 7.41-7.97 (4H, м, H аром.); 8.14 (1H,			
	с, Н-2 пиримид.)			
6c	2.38 (3H, с, CH ₃); 3.97–4.13 (4H, м, 2CH ₂); 7.38–7.89 (4H, м, H аром.); 8.14 (1H,			
	с, Н-2 пиримид.)			
6d	3.98-4.14 (4H, м, 2CH ₂); 7.62-8.02 (4H, м, Н аром.); 8.15 (1H, с, Н-2 пиримид.)			
7a	4.19 (2H, т, <i>J</i> = 9.7, CH ₂); 4.79 (2H, т, <i>J</i> = 9.7, CH ₂); 7.67–8.15 (5H, м, H аром.);			
	8.99 (1H, c, H-2 пиримид.); 11.65 (1H, ш. c, N ⁺ –H)			
7b	2.75 (3H, с, CH ₃); 4.19 (2H, т, <i>J</i> = 9.6, CH ₂); 4.79 (2H, т, <i>J</i> = 9.6, CH ₂); 7.42–8.10			
	(4H, м, Н аром.); 8.91 (1H, c, H-2 пиримид.); 11.67 (1H, ш. c, N ⁺ –H)			
7c	2.44 (3H, c, CH ₃); 4.18 (2H, T, <i>J</i> = 9.8, CH ₂); 4.78 (2H, T, <i>J</i> = 9.8, CH ₂); 7.49–8.04			
	(4H, м, H аром.); 8.97 (1H, с, H-2 пиримид.); 11.58 (1H, ш. с, N ⁺ –H)			
7d	4.19 (2H, т, <i>J</i> = 9.3, CH ₂); 4.79 (2H, т, <i>J</i> = 9.3, CH ₂); 7.73–8.17 (4H, м, H аром.);			
	8.99 (1H, c, H-2 пиримид.); 11.70 (1H, ш. c, N ⁺ –H)			

* Спектры ЯМР ¹Н соединений **3а**–**d**, **6а**–**d**, **7а**–**d** регистрировали в ДМСО- d_6 , а соединений **5а**–**d** – в СF₃COOD.

** NH и NH₂ в обмене.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры веществ регистрировали на спектрометре Vertex 70, в таблетках KBr, спектры ЯМР ¹H – на приборе Varian-300 (300 МГц), внутренний стандарт ТМС, масс-спектры соединений – на приборе Agilent 1100/DAD/MSD VL G1965. Температуры плавления измеряли на приборе Fisher-Johns.

2-(Ароиламиноцианометилен)имидазолидины За-d. К суспензии 0.05 моль одного из соединений **2а-е** в 100 мл изопропилового спирта при перемешивании добавляют 15 г (0.25 моль) этилендиамина, осадок растворяется, через 3–5 мин выпадают имидазолидины **За-d**, которые отфильтровывают, промывают водой и очищают перекристаллизацией.

5-Амино-2-арил-4-(4,5-дигидро-1Н-имидазол-2-ил)-1,3-оксазолы 5а–d. Раствор 0.005 моль одного из соединений **3а**–d в 10 мл трифторуксусной кислоты перемешивают 10 мин, избыток кислоты удаляют в вакууме, остаток обрабатывают 5% водным раствором NaHCO₃, осадок отфильтровывают, промывают водой и очищают перекристаллизацией.

Общий вид молекулы соединения 7b

Таблица 4

Основные длины связей	l, Å	Валентные углы	ω, град.	
N(1)-C(1)	1.297(5)	C(1)N(1)C(2)	103.7(3)	
N(1)-C(2)	1.385(4)	C(3)N(2)C(4)	111.9(3)	
N(2)–C(3)	1.339(5)	C(5)N(3)C(7)	109.6(3)	
N(2)-C(4)	1.311(5)	C(4)N(3)C(5)	123.8(3)	
N(3)-C(4)	1.351(5)	C(5)N(4)C(6)	111.9(3)	
N(3)-C(5)	1.381(4)			
N(3)-C(7)	1.489(4)			
N(4)–C(5)	1.308(5)			
N(4)-C(6)	1.467(5)			

2-Арил-7,8-дигидроимидазо[1,2-с][1,3]оксазоло[4,5-е]пиримидины 6а-d. Раствор 0.005 моль соответствующего аминооксазола **5а-d** в 20 мл триэтилортоформиата кипятят 20 мин, выпавший осадок отфильтровывают, промывают диэтиловым эфиром и очищают перекристаллизацией.

Трифторацетаты 2-арил-7,8-дигидроимидазо[1,2-с][1,3]оксазоло[4,5-е]пиримидинов 7а-d. Растворяют 0.002 моль одного из соединений 6а-d в 20 мл этилового спирта, прибавляют 1 мл трифторуксусной кислоты, перемешивают раствор 10 мин, упаривают досуха и соединения 7а-d очищают перекристаллизацией.

Рентгеноструктурное исследование монокристалла соединения 7b с линейными размерами $0.04 \times 0.28 \times 0.38$ мм было проведено при комнатной температуре на автоматическом ССД дифрактометре Bruker Apex II (МоКа-излучение, $\lambda = 0.71069$ Å, $\theta_{\text{max}} = 26.5^{\circ}$, $-12 \le h \le 13$, $-24 \le k \le 24$, $-8 \le l \le 9$). Всего было собрано 12 423 отражения (3226 независимых отражений, R_{int} = 0.01). Кристаллы соединения 7b моноклинные, a = 11.1903(4), b = 19.5679(8), c = 7.3233(3) Å, $\beta = 95.598(2)^{\circ}$, V = 1595.9(1) Å³, M = 366.3, Z = 4, $d_{\text{BHY}} = 1.52 \text{ r/cm}^3$, $\mu = 1.31 \text{ cm}^{-1}$, F(000) = 752, пространственная группа $P_1/2n$ (No. 14). Структура расшифрована прямым методом и уточнена МНК в полноматричном анизотропном приближении с использованием комплекса программ CRYSTALS [13]. В уточнении использовано 1473 отражения с $I > 3\sigma(I)$ (239 уточняемых параметров, число отражений на параметр 6.2). Все атомы водорода были выявлены из разностного синтеза электронной плотности и включены в уточнение с фиксированными позиционными и тепловыми параметрами (за исключением атома H(4), участву-ющего в межмолекулярной водородной связи, который был уточнён изотропно). При уточнении была использована весовая схема Чебышева [14] с пятью пара-метрами: 0.65, 0.38, 0.55, 0.14 и 0.19. Окончательные значения факторов расходи-мости R = 0.047 и $R_w = 0.047$, GOOF 1.178. Остаточная электронная плотность из разностного ряда фурье составляет -0.26 и 0.46 e/Å³. Полный набор рентгено-структурных данных для соединения 7b депонирован в Кембриджском банке структурных данных (депонент CCDC 785919).

СПИСОК ЛИТЕРАТУРЫ

- 1. K. Matsumura, T. Saraie, N. Hashimoto, Chem. Commun., 705 (1972).
- Б. С. Драч, Э. П. Свиридов, А. А. Кисиленко, А. В. Кирсанов, ЖОХ, 9, 1818 (1973).
- 3. Б. С. Драч, Э. П. Свиридов, Т. Я. Лавренюк, *ЖОрХ*, **10**, 1271 (1974).
- 4. K. Matsumura, T. Saraie, N. Hashimoto, Chem. Pharm. Bull., 24, 912 (1976).
- 5. K. Matsumura, T. Saraie, N. Hashimoto, Chem. Pharm. Bull., 24, 924 (1976).
- 6. Б. С. Драч, Г. Н. Миськевич, *ЖОрХ*, **13**, 1398 (1977).
- 7. D. Clerin, J.-P. Fleury, Bull. Soc. Chim. Fr., 3127 (1973).
- 8. D. Clerin, J.-P. Fleury, Bull. Soc. Chim. Fr., 3134 (1973).
- 9. D. Clerin, B. Meyer, J.-P. Fleury, Bull. Soc. Chim. Fr., 2053 (1976).
- 10. H. Nayer, R. Gindicelli, J. Menin, Bull. Soc. Chim. Fr., 2052 (1960).
- 11. A.-R. Farghaly, H. El-Kashef, Monatsh. Chem., 137, 1195 (2006).
- 12. L. N. Kuleshova, P. M. Zorkii, Acta Crystallogr., B37, 1363 (1981).
- D. J. Watkin, C. K. Prout, J. R. Carruthers, P. W. Betteridge, *CRYSTALS*, *Issue 10*. Chemical Crystallography Laboratory, Univ. Oxford, 1996.
- 14. J. R. Carruthers, D. J. Watkin, Acta Crystallogr., A35, 698 (1979).

Институт биоорганической химии и нефтехимии НАН Украины, Киев 02660, Украина e-mail: brovarets@bpci.kiev.ua Поступило 30.12.2009

^аИнститут органической химии НАН Украины, Киев 02094, Украина