Б. В. Черница, А. Ю. Ершов^{*}, В. А. Дорошенко, С. И. Якимович^a, И. В. Лагода^б, И. В. Зерова^a, В. В. Пакальнис^a, В. В. Шаманин

КОЛЬЧАТО-ЦЕПНАЯ ТАУТОМЕРИЯ 2-МЕРКАПТОБЕНЗОИЛГИДРАЗОНОВ АРОМАТИЧЕСКИХ АЛЬДЕГИДОВ

Методом спектроскопии ЯМР ¹Н показано, что 2-меркаптобензоилгидразоны ароматических альдегидов 2-HSC₆H₄CONHN=CHC₆H₄X (X = 4-NO₂, 3-NO₂, 4-Br, H, 4-Me, 4-MeO, 4-Me₂N) существуют в растворе ДМСО-d₆ в виде таутомерной смеси линейной и циклической бензо-1,3,4-тиадиазепиновой форм. Линейная гидразонная форма представлена (*E*,*Z*)-конформационными изомерами, отличающимися расположением относительно амидной связи С–N. Показано, что логарифмы констант таутомерного равновесия $K_{\rm T}$ коррелируют с σ -константами заместителей в ароматическом ядре.

Ключевые слова: бензо-1,3,4-тиадиазепины, 2-меркаптобензоилгидразоны, кольчато-цепная таутомерия, уравнение Гаммета.

Ранее было показано, что 2-меркаптобензоилгидразоны алифатических альдегидов существуют в растворах в виде таутомерной смеси линейной и циклической бензо-1,3,4-тиадиазепиновой форм; положение равновесия определяется эффективным объёмом концевого алкильного заместителя [1].

2 a X = 4-NO₂, b X = 3-NO₂, c X = 4-Br, d X = H, e X = 4-Me, f X = 4-MeO, g X = 4-Me₂N

1404

Целью данной работы, являющейся продолжением предыдущих исследований, было изучение строения продуктов конденсации гидразида 2-меркаптобензойной кислоты с серией ароматических альдегидов, а также влияния электронных свойств заместителя в ароматическом кольце альдегидной составляющей на положение таутомерного равновесия.

Соединения **2а–***g* были получены с выходами 65–90% после непродолжительного выдерживания эквимолярных количеств гидразида 2-меркаптобензойной кислоты **1** и соответствующего ароматического альдегида в метанольном растворе при 25 °C (см. табл. 1 и экспериментальную часть).

В спектрах ЯМР ¹Н растворов в ДМСО- d_6 всех синтезированных соединений имеются сигналы, отвечающие как линейной **A**, так и циклической

Таблица 1

Соеди- Брутто-		<u>Найдено, %</u> Вычислено,%			Т. пл., °С	Выход,
нение	формула	С	Н	Ν		%0
2a	$C_{14}H_{11}N_3O_3S$	<u>55.87</u>	3.60	<u>13.89</u>	207-209	80
2b	$C_{14}H_{11}N_3O_3S$	55.80 <u>55.76</u>	$\frac{3.68}{3.73}$	13.95 <u>14.04</u>	206-208	85
2c	C ₁₄ H ₁₁ BrN ₂ OS	55.80 <u>50.21</u>	3.68 <u>3.27</u>	<u>8.41</u>	189–191	70
2d	$C_{14}H_{12}N_2OS$	50.16 <u>65.67</u>	$\frac{3.31}{4.67}$	8.36 <u>11.02</u>	161–163	75
2e	$C_{15}H_{14}N_2OS$	65.60 <u>66.58</u>	4.72 <u>5.28</u>	10.93 10.30 10.26	174–176	85
2f	$C_{15}H_{14}N_2O_2S$	$\frac{66.64}{63.01}$	$\frac{5.22}{4.86}$	<u>9.82</u>	166–168	80
2g	$\mathrm{C_{16}H_{17}N_{3}OS}$	64.24 64.10	4.93 <u>5.67</u> 5.72	<u>13.98</u>	170-172	65
3a	$C_{28}H_{20}N_6O_6S_2$	<u>55.93</u>	$\frac{3.41}{3.36}$	<u>13.92</u> 13.00	258-260	90
3b	$C_{28}H_{20}N_6O_6S_2$	<u>56.04</u>	$\frac{3.30}{2.26}$	<u>14.04</u> 12.00	261–263 261–263	90
3c	$C_{28}H_{20}Br_2N_4O_2S_2$	<u>50.28</u>	<u>2.96</u>	<u>8.43</u>	263–264 [2] 234–236	80
3d	$C_{28}H_{22}N_4O_2S_2$	50.31 <u>65.91</u>	$\frac{3.02}{4.29}$	8.38 <u>11.05</u> 10.07	220-222	85
3e	$C_{30}H_{26}N_4O_2S_2$	65.86 <u>66.94</u>	4.34 <u>4.91</u>	10.97 <u>10.38</u>	237-240	90
3f	$C_{30}H_{26}N_4O_4S_2$	66.89 <u>63.07</u> 62.14	$\frac{4.86}{4.64}$	10.40 <u>9.77</u> 0.82	254-256	80
3g	$C_{32}H_{32}N_6O_2S_2$	<u>64.35</u> 64.40	4.59 <u>5.36</u> 5.40	9.82 <u>14.12</u> 14.08	252–253 [2] 239–240 241–243 [2]	75

Физико-химические характеристики соединений 2а-д и За-д

Таблица 2 1405

	Таутомер-	Химические			
Соеди- нение	ный состав, %	HC=N, с или H-2, д	NH	$K_{\mathrm{T}} = [\mathbf{B}]/[\mathbf{A}]^*$	
2a	(E,E')-A (6)	8.38	12.30 (уш. с)	0.754	
	(<i>E</i> , <i>Z</i> ')- A (51)	8.45	12.18 (уш. с)		
	B (43)	5.92 (J = 6.2)	6.41		
			(д. д, <i>J</i> = 6.2, <i>J</i> = 2.5), 9.70 (д , <i>J</i> = 2.5)		
2b	(E,E')-A (6)	8.31	12.27 (уш. с)	0.695	
	(E,Z')-A (53)	8.48	12.17 (уш. с)		
	B (41)	5.95 (<i>J</i> = 6.6)	6.43 (д. д, <i>J</i> = 6.6, <i>J</i> = 2.7), 9.71 (д, <i>J</i> = 2.7)		
2c	(E,E')-A (9)	8.10	12.08 (уш. с)	0.587	
	(E,Z')-A (54)	8.33	11.95 (уш. с)		
	B (37)	5.74 (J = 6.8)	6.26		
			(д. д, <i>J</i> = 6.8, <i>J</i> = 3.0), 9.62 (д, <i>J</i> = 3.0)		
2d	(E,E')-A (10)	8.13	12.02 (уш. с)	0.408	
	(E,Z')-A (61)	8.36	11.88 (уш. с)		
	B (29)	5.73 (J = 6.6)	6.21		
			(д. д, $J = 6.6, J = 2.7$), 9.61 (д, $J = 2.7$)		
2e	(E,E')-A (10)	8.09	11.95 (уш. с)	0.370	
	(E,Z')-A (63)	8.10	11.81 (уш. с)		
	B (27)	5.68 (J = 6.8)	6.16		
			(д. д, <i>J</i> = 6.8, <i>J</i> = 2.9), 9.59 (д, <i>J</i> = 2.9)		
2f	(E,E')-A (11)	8.06	11.88 (уш. с)	0.205	
	(E,Z')-A (72)	8.29	11.75 (уш. с)		
	B (17)	5.67 (J = 7.0)	6.14		
			(д. д, $J = 7.0, J = 2.7$), 9.57 (д, $J = 2.7$)		
2g	(<i>E</i> , <i>E</i> ')- A (13)	7.98	11.58 (уш. с)	0.075	
	(E,Z')-A (80)	8.20	11.71 (уш. с)		
	B (7)	5.61 ($J = 7.0$)	6.05		
			(д. д, J = 7.0, J = 3.9), 9 55 (д. $I = 3.9$)		
	l	l	<i>у.33 (д, J = 3.9)</i>		

Спектры ЯМР ¹Н соединений 2а-д

* [A] – суммарное содержание форм (E,E')-А и (E,Z')-А.

бензо-1,3,4-тиадиазепиновой В таутомерным формам; при этом в спектрах сигналы линейного таутомера удвоены.

Наблюдаемое удвоение сигналов линейной формы А в спектрах ЯМР ¹H соединений **2**a-g следует связать с наличием конформационных (Е', Z')-изомеров, различающихся расположением заместителей относительно амидной связи C-N; при этом основному изомеру следует приписать (E,Z')-построение, а минорному изомеру (E,E')-пространственное расположение. Существование (E,Z)-конфигурационной изомерии относительно связи C=N нами не рассматривалось, поскольку альдоацилгидразоны существуют преимущественно или полностью в (E)-конфигурации относительно этой связи [3–5].

Отнесение сигналов (E,E')- и (E,Z')-изомеров линейной формы A основано на известном различии в положении сигналов азометиновых протонов конформационных (E',Z')-изомеров в спектрах ЯМР ¹Н; сигналы (E')-изомера этой группы располагаются в более слабых полях, чем аналогичные сигналы (Z')-изомера (табл. 2). Обратное значение обоих сигналов в спектрах ЯМР ¹Н наблюдается для протонов групп NHCO (E',Z')-конформеров [6]. Учитывая сказанное выше, можно утверждать, что основный изомер имеет (E,Z')-постро- ение, а минорный изомер – (E,E')-пространственное расположение.

О существовании в растворе ДМСО- d_6 циклической формы **В** можно судить по дублетным сигналам протонов H-2 и NHCO при 5.8 и 9.6 м. д., соответственно, а также по дублет-дублетному сигналу протона группы NH при 6.2 м. д., которой обусловлен спин-спиновым взаимодействием с протонами в положениях 2 и 4 семичленного бензо-1,3,4-тиадиазепинового гетероцикла.

Введение электроноакцепторных заместителей в ароматическое кольцо альдегидной составляющей приводит к смещению кольчатоцепного равновесия $\mathbf{A} \neq \mathbf{B}$ в сторону циклической бензо-1,3,4-тиадиазепиновой формы (табл. 2), при этом наблюдается линейная корреляция логарифмов констант таутомерного равновесия $K_{\rm T}$ с σ -константами Гаммета [7, 8]; использование σ^+ -констант Брауна [8] улучшает корреляцию (табл. 3).

Подобная закономерность объясняется тем, что электроноакцепторные заместители усиливают электрофильность атома углерода связи C=N, присоединение к которой SH-функции приводит к образованию бензо-1,3,4-тиадиазепинового таутомера **В**. Конформационное равновесие внутри линейного таутомера в меньшей степени чувствительно к природе заместителя в ароматическом кольце; по-видимому, в обеих линейных формах (*E*,*E*')-**A** и (*E*,*Z*')-**A** реализуются идентичные системы сопряжения, одинаковым образом реагирующие на изменение электронных параметров заместителя.

Соединения 2а-д склонны к окислению с образованием продуктов димеризации 3а-д, имеющих линейное бис-гидразонное строение. Этот

Таблица З

Корреляция логарифмов констант таутомерного равновесия $K_{\rm T}$ с константами Гаммета σ и Брауна σ^+ по уравнению: $\lg K_{\rm T} = A + B \cdot X$

Х	A	В	r	s _D	п
σ	-0.520 ± 0.043	0.614 ± 0.081	0.959	0.112	7
σ^+	-0.406 ± 0.028	0.423 ± 0.034	0.987	0.064	6
	<u>I</u>	ļ	Į	Į	Таблица 4

Спектры ЯМР ¹Н соединений За-д

1407

Соеди- нение	Химические сдвиги, б, м. д.				
	HC=N (c)	NH (2H, уш. с)	Аг (м)		
3a	8.50	12.37	7.26-8.50 (16H)		
3b	8.52	12.34	7.26–8.28 (16H)		
3c	8.38	12.14	7.24–7.76 (16H)		
3d	8.41	12.07	7.32–7.75 (18H)		
3e	8.36	12.00	2.28 (6H, c, 2CH ₃); 7.13–7.74 (16H)		
3f	8.34	11.93	3.81 (6H, c, 2CH ₃ O); 7.02–7.71 (16H)		
3g	8.25	11.77	3.04 (6H, c, 2CH ₃ N); 6.75–7.72 (16H)		

процесс, судя по съёмке спектров ЯМР ¹Н во времени, начинается через 3-5 ч после растворения соединений **2а–g** в ДМСО-d₆ и заканчивается через несколько суток количественным образованием димеров **3а–g**.

Соединения **3а– д** также можно получить с высокими выходами при обработке метанольных растворов 2-меркаптобензоилгидразонов **2а– д** 5% раствором H_2O_2 (экспериментальная часть). В спектрах ЯМР ¹Н соединений **3а– д** наблюдается один набор резонансных сигналов, отвечающий конформационному (*E*,*Z*)-изомеру относительно амидной связи С–N (табл. 4).

 $2a-g \longrightarrow H \xrightarrow{H} N \xrightarrow{N} O \xrightarrow{S-S} O \xrightarrow{H} C_6H_4X$

3 a X = 4-NO₂, b X = 3-NO₂, c X = 4-Br, d X = H, e X = 4-Me, f X = 4-MeO, g X = 4-Me₂N

Таким образом, в отличие от известных в литературе [9, 10] продуктов конденсации ароматических альдегидов с гидразидами 2-гидрокси- и 2-аминобензойной кислот, 2-меркаптобензоилгидразоны проявляют склонность к циклизации с образованием семичленного бензо-1,3,4-тиадиазепинового цикла. Это естественное отражение значительно большей нуклеофильности атома серы по сравнению с атомами кислорода и азота OH- и NH-функций в гидразонах, полученных при использовании гидразидов 2-гидрокси- и 2-аминобензойной кислот. В этом отношении 2-меркаптобензоилгидразоны 2а-д близки к иссленами ранее продуктам конденсации дованным ароматических альдегидов с гидразидами тиобензойной и тиогликолевой кислот, для которых внутримолекулярная атака атомом серы по связи С=N гидразонного фрагмента приводит к образованию 1,3,4-тиадиазолинового [11] и 1,3,4-тиадиазинового [12] циклов соответственно.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н снимались на спектрометре Bruker AV-400 (400 МГц) в 1408

ДМСО-d₆, внутренний стандарт ГМДС. Количественный состав таутомерных форм определялся интегрированием соответствующих сигналов в спектрах ЯМР ¹Н; погрешность измерения ± 1%. Контроль протекания реакций и чистоты полученных соединений осуществлялся методом TCX на пластинках марки Silufol UV-254 в системах бензол–ацетон, 4:1.

Гидразид 2-меркаптобензойной кислоты 1 получен по известной методике [2].

2-Меркаптобензоилгидразоны ароматических альдегидов 2а-д. Смесь 10 ммоль карбонильного соединения и 1.68 г (10 ммоль) гидразида 2-меркаптобензойной кислоты **1** в 50 мл метанола выдерживают при 25 °C в течение 2 ч. Выпавшие кристаллы отфильтровывают, промывают эфиром и сушат.

2,2'-Дитиобензоилгидразоны ароматических альдегидов За–g. К раствору 5 ммоль соединения **2а–g** в 5 мл метанола добавляют 0.5 мл 5% раствора H_2O_2 и выдерживают при 25 °C в течение 2 ч. Выпавшие кристаллы отфильтровывают, промывают эфиром и сушат.

СПИСОК ЛИТЕРАТУРЫ

- А. Ю. Ершов, И. В. Лагода, М. В. Мокеев, С. И. Якимович, И. В. Зерова, В. В. Пакальнис, В. В. Шаманин, *ХГС*, 460 (2008). [*Chem. Heterocycl. Comp.*, 44, 356 (2008)].
- 2. L. Katz, L. S. Karger, W. Schroeder, M. S. Cohen, J. Org. Chem., 18, 1380 (1953).
- 3. Ю. П. Китаев, Б. И. Бузыкин, Гидразоны, Наука, Москва, 1974, с. 381.
- 4. Н. А. Парпиев, В. Г. Юсупов, С. И. Якимович, Х. Т. Шарипов, *Ацилгидразоны и их комплексы с переходными металлами*, Фан, Ташкент, 1988, с. 163.
- 5. G. J. Karabatsos, J. D. Draham, F. M. Vane, J. Am. Chem. Soc., 84, 753 (1962).
- 6. К. Н. Зеленин, С. В. Олейник, В. В. Алексеев, А. А. Потехин, *ЖОХ*, **71**, 1182 (2001).
- 7. Ю. А. Жданов, В. И. Минкин, *Корреляционный анализ в органической химии*, Изд-во Рост. ун-та, Ростов-на-Дону, 1966, с. 470.
- 8. H. C. Brown, Y. Okamoto, J. Am. Chem. Soc., 80, 4979 (1958).
- 9. А. В. Долгарев, В. В. Лукачина, О. И. Карпова, *Журн. аналит. химии*, **29**, 721 (1974).
- 10. С. А. Флегонтов, З. С. Титова, А. П. Столяров, Б. И. Бузыкин, Ю. П. Китаев, Изв. АН СССР. Сер. хим., 1014 (1979).
- 11. К. Н. Зеленин, В. В. Алексеев, *XГС*, 571 (1992). [*Chem. Heterocycl. Comp.*, **28**, 481 (1992)].
- 12. А. Ю. Ершов, И. В. Лагода, С. И. Якимович, В. В. Пакальнис, И. В. Зерова, А. В. Добродумов, В. В. Шаманин, *ЖОрХ*, **45**, 678 (2009).

Институт высокомолекулярных соединений РАН, Санкт-Петербург 199004, Россия e-mail: ershov305@mail.ru Поступило 21.01.2010

^аСанкт-Петербургский государственный университет, Санкт-Петербург 198504, Россия e-mail: viktoriapakalnis@mail.ru

⁶Научно-исследовательский испытательный центр (медико-биологической защиты) Государственного научно-исследовательского испытательного института военной медицины МО РФ, Санкт-Петербург 195043, Россия e-mail: lagodai@peterstar.ru