

Химия гетероциклических соединений 2019, 55(11), 1013–1034

Посвящается светлой памяти профессора, д. х. н. Ю. Ю. Моржерина

Синтез и свойства би- и трициклических 1,3-тиазолиновых/тиазолидиновых ансамблей, связанных экзоциклической двойной связью C=C

Константин Л. Обыденнов¹*, Татьяна В. Глухарева^{1,2}

¹ Уральский федеральный университет им. первого Президента России Б. Н. Ельцина, ул. Мира, 19, Екатеринбург 620002, Россия; e-mail: k.l.obydennov@urfu.ru

² Институт органического синтеза им. И. Я. Постовского УрО РАН,

ул. С. Ковалевской, 22 / Академическая, 20, Екатеринбург 620990, Россия e-mail: taniagluhareva@yandex.ru Поступило 27.04.2019 Принято 20.05.2019

В обзоре обобщены, систематизированы и проанализированы литературные данные за последние 15 лет, посвященные методам получения и свойствам би- и трициклических ансамблей, построенных из 1,3-тиазолиновых/тиазолидиновых циклов, связанных экзоциклической двойной связью С=С. Наиболее подробно рассмотрены примеры таких ансамблей, представляющие интерес в качестве биологически активных веществ, красителей-сенсибилизаторов для солнечных элементов и полупроводников. Материал систематизирован по типу химической структуры.

Ключевые слова: би(1,3-тиазолинилидены), 1,3-тиазолидины, 1,3-тиазолины, родацианины, хиноидальные гетероциклы, гетероциклические ансамбли, красители-сенсибилизаторы, полупроводники, фотовольтаические ячейки, экзоциклическая двойная связь.

За последние 10 лет 1,3-тиазолинам и 1,3-тиазолидинам посвящено большое количество обзорных работ.¹⁻¹⁰ Эти гетероциклы привлекают внимание ученых прежде всего благодаря широкому спектру биологической активности их производных.^{4,11–21}

В последние годы в химии 1,3-тиазолинов и 1,3-тиазолидинов выделяется активно развивающееся направление, изучающее гетероциклические ансамбли,^{22,23} в которых 1,3-тиазолиновый/тиазолидиновый цикл соединен двойной связью С=С с другим 1,3-тиазолиновым/ тиазолидиновым циклом (С=С-связанные ансамбли 1,3-тиазолинов/тиазолидинов). Повышенный интерес к подобным ансамблям вызван наличием в их ряду соединений, зарекомендовавших себя в различных прикладных областях науки. Так, например, олигороданины 1 являются классическими красителями-сенсибилизаторами в фотогальванических устройствах,²⁴⁻³⁰ диазадитиафульвалены (ДДФ) **2** – перспективными органическими полупроводниками,^{31–36} [0,0,0]-родацианины **3** успешно проходят доклиниче-

Рисунок 1. Би- и трициклические ансамбли 1,3-тиазолинов/ тиазолидинов.

ские испытания как эффективные антималярийные препараты¹⁰ (рис. 1).

7 8 9 C(2)=C(4')- C(2)=C(5')- C(4)=C(5')-

connected assembly connected assembly connected assembly **Рисунок 2**. Варианты C=C-связывания 1,3-тиазолиновых/ тиазолидиновых циклов в бициклические ансамбли **4**–**9**.

Исходя из структурных особенностей 1,3-тиазолидинового цикла возможны 6 способов соединения в бициклические ансамбли с помощью экзоциклической двойной связи C=C (рис. 2). Образованные би (1,3-тиазолидины/тиазолины) можно разделить на симметричные (соединения 4–6) и несимметричные (соединения 7–9).

Следует отметить, что ранее обзоров, обобщающих сведения о С=С-связанных 1,3-тиазолиновых/тиазолидиновых ансамблях, опубликовано не было. В 2004 г. Лорси и Беллэк³¹ опубликовали обзор, посвященный диазадитиафульваленам (C(2)=C(2')-связанным тиазолиновым ансамблям 4). [0,0,0]-Родацианины 3 (С(2)=С(5')-связанные тиазолидиновые ансамбли 8) обсуждаются в обзоре Такасу¹⁰ наравне с другими ансамблями гетероциклическими 1,3-тиазолидина, имеющими структуру π-делокализованных липофильных катионов. Также С=С-связанные би- и трициклические 1,3-тиазолидиновые ансамбли описываются в нескольких обзорах^{2,3,8,10} наряду с моноциклическими 1,3-тиазолидинами. Однако в упомянутых выше обзорах освещены не все исследования, посвященные синтезу и свойствам С=С-связанных ансамблей 1,3-тиазолинов/тиазолидинов. В связи с вышеизложенным обобщение и систематизация подходов к синтезу этих гетероциклических соединений, выявление особенностей их молекулярной структуры, а также зависимостей структура-свойства остаются важными задачами.

Настоящий обзор отражает последние достижения в химии ди- и трициклических С=С-связанных ансамблей 1,3-тиазолина/тиазолидина. Особое внимание в нем уделено методологиям получения этих ансамблей и последним исследованиям, посвященным их применению в органическом синтезе полупроводников, красителей и биологически активных веществ. В первой части обзора рассматриваются особенности системы сопряжения в С=С-связанных ансамблях, построенных из 1,3-тиазолиновых/тиазолидиновых циклов. Вторая часть посвящена описанию свойств и методов синтеза этих ансамблей и структурирована по принципу соединения 1,3-тиазолиновых/тиазолидиновых циклов в молекуле.

1. ОБЩАЯ ХАРАКТЕРИСТИКА СИСТЕМЫ СОПРЯЖЕНИЯ В С=С-СВЯЗАННЫХ АНСАМБЛЯХ 1,3-ТИАЗОЛИНОВ/ТИАЗОЛИДИНОВ

Система сопряжения в С=С-связанных ансамблях 1,3-тиазолинов/тиазолидинов обусловливает их, как правило, планарную пространственную структуру. ³⁷⁻⁴⁵ Важной структурной характеристикой С=С-связанных ансамблей 1,3-тиазолинов/тиазолидинов является длина и конфигурация центральной связи $C(sp^2)=C(sp^2)$. По данным PCA, ее длина находится в диапазоне значений 1.34–1.45 Å (рис. 3), что характерно для двойных и частично двойных связей.

Важным фактором, влияющим на увеличение длины связи С=С, является ее поляризация. Способность экзоциклической двойной связи С=С 1,3-тиазолинов/ тиазолидинов к поляризуемости всесторонне исследовалась на примере моноциклических производных 1,3-тиазолидин-2-илидена в работах Баранац-Стоянович с соавторами. В них рассматривались следующие факторы, влияющие на пуш-пульный (*push-pull*) эффект в 1,3-тиазолидин-2-илиденах: внутримолекулярные водородные связи, взаимодействия 1,5-S…X, ароматизация гетероцикла, а также внутримолекулярные стерические эффекты.⁴⁶⁻⁵¹

Влияние этих факторов на поляризацию и порядок центральной тетразамещенной двойной связи $C(sp^2)=C(sp^2)$ проявляется и в C=C-связанных ансамблях 1,3-тиазолинов/ тиазолидинов, однако в литературе практически отсутствуют работы, посвященные исследованию этого вопроса.

Рисунок 3. 2,2'-Би(1,3-тиазолинилидены) 10–14 с известной длиной центральной двойной связи C=C.

Рисунок 4. 5,5'-Би(1,3-тиазолидинилидены) 15-23 с известной длиной центральной двойной связи С=С.

Влияние перечисленных выше эффектов можно оценить, установив длину двойной экзоциклической связи, например, по данным рентгено-структурного анализа,⁵² определив значение энергетического барьера вращения вокруг этой связи (ΔG^{\pm}),^{52–54} разницу значений химических сдвигов атомов углерода связи C=C в спектрах ЯМР ¹³C ($\Delta \delta_{C=C}$),^{50,55–58} или соотношение заселенности разрыхляющей (π^*) и связывающей π -орбиталей.^{54,59}

Для симметричных 2,2'-би(1,3-тиазолинилиденов)³⁷ 10 и 11 длина связи $C(sp^2)=C(sp^2)$ равна длине связи в этилене – 1.34 Å⁴⁵ (рис. 3). Однако в ансамблях с дициановинилиденовыми заместителями 12 и 13 ·CH₂Cl₂^{38,39} уже наблюдается удлинение экзоциклической связи $C(sp^2)=C(sp^2)$ до 1.38 и 1.36 Å соответственно. Объемные (4-фенил-3,5-дициано-6-этоксипиридин-2-ил)иминовые заместители также приводят к удлинению центральной двойной связи до 1.38 Å в соединении 14.^{60,61}

В то же время на длину двойной связи $C(sp^2)=C(sp^2)$ оказывают влияние нековалентные взаимодействия 1,5-S···X,⁶² возникающие в результате экспансии электронов с несвязывающей орбитали (n_X) гетероатома заместителя C=X в *орто*-положении одного тиазолидинового цикла на разрыхляющую орбиталь (σ^*_S) атома серы другого тиазолидинового цикла, что может быть изображено с помощью резонансных структур (схема 1).

Схема 1

Так, за счет этих внутримолекулярных взаимодействий происходит удлинение двойной связи $C(sp^2)=C(sp^2)$ для соединений **15–23** (рис. 4). Это отчетливо наблюдается при сравнении геометрии в кристалле 5,5'-битиазолидинилиденов **15–23**, отличающихся экзоциклическим гетероатомом в положении 4. В случае карбонильной группы длина центральной двойной связи находится в диапазоне 1.34–1.35 Å (соединения 15, 40,62 16, 40,63 17, 40,64 18 40,65). В то же время в случае тиокарбонильной группы (соединения 19, 40,41 20, $^{66-69}$ 21, 40,70 22, 71,72 23 45,73) длина центральной двойной связи составляет 1.37–1.38 Å. Данное различие может быть объяснено более сильным перекрыванием орбиталей $n_{\rm S}$ – $\sigma_{\rm S}$ * по сравнению с орбиталями $n_{\rm O}$ – $\sigma_{\rm S}$ *.

Формирование мероцианиновой системы (схема 2) также приводит к удлинению центральной связи $C(sp^2)=C(sp^2)$, что было зафиксировано в кристаллах ансамбля 24.^{42,43}

Схема 2

Снижение кратности центральной связи $C(sp^2)=C(sp^2)$ характерно также для анион-радикальных солей 25,^{74,75} $26^{69,76}$ и $27^{45,69}$ (рис. 5). По данным РСА их кристаллов, длина центральной связи C(sp²)=C(sp²) (1.41-1.45 Å) превышает значение, наблюдаемое для ансамблей 20 и 23 (1.37-1.38 Å). Комплекс 25 образуется за счет переноса электрона с би(1,3-тиазолин-2-илидена) на тетрацианохинодиметан (TCNQ) (схема 3), в то время как в комплексах с декаметилферроценом ($Fe(Cp^*)_2$) 26, 27 и тетраметилтетратиафульваленом (TMTTF) 28 би(1,3-тиазолидин-2-илидены), напротив, выступают в качестве акцепторов электрона.44,45 Интересно отметить, что в комплексном соединении 28 длина центральной связи $C(sp^2)=C(sp^2)$ близка к длине соответствующей связи в ансамбле 23 и равна 1.38 Å, что, по мнению авторов, указывает на образование нейтрального комплекса с переносом заряда.

Таким образом, несмотря на влияние различных факторов, центральная связь в 1,3-тиазолиновых/тиазолидиновых ансамблях в кристалле является двойной

Рисунок 5. Анион-радикальные соли и комплексы 25–28 с переносом заряда би(1,3-тиазолинилиденов/тиазолидинилиденов) с известной длиной центральной двойной связи С=С.

или частично двойной. В то же время в литературе нами не обнаружено сведений о явлении *E*,*Z*-изомерии данных ансамблей, что косвенно свидетельствует о значительной энергетической выгоде образования *E*-изомера по сравнению с *Z*-изомером. В ряде случаев *E*-конфигурация двойной связи стабилизирована также внутримолекулярными нековалентными взаимодействиями.⁷⁷ Внутримолекулярные электронные эффекты (поляризация, нековалентные взаимодействия, стерические факторы), приводящие к частичному уменьшению порядка центральной связи, в большинстве случаев не нарушают планарность бициклического фрагмента 1,3-тиазолиновых/тиазолидиновых ансамблей. Примеры нарушения планарности бициклического фрагмента 1,3-тиазолиновых/тиазолидиновых ансамблей главным образом обусловлены межмолекулярными взаимодействиями.³⁷

2. СИНТЕЗ И ПРАКТИЧЕСКОЕ ЗНАЧЕНИЕ СИММЕТРИЧНЫХ БИ(1,3-ТИАЗОЛИНИЛИДЕНОВ/ ТИАЗОЛИДИНИЛИДЕНОВ)

Би(1,3-тиазолинилидены/тиазолидинилидены) могут быть отнесены к различны типам (рис. 2) в зависимости от способа соединения 1,3-тиазолиновых/ тиазолидиновых циклов. Наиболее широко представлены в литературе 2,2'-битиазолинилидены **29** и 5,5'-битиазолидинилидены **30** (рис. 6), в которых гетероциклические циклы связаны с помощью экзоциклических связей C(2)=C(2') и C(5)=C(5').

Рисунок 6. Общие формулы 2,2'-битиазолинилиденов **29** и 5,5'-битиазолидинилиденов **30**.

2.1. 2,2'-Би(1,3-тиазолинилидены)

2,2'-Битиазолинилидены являются азааналогами органических полупроводников тетратиафульваленов (ТТФ). В то время как ТТФ применяются главным образом в качестве электронодонорных веществ,^{78,79} на основе би(1,3-тиазолин-2-илиденов) получены как электронодонорные, так и электроноакцепторные соединения (рис. 7).⁸⁰

Рисунок 7. Схематичное изображение влияния структуры 2,2'-би(1,3-тиазолинилиденов) на способность к окислению $(E_{1/2}^{\circ x1})$ и восстановлению $(E_{1/2}^{red1})$ по сравнению с ТМТТГ $(E_{1/2}^{\circ x1} + 0.23 \text{ B})^{33}$ и TCNQ $(E_{1/2}^{red1} + 0.22 \text{ B}^{38})$ или +0.18 B⁴⁵) относительно насыщенного каломельного электрода (SCE).

ДДФ, по сравнению с ТТФ, демонстрируют бо́льшую электронодонорную способность, однако при этом обладают и большей склонностью к окислению на воздухе. В связи с этим важной задачей является синтез ДДФ, обладающих устойчивостью к окислению, сравнимой с устойчивостью ТТФ, и более выраженными донорными способностями, чем ТТФ.⁸² Поскольку ДДФ легко окисляются на воздухе, осложняется их очистка, установление молекулярной структуры и изучение свойств. Поэтому при дизайне новых ДДФ особую ценность получили методы квантово-химического моделирования.⁸³ Основные подходы к конструированию диазадитиафульваленовых систем описаны в обзоре 2004 г., ³¹ посвященном развитию химии перспективных материалов для молекулярной электроники. Ниже мы обобщаем данные о синтезе и свойствах ДДФ, опубликованные в последние годы.

Несмотря на то, что наиболее очевидным методом синтеза 2,2'-би(1,3-тиазолинилиденов) **29** является сочетание соответствующих карбенов³⁷ **31** (схема 4), в обзорной статье³¹ показано, что более эффективными для данной цели являются реакции с использованием синтетических эквивалентов карбенов: 2-незамещенных тиазолиевых солей **32**,^{33,75} тиазолин-2-селенонов **33**^{32,75} и 2-меркаптозамещенных тиазолиевых солей **34**.⁷⁵

Так, были предложены три метода получения (2*E*)-2,2'-би(1,3-тиазолинилидена) **35**: димеризация 2-незамещенной тиазолиевой соли **36** в присутствии основания, димеризация 1,3-тиазолин-2-селенона **38** под действием триэтилфосфита и электрохимическое восстановление иодида 5-(метилсульфанил)-4-фенил-2-(фенилсульфанил)тиазолия **(34)** (схемы 5–7).⁷⁵

Было показано, что 2-незамещенная тиазолиевая соль 36 под действием КОН депротонируется с образованием илида 37, который подвергается димеризации с образованием ДДФ 35. Однако из-за низкой устойчивости на воздухе ДДФ 35 легко окисляется, и выделенное в результате реакции вещество, помимо ДДФ 35, содержит 15% продуктов окисления 39, 40 (схема 5). В растворе ДДФ **35** под действием кислорода воздуха может быть полностью окислен до смеси соединений **39** и **40**. 75

Схема 5

Димеризация 1,3-тиазолин-2-селенона **38**, образованного замещением фенилтиольной группы в соединении **34** на атом селена, позволяет получить 2,2'-би-(1,3-тиазолинилиден) **35** с выходом 80%, содержащий менее 10% примесей соединений **39** и **40** (схема 6).⁷⁵

Схема 6

Также образование ДДФ **35** было зафиксировано с помощью циклической вольтамперометрии (ЦВА) при электрохимическом восстановлении 2-фенилсульфанилтиазолиевой соли **34** (схема 7).

Лорси с сотр.³² получили ансамбли **41а,b** при кипячении 1,3-тиазолин-2-селенонов **42а,b** в присутствии триэтилфосфита (схема 8). Окислительные потенциалы продуктов **41** были определены с помощью ЦВА

Схема 8

непосредственно сразу после проведения реакции. Наблюдались два обратимых окислительно-восстановительных процесса с потенциалами анодного пика, равными E_{pa1} –0.30 и E_{pa2} –0.08 В для соединения **41a** и E_{pa1} –0.08 и E_{pa2} 0.39 В для соединения **41b**, что подтверждает их электронодонорные свойства.

В отличие от 1,3-тиазолин-2-селенонов **42**, для 2-тиоксо-1,3-тиазолидин-4-онов **43** реакция димеризации под действием триэтилфосфита с образованием 2,2'-би(1,3-тиазолинилиденов) в литературе не описана. Осуществить подобное превращение удалось при использовании трис(диметиламино)фосфина в качестве реагента, генерирующего промежуточный илид, однако механизм этой реакции авторами не изучался.⁷² 2,2'-Би-(1,3-тиазолинилиденовые) ансамбли **44а–с** получены с выходами 63–67% (схема 9).

Схема 9

ДДФ **45а–с** синтезированы из гексафторфосфатов тиазолия **46а–с** в условиях осно́вного катализа (схема 10).³³ Электрохимические свойства продуктов **45а–с** были изучены непосредственно после их выделения без дополнительной очистки. Окислительновосстановительные потенциалы полученных соединений составили: E_1 –0.33 и E_2 –0.09 В для соединения **45а**, E_1 –0.09 и E_2 0.12 В для соединения **45b** и E_1 –0.08 и E_2 0.15 В для соединения **45c**.

Схема 10

Представленные выше методы синтеза 2,2'-би-(1,3-тиазолинилиденов) могут быть использованы и для получения аннелированных ДДФ **47–49**^{34–36,84,85} (рис. 8). В то время как для бициклических 1,3-тиазолиновых ансамблей обычно более устойчивым является *E*-изо-

Схема 11

Рисунок 8. N,N'-Аннелированные ДДФ 47-49.

мер, *N*,*N*-мостиковый фрагмент фиксирует центральную двойную связь в *Z*-конфигурации.

Несмотря на то, что 2,2'-би(1,3-тиазолинилидены) прежде всего изучаются как электронодонорные молекулы,⁸⁰ известны примеры синтеза электроноакцепторных 2,2'-би(1,3-тиазолинилиденов). Образование электронодефицитных структур достигается введением в их молекулы нескольких электроноакцепторных групп. Так, в работе Сузуки³⁸ был получен 2,2'-би-(1,3-тиазолинилиден) 12, содержащий два дициановинилиденовых фрагмента. Ансамбль 12 был синтезирован двустадийным методом из 5,5'-дибром-2,2'-би-(1,3-тиазола) (50).⁸⁶ Первой стадией является α-арилирование малононитрила⁸⁷ соединением 50 по реакции Такахаши,⁸⁸ второй стадией – окисление аддукта 51 *п*-бензохиноном (*p*-BQ) с формированием двойной экзопиклической связи между двумя тиазольными шиклами (схема 11). Следует отметить, что данный подход к синтезу соединения 12 имеет недостаток – промежуточное соединение 51 образуется с низким выходом.

Было показано, что 2,2'-би(1,3-тиазолинилиден) 12 проявляет электрофильные свойства. Так, реакция $S_{\rm N}{\rm H}^{89}$ соединения 12 с МеОН в мягких условиях приводит к продуктам моно- и дизамещения 13 и 52 (схема 12, выходы не были указаны). Для соединений 12 и 13 была установлена *E*-конфигурация экзоциклической двойной связи C(2)=C(2') на основании данных PCA.³⁹

1018

Рисунок 9. Окислительно-восстановительные потенциалы TCNQ и его аналогов **12** и **13**.

Также показано, что, являясь аналогом TCNQ, соединение **12** представляет собой более сильный окислитель, превосходящий TCNQ по значению окислительного потенциала (рис. 9). На примере продукта монозамещения **13** с помощью ЦВА установлено, что введение электронодонорной метоксигруппы значительно понижает электроноакцепторные свойства.⁹⁰

Попытки получения анион-радикальных солей 12 и 13 с помощью электрохимического восстановления не были успешными. Для изучения проводящих свойств были синтезированы комплексы с переносом заряда 2,2'-би(1,3-тиазолинилидена) 12 с ТТФ, тетраметилтетраселенофульваленом, бис(этилендитио)тетратиафульваленом и тетратиатетраценом. В результате измерения проводимости их спресованных порошков получены следующие значения: $2.1 \cdot 10^{-3}$, $3.1 \cdot 10^{-5}$, $3.6 \cdot 10^{-8}$, $7.7 \cdot 10^{-3} \Omega^{-1} \cdot см^{-1}$ соответственно.⁹⁰

Серия 5,5'-диарилиминохиноидальных бистиазолинов 53 была получена из соответствующих 5,5'-дибром-2,2'-битиазолов 54 в результате двустадийного процесса (схема 13).⁹¹ На первом этапе протекает реакция замещения атомов брома на ариламиногруппы. Затем в результате индуцированного Ag₂O окисления промежуточного 5,5'-диариламино-2,2'-битиазола 55 формируется центральная двойная связь с образованием хиноидальных битиазолинилиденов 53. Однако для соединений 54, содержащих в положении 4 атом водорода или метильную группу, продукты превращения 53 получить не удалось. Были изучены окислительно-восстановительные свойства соединений 53 и отмечен их амфотерный характер.

Схема 14

Образование 5,5'-диарилиминохиноидального бистиазолина 14 происходит при нагревании 1,2,3-дитиазола 56 в CH_2Cl_2 с этиламином (схема 14). Соединение 14 было выделено с низким выходом наряду с продуктами 57 и 58. Согласно данным РСА, центральная двойная связь бистиазолина 14 имеет *E*-конфигурацию.⁶¹

2.2. 4,4'-Би(1,3-тиазолинилидены) и 4,4'-би(1,3-тиазолидинилидены)

Би(1,3-тиазолидин-4-илидены) представлены в литературе немногочисленными примерами. Так, соединения **59а,b** были получены реакцией сочетания двух молекул роданина **60** в присутствии трис(диалкиламино)фосфина в отсутствие растворителя (схема 15, конфигурация двойной связи не установлена).⁷²

Би(1,3-тиазолин-4-илиден) **61** с выходом 51% может быть получен окислением 2-фенилтиазол-5(4*H*)-она (**62**) под действием *N*-хлорсукцинимида (NCS) (схема 16).⁹²

2.3. 5,5'-Би(1,3-тиазолидинилидены)

Интерес к разработке методов синтеза 5,5'-би(1,3тиазолидинилиденов) связан с поиском новых органических электронодефицитных соединений, пригодных для использования в качестве полупроводников *n*-типа. Так, на основе монокристалла (Е)-3,3'-диэтил-5,5'-би-(тиазолидинилиден)-2,4,2',4'-тетратиона (20) (DEBTTT) был разработан полевой транзистор, устойчивый к окислению на воздухе с подвижностью заряда $0.22 \text{ см}^2 \cdot \text{B}^{-1} \cdot \text{c}^{-1}$ (рис. 10).⁹³ Дальнейшие исследования тонкопленочных транзисторов показали, что их устойчивость к окислению обусловлена стопочной молекулярной упаковкой 5,5'-би(тиазолидин-5-илиден)-2,4,2',4'-тетратионов. Такому взаимному расположению молекул способствует развитая трехмерная сеть взаимодействий S…S. Длина алкильной цепи при атомах азота тиазолидиновых фрагментов также влияет на устойчивость к окислению на воздухе. Так, оказалось, что большей подвижностью заряда ($0.26 \text{ см}^2 \cdot \text{B}^{-1} \cdot \text{c}^{-1}$) в тонкой пленке обладает (Е)-3,3'-дипропил-5.5'-би-(тиазолидинилиден)-2,4,2',4'-тетратион **21** (DPBTTT).⁴⁰

Впервые DEBTTT (20) был получен в качестве побочного продукта тионирования 2-тиоксо-3-этилтиазолидин-4,5-диона 63 реагентом Лавессона в присутствии металлического никеля (схема 17).⁶⁷ Высокая степень сопряжения в соединении 20 была подтверждена на основании интенсивной полосы поглощения в области видимого света 520 нм (ε 11 000 M⁻¹·см⁻¹, PhMe). Планарность соединения 20 обусловливает образование стопочных надструктур в кристалле благодаря межмолекулярному взаимодействию π - π -стекинга.⁶⁷

R = Et

X = S

40%

i. ii. vi

R = Me, Et

40%

X = S

NC

65

2NFt

66

Схема 18

Рисунок 10. Предложенные полупроводники *n*-типа 20, 21 на основе 5,5'-би(1,3-тиазолидинилидена).

Схема 17

50%

Исходя из предположения, что соединение 20 является продуктом окисления 3-этил-4,5-димеркаптотиазол-2(3*H*)-тиона, образующегося при тионировании тиазолидина 63, в дальнейших работах по данной тематике основным предметом обсуждения стал подбор подходящего субстрата для синтеза ансамбля 20.⁶⁹ С этой целью в условиях окислительной димеризации были исследованы дитиолат натрия 64, генерируемый *in situ* из бис(цианоэтилсульфанил)производного 65,⁶⁹ комплексные соединения цинка 66 и титана 67, а также 5,6-дигидро[1,3]дитиоло[4,5-*d*][1,3]тиазол-2-он 68a (схема 18).⁸¹ Было показано, что наиболее эффективным методом синтеза тетратионовых ансамблей 20, 69, 70 является кипячение

i: LDA, THF, -10° C, 30 min *ii*: S₈, THF, -10° C, 30 min *iii*: LDA, *t*-BuLi, THF, 3 h *iv*: S₈, THF, 30 min *v*: Br(CH₂)₂CN, THF, overnight *vi*: TiCp₂Cl₂, overnight *vii*: TiCp₂Cl₂, overnight *viii*: (Cl₃CO)₂CO, overnight *ix*: MeONa, MeOH, rt, 1 h *x*: air, MeOH, rt, 3 days *xi*: HCl, Et₂O, CH₂Cl₂, Δ , 24 h *xiii*: PhMe, Δ , 3 h *xiii*: (Cl₃CO)₂CO, Δ , 25 min *xiv*: H₂O, 0°C

NaS

NaS

Et

64

Схема 20

дитиол-2-онов **68а-с** в PhMe. Также следует отметить, что данный метод позволяет осуществить синтез 5,5'-би(1,3-тиазолидинилиден)-2,2'-диона **71** из дитиол-2-она **68d**. Считается, что промежуточным соединением в синтезе ансамблей **20**, **69–71** с использованием данных подходов является дитиин **72**.

Это предположение подтверждает пример образования дитиина **73** в реакции сочетания производных 3-(1-фенилэтил)-1,3-тиазол-2(3*H*)-тионов **74**, **75** (схема 19). Так, в исследованиях Лорси с сотр.⁹⁴ обнаружено, что полученные из энантиомерно чистых (*R*)- и (*S*)-3-(1-фенилэтил)-1,3-тиазол-2(3*H*)-тионов дитиоленовые лиганды **74** и бисдитиоленовые комплексы цинка **75** превращаются в трициклические продукты **73** как в присутствии атмосферного воздуха, так и в инертной атмосфере. Однако осуществить последующий термолиз и фотолиз соединений **73** с образованием гетероциклических ансамблей **76** в данной работе не удалось.⁹⁴

В другой статье⁴⁵ этой группы ученых описан метод синтеза дициановинилиденовых производных **23**. Для введения дициановинилиденовой группы на первой стадии 1,3-тиазол-2(3*H*)-тион **65** был этилирован диэтилэфиратом трифторида бора в присутствии триметилортоформиата (схема 20). На второй стадии тиазолиевую соль **77** обработали малононитрилом. В результате был получен 1,3-тиазол-2(3*H*)-илиденмалононитрил (**78**). Синтез C=C-связанного ансамбля **23** был осуществлен генерацией *in situ* дитиол-2-она **79** и его последующим кипячением в PhMe. Другой метод⁴⁵ синтеза би(1,3-тиазолидин-5-илидена) **23**, содержащего дициановинилиденовые группы, был осуществлен обработкой соединения **20** тетрацианоэтиленоксидом (**80**). Сравнение окислительно-восстановительных потенциалов би(1,3-тиазолидин-5-илиденов) 20 и 23 демонстрирует, что введение дициановинилиденовых групп усиливает электроноакцепторные свойства соединения 23 по сравнению с его тиооксоаналогом 20. Однако потенциал окисления как ансамбля 20, так и ансамбля 23 ниже, чем TCNQ (рис. 11).

Показано, что соединение 23 образует нейтральный комплекс с переносом заряда 28 с ТМТТФ и анионрадикальную соль 27 с декаметилферроценом (Fe(Cp*)₂).⁴⁵

Для синтеза 2,2'-дитиоксо-5,5'-битиазолидинилиден-4,4'-дионов **15–18**, **81–83** был предложен трехкомпонентный метод (схема 21).⁹⁵ В результате взаимодействия первичного алкиламина, сероуглерода и диметилового эфира ацетилендикарбоновой кислоты в мягких условиях удается выделить бициклические продукты **15–18**, **81–83** с выходами 50–61% без выделения промежуточных моноциклических соединений **84**.⁹⁶ В предполагаемом механизме экзоциклическая двойная связь C=C образуется на последней стадии

Рисунок 11. Окислительно-восстановительные потенциалы битиазолидиновых ансамблей 20, 23 в сравнении с TCNQ.

Схема 21

15 Alk = Me, **16** Alk = Et, **17** Alk = n-Pr, **18** Alk = n-Bu, **81** Alk = CH₂CH₂OH, **82** Alk = CH₂CH₂OMe, **83** Alk = CH₂CH₂Ph

окислительного дегидрирования битиазолидина **85**. Последующие исследования данной реакции показали, что в присутствии основания (Et₃N) дегидрирование центральной двойной связи протекает более полно. ⁹⁷

Было показано, что (*E*)-5,5'-би(1,3-тиазолидинилиден) 22 образуется в качестве основного продукта (препаративный выход 55%) в реакции тионирования *N*-винилроданина (**86**) под действием реагента Лавессона, а продукт тионирования 4-тиороданин **87** при этом выделяют с выходом всего 20% (схема 22).⁷² Конфигурация двойной связи C=C была установлена на основании данных PCA.^{71,72}

Битиазолидинилиденовый ансамбль **88** образуется в реакции нуклеофильного замещения атома брома в производном 5-бром-3-фенилтиазолидин-4-она **89** на остаток морфолина (схема 23). Соединения **88** и **90** были легко разделены благодаря тому, что битиазолидинилиден **88** выпадает в осадок после протекания реакции, так как практически не растворим в EtOH, в то время как продукт нуклеофильного замещения **90** остается в растворе.⁹⁸

Таким образом, наряду с методами получения 2,2'-би-(1,3-тиазолидинилиденов), ставшими классическими, за последние годы появились новые способы синтеза 5,5'-би(1,3-тиазолидинилиденов), представляющих

интерес для разработки перспективных органических полупроводников, а также 4,4'-би(1,3-тиазолидинилиденов), химия которых только зарождается.

3. НЕСИММЕТРИЧНЫЕ БИ(1,3-ТИАЗОЛИНИЛИДЕНЫ/ ТИАЗОЛИДИНИЛИДЕНЫ)

Интерес к производным битиазолидина с несимметрично связанными циклами вызван тем, что 2,5'-би-(1,3-тиазолидинилиденовый) фрагмент встречается как в структуре пуш-пульных хромофоров, зарекомендовавших себя в качестве эффективных красителейсенсибилизаторов для фотогальванических устройств, так и в структуре родацианиновых красителей, проявляющих антималярийную и противораковую активность. По этой причине химия 2,5'-би(1,3-тиазолидинилиденов) отличается своей развитой методологией. При этом синтез 2,4'-би(1,3-тиазолидинилиденов) также представлен недостаточно широко. Примеров получения 4,5'-би(1,3-тиазолидинилиденов) на момент написания данного обзора нами обнаружено не было.

3.1. 2,4'-Би(1,3-тиазолидинилидены)

В литературе описан только один подход к синтезу С(2)=С(4')-связанных ансамблей 1.3-тиазолина/ тиазолидина. В работе Метвалли 2,4'-би(1,3-тиазолинилидены/тиазолидинилидены) 91, 92 синтезированы из 3-фенил-2-(фенилимино)-1,3-тиазолидин-5-она 93 реакцией с фенилизотиацианатом с образованием тиолатной соли 94, которая, в свою очередь, in situ вступала в реакцию гетероконденсации с α-галогенкарбонильными соединениями (схема 24).⁹⁹ Для синтеза 4-диазопроизводного 95 и 4-арилиденпроизводного 96 метиленовая группа 1,3-тиазолидин-5-онового фрагмента ансамбля 92 была модифицирована реакцией азосочетания и конденсацией Кнёвенагеля соответственно.

3.2. 2,5'-Би(1,3-тиазолидинилидены)

2,5'-Би(1,3-тиазолинилидены/тиазолидинилидены) представляют наибольший интерес с точки зрения практического применения. Они широко представлены

среди красителей, применяемых в фотогальванических элементах, а также обладают противораковой и антималярийной активностью.

3.2.1. Производные 2,5'-би(1,3-тиазолидинилидена) в качестве сенсибилизирующих красителей для солнечных элементов

2,5'-Би(1,3-тиазолидинилиден)-4,4'-дионы находят широкое применение в синтезе сенсибилизирующих безметаллических красителей для солнечных элементов. 29,100,101 Особенность строения этих красителей заключается в пуш-пульной конструкции, состоящей из донора, сопряженной π-электронной системы и акцептора. Как правило, в качестве донорных групп, выполняющих роль "антенн", улавливающих солнечный свет, применяют производные индолина, трифениламина, феноксазина, олиготиофена, а в качестве сопряженной π-системы выступают полиеновые или политиофеновые фрагменты. 2,5'-Би(1,3-тиазолидинилиден)-4,4'-дионовые ансамбли играют роли π-электроноакцепторных фрагментов в молекуле красителя, способствуя его переходу в возбужденное состояние. Эти заместители также выполняют функцию "якоря", то есть отвечают за связывание красителя с поверхностью нанооксида. Кроме того, в С(2)=С(5')-связанный тиазолидиновый ансамбль могут быть введены группы, настраивающие электроноакцепторные свойства (X = O, S, C(CN)₂, C(CN)CO₂H, 1,3-тиазолидин-5-илиден) (рис. 12).

Такие свойства функциональных материалов, как люминесценция, эффективность преобразования солненой энергии и электрическая проводимость, зависят от молекулярной упаковки красителя в твердом состоянии.^{102,103} Планарность C(2)=C(5')-связанных тиазолидиновых ансамблей приводит к образованию π -стопочных агрегатов в твердом состоянии. Подобная агрегация усложняет перенос электрона от красителя в зону проводимости полупроводника. Нежелательная агрегация красителя на поверхности полупроводника может быть предотвращена добавлением соадсорбента либо путем оптимизации структуры красителя.

Так, несмотря на то, что наличие в структуре красителя C(2)=C(5')-связанного тиазолидинового

ансамбля стимулирует образование J/H-агрегатов, введение длинных алифатических цепей в молекулу красителя, как в донорную,^{27,104} так и в акцепторную часть,^{104–106} как правило, снижает агрегацию красителя на поверхности полупроводника, что может приводить к большей эффективности преобразования солнечной энергии.^{27,105} Однако снижение агрегации красителя не всегда является фактором, определяющим эффективность вольтаической ячейки. Также считается, что длинные алифатические цепи в красителе предотвращают рекомбинацию заряда от восстанавливающего агента в электролите (как правило, I₃⁻) к полупроводнику.¹⁰⁶

Введение карбоксильной группы в C(2)=C(5')-связанный битиазолидиновый фрагмент сенсибилизирующего красителя способствует адсорбции красителя на полупроводнике (TiO₂, ZnO, SnO₂/ZnO, SnO₂).¹⁰¹

Дизайн новых красителей для солнечных элементов основывается на настройке структуры основного и возбужденного состояний сенсибилизирующего красителя, так как это определяет эффективность переноса заряда от красителя к полупроводнику и, как след-

Рисунок 12. Функции фрагментов C(2)=C(5')-связанного тиазолидинового ансамбля в красителе для солнечных элементов.

a $R^1 = R^2 = Et$, **b** $R^1 = R^2 = n \cdot C_8 H_{17}$, **c** $R^1 = R^2 = CH_2 CH(Et)n \cdot Bu$, **d** $R^1 = R^2 = Bn$; **e** $R^1 = n \cdot C_8 H_{17}$, **g** $R^1 = Et$, $R^2 = n \cdot C_8 H_{17}$; **h** $R^1 = n \cdot C_8 H_{17}$, $R^2 = CH_2 CO_2 H$; **i** $R^1 = Et$, $R^2 = CH_2 CO_2 H$; **j** $R^1 = R^2 = CH_2 CO_2 H$; **k** $R^1 = Et$, $R^2 = (CH_2)_2 CO_2 H$; **j** $R^1 = n \cdot C_6 H_{13}$, $R^2 = CH_2 CO_2 H$

ствие, силу фототока. С этой точки зрения квантовохимические расчеты спектров поглощения и геометрии основного и возбужденного состояний, времени жизни в возбужденном состоянии¹⁰⁷ красителей могут служить источником важной информации для дизайна новых красителей-сенсибилизаторов, в том числе и на основе 2,5'-би(1,3-тиазолидинилиденов).^{77,108–110}

Получение красителей для солнечных элементов на основе C(2)=C(5')-связанных тиазолидиновых ансамблей обычно протекает в 3 этапа: 1) синтез π -донорного предшественника, содержащего альдегидную группу; 2) получение C(2)=C(5')-связанного тиазолидинового ансамбля с активным метиленовым компонентом в положении C-5 тиазолидинового цикла в качестве π -акцепторного предшественника; 3) конденсация Кнёвенагеля полученных строительных блоков. Синтезированный таким образом краситель обладает структурными особенностями пуш-пульных полиенов (π -донорная группа – π -сопряженная цепь – π -акцепторная группа).

Для построения 2,5'-би(1,3-тиазолидинилиденовых) ансамблей применяют главным образом двустадийный подход, заключающийся в тиокарбамоилировании СН-активных 1,3-тиазолидин-4-онов и последующей циклоконденсации по Ганчу с α-галогенкарбонильными соединениями. Данный метод описан в патенте 1997 г.¹¹¹

Так синтез π-акцепторного "двойного" и "тройного" роданиновых фрагментов был осуществлен согласно схеме 25. Взаимодействием роданина 97 с алкилизотиоцианатом получена тиолатная соль, которая in situ полвергалась гетероциклизации под действием бромуксусного эфира с образованием соответствующих роданиновых ансамблей 98а-1.24,112 Для 'двойных" получения трициклических систем 99а-f еще один тиазолидиновый цикл был надстроен повторением последовательности данных реакций исходя из соединений **98а-f**. С целью улучшения сорбции красителя на частицах ZnO этоксикарбонильная группа трициклических ансамблей 99 была гидролизована до карбоксильной (схема 25) с образованием кислот 100а-д. Бициклические и трициклические ансамбли 98g-I и 100a-f использовались в качестве прелшественников π-акцепторной группы широкого ряда красителей (схема 28). Однако в литературе описаны методики получения только соединений 98а-д и 100а-f, при этом отмечается, что ансамбли 98h-l были получены аналогично без указания подробностей эксперимента.

Также в результате окисления¹¹³ тиокетонной группы ансамбля **101** с последующим гидролизом сложноэфирной группы было получено соединение **102** с суммарным выходом 2% на две стадии (схема 26).¹¹⁴

Схема 26

С(2)=С(5')-Связанные ансамбли **103а–d** с 2-(цианометилиден)тиазолидиновыми фрагментами в качестве концевой электроноакцепторной группы были получены последовательностью превращений из нитрилов малоновой кислоты **104а–с** через образование моноциклических тиазолидинонов **105а–с** с использованием подхода, аналогичного приведенному выше (схема 27). Сложноэфирная группа тиазолидиновых ансамблей **103а,b** подвергалась гидролизу с образованием кислот **106а.b**.¹¹⁴

Гидролиз *трет*-бутоксикарбонильной группы в соединении **103с** проводили в трифторуксусной кислоте в присутствии триэтилсилана с образованием кислоты **107**. Для синтеза ансамбля с двумя карбоксильными группами **108** осуществляли гидролиз двух сложноэфирных групп в 2,5'-би(1,3-тиазолиди-нилидене) **103d** с использованием трибромида фосфора.¹¹⁵

Конденсацией Кнёвенагеля ансамблей **98g–l 100а–f**, **102**, **106а,b**, **107**, **108** с электронодонорными альдегидами были получены красители, содержащие самые различные π -донорные группы и 2,5'-би(1,3-тиазолидинилиденовые) фрагменты в качестве π -акцепторов (схема 28). Характеристики солнечных элементов, собранных на их основе, приведены в табл. 1.

Схема 27

Органические красители-сенсибилизаторы, содержащие 2,5'-би(1,3-тиазолидинилиденовые) "якорные" группы, зарекомендовали себя как одни из наиболее эффективных в солнечных ячейках, собранных на основе оксида титана и оксида цинка.^{101,105} Среди красителей данного класса наибольшую известность получили соединения, содержащие индолиновый фрагмент в качестве *п*-донора. Так, для солнечных элементов, собранных на основе безметаллических красителей 121d и 121c (схема 28) и TiO₂ в качестве полупроводника, были достигнуты наибольшие коэффициенты преобразования солнечной энергии (п 9.03%¹¹⁷ и 9.40%¹²⁶ соответственно). В других работах по изучению эффективности солнечных элементов на основе красителя 121d были получены следующие значения η: 6.51% (TiO₂),¹¹⁸ 2.8% (SnO₂), 3.8% (SnO₂/ZnO), 1.2% (ZnO),¹¹⁹ 4.95% (ZnO),¹⁰⁶ 4.74% (ZnO),¹⁰⁶ 4.48% (ZnO),²⁴ 4.27% (нанолистовой ZnO),¹²¹ 4.9% (монолитно-образный порошок ZnO).¹²² Результаты подобных исследований в области создания солнечных элементов, содержащих краситель 121с, продемонстрировали следующие значения η: 7.92% (TiO₂),¹¹⁶ 4.92% (ZnO),¹²⁴ 5.34% (ZnO),¹⁰⁶ 4.59% (ZnO).¹¹⁴

Однако для индолинового красителя **121d** было показано, что время его жизни в возбужденном состоянии снижается в растворе в связи с фотоизомеризацией вокруг двойной связи в положении 5 тиазолидина¹²⁷ и коррелирует со способностью растворителя образовывать водородные связи.¹²⁸ E,Z-Изомеризация является потенциальной проблемой многих органических краси

телей для солнечных элементов¹²⁹ и ее изучению уделяется особое внимание, в том числе и с привлечением квантово-химических расчетов.⁷⁷

Что касается структуры π -акцепторной части красителя, то было установлено, что замена бироданинового фрагмента (соединения **121а,с,d–f**) на трироданиновый (соединения **121m–r**) в индолиновом красителе D149 не приводит к увеличению значения η для солнечных ячеек на основе полупроводников ZnO⁷⁷ и TiO₂ (табл. 1).⁷⁷

На примере красителя **121с** показано, что введение в бироданиновый фрагмент дициановинилиденового заместителя приводит к повышению эффективности красителя. Так, полученный данной модификацией краситель **121j** был использован для создания солнечного элемента, который показал η 5.01% (ZnO),¹¹⁴ в то время как значение η для красителя **121с** составило 4.59% (ZnO).¹¹⁴ Также установлено, что замена тионовой функции на оксогруппу в структуре красителя (соединение **121a**) приводит к снижению η в солнечном элементе до 3.38% (ZnO).¹¹⁴

Высокое значение η 5.15% (ZnO) продемонстрировал флуорензамещенный индолиновый краситель **123j** с дициановинилиденовой функцией в роданиновом фрагменте.¹²⁴

В случае трифениламиновых красителей, модифицированных тиазолидиновыми "якорными" группами, было отмечено увеличение значения η при переходе от моноциклического к бициклическому акцепторному заместителю. Так, для красителя **127с**, содержащего 2,5'-би(1,3-тиазолидинилиденовый) заместитель,

Схема 28

C

HO₂Ć

Ó

l–q

R

CN

NĊ

C

j R = *n*-C₈H₁₇

 $\mathbf{k} \mathbf{R} = (\mathbf{CH}_2)_7 \mathbf{CO}_2 \mathbf{H}$

 R^1

HO₂Ċ

h $R^1 = R^2 = n - C_8 H_{17}$

 $i R^1 = n - C_8 H_{17}, \tilde{R}^2 = C H_2 C O_2 H$

CN

Ó

HO₂C

 $I R^1 = R^2 = Et$

o $R^1 = R^2 = Bn$

 $\mathbf{m} \mathbf{R}^1 = \mathbf{R}^2 = n - C_8 \mathbf{H}_{17}$

n $\mathbb{R}^1 = \mathbb{R}^2 = \mathbb{CH}_2\mathbb{CH}(\mathbb{Et})n$ -Bu

 $\mathbf{p} R^1 = n \cdot C_8 H_{17}, R^2 = Bn$ $\mathbf{q} R^1 = Bn, R^2 = n \cdot C_8 H_{17}$

~	-	37				~		2	~ ~ ~	(1	2
аопин	9 I	Xanaka	епистики	сопнечны	X ЭЛЕМЕНТОВ	COD	панных на	основе /	h '-n'	111	√- тиазопилинилиленов)↑
aosing		. 2 supur	opnorman	come mbi	A Shewennion.	, 000	pullibin ind		, 0	ri(1 ,	5 masosingministingenob)

Краситель**	n % (полупроволник)	IPCE %	Jsc MA'CM ⁻²	Voc B	ff	Vсповия***	Выхол %*4	Ссылк
100; (GU104)	3.03 (7nO)	*5	8 53	0.64	0.72		60	27
109j (00104)	0.22 (ZnO)	03	0.96	0.04	0.72	n-BuOH, пиперидин, 120°C, 4°4	30	27
110u 111d	2.12 (ZnO)	50.8	5.83	0.42	0.55	n -BuOH, пиперидин, Δ , 4 ч	61	26
112d	4.08 (ZnO)	79 1	10.29	0.50	0.65	n -BuOH, пиперидин, Δ , 4 ч	31	26
112d	4.07 (ZnO)	80.8	9.80	0.61	0.68	n -ВиОН, пиперидин, Δ , 4 ч	61	26 26
114d	3.58 (ZnO)	78.8	8.36	0.63	0.69	n -BuOH, пиперидин, Δ , 4 ч	42	26
115d	3.34 (ZnO)	79.3	8.31	0.61	0.66	n -BuOH, пиперидин, Δ , 4 ч	58	26
116c	3.26 (ZnO)	66	7.92	0.59	0.70	АсОН, пиперидин, Д, 4 ч	52	27
117c	3.21 (ZnO)	66	7.82	0.61	0.67	АсОН, пиперидин, Δ, 4 ч	48	27
118c	3.33 (ZnO)	67	8.23	0.65	0.65	АсОН, пиперидин, Δ, 4 ч	52	27
119c	3.65 (ZnO)	69	8.85	0.61	0.68	АсОН, пиперидин, Δ, 4 ч	50	27
120c	3.69 (ZnO)	69	8.94	0.62	0.67	АсОН, пиперидин, Д, 4 ч	47	27
121a (DN317)	3.38 (ZnO)	-	9.95	0.66	0.64	AcOH, AcONH ₄ , Δ, 2 ч	63	114
121c (D205)	9.40 (TiO ₂)	-	18.68	0.710	0.707	АсОН, АсОNH ₄ , 120 °C, 5 ч	78	126
	7.92 (TiO ₂)	-	4.44	0.696	0.781	АсОН, АсОNH ₄ , 120 °C, 2.5 ч	_	116
	4.92 (ZnO)	-	11.02	0.66	0.68	-	_	124
	5.34 (ZnO)	-	12.17	0.653	0.67	-	_	106
	4.59 (ZnO)	_	11.03	0.66	0.63	_	-	114
121d (D149)	9.03 (TiO ₂)	-	19.96	0.653	0.694	_	_	117
	7.21 (TiO ₂)		4.14	0.677	0.785	_	_	116
	6.51 (TiO ₂)	-	18.75	0.645	0.538	АсОН, АсОNH ₄ , 120 °C, 2.5 ч	_	118
	5.06 (ZnO)	83	11.67	0.64	0.68			25
	3.8 (SnO ₂ /ZnO)	_	10.38	0.536	0.68	_	_	119
	4.95 (ZnO)	_	10.94	0.641	0.7	AcOH, AcONH ₄ , 120 °C	_	106
	4.74 (ZnO)	_	13.17	0.61	0.60	_	_	120
	4.48 (ZnO)	82	11.04	0.66	0.61	_	_	24
	4 27 (нанолистовой ZnO)	_	14.1	0 563	0.537	_	_	121
	49 (монолитнообразный	_	12.4	0.607	0.65	_	_	121
	порошок ZnO) 2.28 (ITO/PEDOT:	_	4.83	0.77	0.62	_	_	123
	PSS/D149/C/0/BCP/AI)		1	0.504	0.530			
121e	$5.50(110_2)$	-	17.50	0.584	0.538	АсОН, АсОNH ₄ , 120 °C, 2.5 ч	—	118
	5.60 (TiO ₂)	-	17.38	0.628	0.513	АсОН, АсОNH ₄ , 120 °C, 2.5 ч	-	118
121j (DN319)	5.01 (ZnO)	-	11.82	0.66	0.65	AcOH, AcONH ₄ , Δ , 2 ч	_	114
121n	4.12 (ZnO)	77	11.16	0.62	0.60	AcOH, AcONH ₄ , Δ , 4 ч	52	24
1210	4.09 (ZnO)	71	10.28	0.59	0.67	AcOH, AcONH ₄ , Δ , 4 ч	43	24
121p	4.35 (ZnO)	71	10.36	0.65	0.65	AcOH, AcONH ₄ , Δ , 4 ч	41	24
121q	4.15 (ZnO)	71	9.83	0.64	0.66	AcOH, AcONH ₄ , Δ, 4 ч	40	24
122d	3.63 (ZnO)	_	9.80	0.62	0.60	АсОН, АсОNH ₄ , 120 °C, 1.5 ч	28	25
123j (DN362)	5.15 (ZnO)	_	11.48	0.65	0.70	AcOH, AcONH ₄ , Δ , 2 ч	48	124
124i (DN350)	5.55 (ZnO)	_	13.07	0.66	0.65	AcOH, AcONH ₄ , A, 2 y	39	124
125h (GU116)	4.49(ZnO)	_	12.7	0 584	0.605	<i>n</i> -BuOH пиперилин 120 °C 1 ч		115
125i (GU117)	3.30(7nO)		12.7	0.465	0.503	MaOH MaONa 40 °C 20 H		115
1251 (OUTT)	5.37(200)		11.00	0.405	0.595		20	104
123J (DN331)	5.54 (ZIIO)	_	11.90	0.00	0.08	ACOIL ACONTIA, Δ , 2.4	20	124
	5.46 (ZnO)	_	14.5	0.642	0.586	ACOH, ACONH ₄ , Δ , 2 4	30	115
125k (GU115)	5.19 (ZnO)	_	14.3	0.619	0.587	AcOH, AcONH ₄ , Δ , 3 ч		115
126j (DN363)	4.92 (ZnO)	-	10.99	0.65	0.69	AcOH, AcONH ₄ , Δ , 2 ч	42	124
127c (TPACR2)	4.64 (TiO ₂)	-	13.16	0.534	0.66	AcOH, NCCH ₂ CO ₂ H, AcONH ₄ , Δ , 6 ч, Ar	70	105
128c (TH304)	3.0 (TiO ₂)	_	14.4	0.39	0.54	AcOH, AcONH ₄ , Δ , 1 ч	75	104
29b (D2R(8+2)7T)	2.46 (TiO ₂)	-	6.77	0.92	0.39	AcOH, PhCl, AcONH ₄ , Δ, 24 ч, Ar	70	112
130g (AH11)	1.5 (TiO ₂)	_	4.3	0.456	0.72	СНСІ ₃ , пиперидин, 90 °С, 1 ч, N ₂	6	125
131g (AH10)	3.2 (TiO ₂)	_	7.3	0.557	0.76	СНСІ ₃ , пиперидин, 90 °С, 0.5 ч. N ₂	45	125
132 σ (ΔΗ14)	0.2 (TiO ₂)	_	0.6	0.376	0.72	CHCl. пиперилин 90 °C 15 мин Na	10	125

* η –коэффициент преобразования солнечной энергии, IPCE – эффективность преобразования энергии падающего фотона в ток, J_{SC} – плотность тока короткого замыкания, V_{OC} – напряжение холостого хода, ff – фактор заполнения.

*** В скобках указан шифр красителя в соответствии с литературным источником.
*** Данные указаны, если в источнике приведена методика.
*⁴ Выход соединения на стадии конденсации Кнёвенагеля (схема 28).

*⁵ Прочерк обозначает отсутствие данных.

Рисунок 13. Структуры трифениламиновых красителей 133 и 134.

значение η составляет 4.64%, в то время как для красителя с роданиновыми "якорными" группами это значение 3.15%¹⁰⁵. Следует отметить, что значение η для красителя **133**, содержащего тиазолидиновые заместители, выше, чем для красителя **134**, содержащего 2-цианоакриловые акцепторные фрагменты (η 2.86%)¹⁰⁵ (рис. 13).

Введение электроноакцепторного фрагмента – 2,5'-би(1,3-тиазолидинилидена) – в структуру красителя не всегда приводит к увеличению значения п. Так, на примере красителей **129b**, **135–137**, содержащих олиготиофеновый фрагмент, было показано, что "якорная" группа с битиазолидиновым ансамблем (соединение **129b**) приводит к снижению значения η до 2.46% по сравнению с такими "якорными" группами, как роданин (6.10% (TiO₂), соединение **135**), диметилбарбитуровая кислота (4.05% (TiO₂), соединение **136**) и эфир циануксусной кислоты (5.01% (TiO₂), соединение **139**)¹⁰⁵ (рис. 14).

Рисунок 14. Красители-сенсибилизаторы 135–137 на основе олиготиофена.

Описанный на схеме 25 двустадийный метод, применяемый для синтеза 1,3-тиазолидиновых красителейсенсибилизаторов, используется и для получения биологически активных 2,5'-би(1,3-тиазолидинилиденов). Так, ансамбли **138а,b** синтезированы согласно схеме 29.¹³⁰ Было обнаружено, что соединения **138а,b** проявляют антибактериальную активность в отношении как грамположительных, так и грамотрицательных бактерий, а фунгицидная активность ансамблей **138а,b** сравнима с активностью противогрибкового антибиотика амфотерицина В.

C(2)=C(5')-Связанные ансамбли **139**, содержащие иминную группу, были получены аналогично, но для построения тиазолинового цикла использовались α -хлоркетоны **140**¹³¹ (схема 30).

Схема 30

Метод синтеза 2'H,3H-[2,5'-би(1,3-тиазолидинилиден)]-2'-онов **141** основан на использовании в качестве исходного соединения 2,4-бис(диалкиламино)тиазола **142**.¹³² Показано, что при взаимодействии его с арилизотиоцианатами образуются тиоамиды **143**, реакция которых с α -бромацетофенонами сопровождается гидролизом 2'-диалкиламиногруппы и приводит к образованию C(2)=C(5')-связанного ансамбля **141** (схема 31).

Таким образом, основным стимулом развития химии производных 2,5'-би(1,3-тиазолидинилидена) является разработка новых пуш-пульных хромофоров для молекулярной электроники. Однако поиск биологически активных соединений в этом ряду также актуален.

3.2.2. Производные 2,5'-би(1,3-тиазолидинилидена) как основа родацианиновых красителей

В ряду 2,5'-би(1,3-тиазолидинилиденов) следует выделить важный подкласс – [0,0,0]-родацианиновые красители,¹³³ для структур которых характерно наличие мероцианинового,¹³⁴ цианинового¹³⁵ и роданинового фрагментов (рис. 15). Родацианиновые красители изначально были изучены фирмой Fujifilm (Fuji Photo Film Co., Ltd.) в качестве сенсибилизаторов хлорида серебра. Однако неожиданно у родацианинов была обнаружена противораковая и антималярийная активность.

Интерес к изучению биологической активности родацианиновых красителей вызван тем, что они по структуре являются π -делокализованными липофильными катионами. Согласно гипотезе Чена,^{136,137} такие катионы способны селективно накапливаться в злокачественных клетках благодаря более высокому, по сравнению со здоровыми клетками, отрицательному заряду, возникающему на стенке мембраны мито-

Рисунок 15. Общая формула мероцианиновых, цианиновых и родацианиновых красителей

хондрии, что свидетельствует о возможности проявления этими соединениями противоопухолевой активности.

В подтверждение данного предположения было показано, что соединение 144 (рис. 16) демонстрирует высокую цитотоксичность в отношении меланомы человека LOX и ингибирует рост карциномы толстой кишки СХ-1, показывая при этом относительно низкую токсичность при испытании на здоровых клетках почки африканской зеленой обезьяны CV-1.¹³³ В качестве кандидата для клинических исследований, по причине хорошей растворимости в воде, 138 было выбрано соединение 145 (МКТ 077), продемонстрировавшее высокую эффективность против ксенотрансплантантной модели LOX и аллотрансплантантной модели СА755 и сохранившее низкую острую токсичность в эксперименте на мышах.¹³⁹ Однако из-за способности накапливаться в почках, 140 проявляемой нефротоксичности^{141,142} и низкой способности преодолевать гематоэнцефалический барьер¹⁴³ клинические испытания соединения 145 были приостановлены.

Начиная с 2000 г. исследования биологического действия родацианинов сосредоточены главным образом на изучении антималярийной активности, и в этой области были получены значительные результаты, отраженные в обзоре Такасу.¹⁴⁴ Интересно отметить, что соединение **145** (МКТ 077) проявило также высокую антималярийную активность. При оптимизации структуры было получено соединение **146** (МКН57), обладающее большей селективной токсичностью.¹⁴⁵

Для синтеза родацианиновых красителей, содержащих 2,5'-би(1,3-тиазолидинилиденовый) фрагмент, применяется подход, описанный Кендаллом и Суггати.¹⁴⁶ На первой стадии проводится алкилирование тионной группы роданинового фрагмента мероцианинового красителя **147**,^{145,147–153} что приводит к образованию алкилмеркаптотиазолиевой соли **148**

(схема 32). Цианиновый фрагмент надстраивается реакцией, предложенной Кендаллом ("fusion process"), в которой соль 148 взаимодействует с CH-активной метильной группой кватернизованных азотсодержащих гетероциклов 149, приводя к родацианинам 150.^{154,155}

С помощью этого метода были получены родацианиновые красители, содержащие следующие концевые гетероциклические фрагменты: 2,5'-би(1,3-тиазолидинилиден)-4'-оновый,^{154,155} 5-(1,3-бензотиазол-2(3*H*)илиден)-1,3-тиазолидин-4-оновый,^{154,155} 5-(пиридин-2(1*H*)илиден)-1,3-тиазолидин-4-оновый,^{154,155} 5-(хинолин-2(1*H*)-илиден)-1,3-тиазолидин-4-оновый,^{154,155} 5-(1,3-дигидро-2*H*-бензимидазол-2-илиден)-1,3-тиазолидин-4-оновый.¹⁵⁴

Было показано, что соединения 151 и 152 (рис. 17) in vitro проявили наибольшую активность в отношении хлорохинрезистентного малярийного паразита Plasmodium falciparum. Однако при испытании in vivo в отношении малярийного паразита грызунов Plasmodium berghei наибольшую активность показали [0,0,0]-родацианины 153 и 154, обладая при этом более высокой пероральной биодоступностью. Следует отметить, что активность соединений 153 и 154 оказалась выше, чем у родацианинов, не содержащих в своей структуре 2,5'-би-(1,3-тиазолидинилиденовый) фрагмент.¹⁵⁴ При исследовании биологической активности ансамблей 155 и 156, содержащих экзоциклическую иминогруппу, также была отмечена низкая острая токсичность и высокая активность in vivo в отношении P. berghei на моделях зараженных мышей при дозе 20 мг·кг⁻¹день^{-1.157} Обширный анализ накопленных результатов по изучению антималярийной активности родацианинов приведен в обзоре Такасу.¹⁴⁴

В работах Касми-Мир с сотр. 2,5'-би(1,3-тиазолидинилидены) 157¹⁵⁸ и 158¹⁵⁷ были синтезированы в 4 стадии из тиазолин-2-тиона 159 (схема 33). *S*-Алкилированием соединения 159 была получена тиазолиевая соль 160, в результате взаимодействия которой с роданином 97 образовался ансамбль 161. *S*-Метилирование соединения 161 приводило к соли 162. Дальнейшая конденсация соли **162** с *N*-метилпиридиниевой солью **163**, осуществленная в том числе и при микроволновом облучении, привела к образованию гетероциклических ансамблей **157**, являющихся структурными аналогами МКТ 077.¹⁵⁷ Также была проведена реакция солей **162** с ароматическими аминами, которая

Рисунок 17. Родацианиновые красители с антималярийной активностью 151–156.

протекала с образованием 2-имино-2,5'-би(1,3-тиазолидин-илиден)-4'-онов **158**.

Несмотря на то, что методы синтеза производных 2,5'-би(1,3-тиазолидинилиденов) в основном ограничиваются двумя подходами к синтзу: "изотиоцианатный" метод и метод Кендалла, 2,5'-би(тиазолидинилиденовые) ансамбли остаются интересными соединениями как с точки зрения разработки красителейсенсибилизаторов на их основе, так и с точки зрения исследования их антималярийной и противораковой активности. Обнаружение противораковой и антималярийной активности родацианиновых красителей стало предпосылкой начала нового витка развития химии 2,5'-би(1,3-тиазолидинилиденов), изначально разрабатываемых в качестве красителей-сенсибилизаторов для проявления фотопленок.

Благодаря тому, что система С=С-связанных 1,3-тиазолинов/тиазолидинов обладает планарностью, 2,2'-би(1,3-тиазолинилидены) и 5,5'-би(1,3-тиазолинилидены) стали широко применятся в области органических полупроводников. Сочетание планарности и электроноакцепторности 2,5'-би(1,3-тиазолидинилиденов) позволило разработать красители-сенсибилизаторы с высокими значениями коэффициента преобразования солнечной энергии с использованием TiO₂ в качестве полупроводника. При этом возможное применение С=С-связанных 1,3-тиазолинов/тиазолидинов не ограничивается молекулярной электроникой.

Липофильные катионы, содержащие в структуре 2,5'-би(1,3-тиазолидинилиденовый) фрагмент, перспективны для создания на их основе антималярийных и противоопухолевых препаратов.

Для каждого прикладного направления сложилась оригинальная идеология сборки каркаса С=С-связанных 1,3-тиазолинов/тиазолидинов. Можно выделить

4 основных подхода к синтезу: 1) с использованием карбенов и карбеноидов, 2) с использованием изотиоцианатов, 3) конденсация по Кендаллу-Суггати, 4) окислительное сочетание. Для построения С=С-связанных 1,3-тиазолиновых/тиазолидиновых ансамблей используются достаточно простые процедуры синтеза и доступные исходные соединения. Однако, несмотря на разработанный синтетический базис, не все возможные С=С-связанные ансамбли 1.3-тиазолинов/тиазолидинов описаны в литературе. Так, например, нами не было обнаружено примеров синтеза 4,5'-би(1,3-тиазолидинилиденов). Единственный пример синтеза 2,4'-би-(1,3-тиазолидинилиденов) был описан с использованием "изотиоцианатного" метода. Также открытыми остаются вопросы возможности цис-, транс-изомерии С=С-связанных ансамблей 1,3-тиазолинов/тиазолидинов.

Надеемся, что наш обзор вдохновит специалистов, работающих в области органической химии, химии материалов и биологически активных веществ, на дальнейшее изучение С=С-связанных ансамблей 1,3-тиазолинов/тиазолидинов и поможет продвинуться в решении актуальных задач этого направления.

Обзор подготовлен при финансовой поддержке Российского фонда фундаментальных исследований (проект № 18-316-20018) и постановления № 211 Правительства Российской Федерации (контракт № 02.A03.21.0006).

Список литературы

- Gaumont, A.-C.; Gulea, M.; Levillain, J. Chem. Rev. 2009, 109, 1371.
- Jain, A. K.; Vaidya, A.; Ravichandran, V.; Kashaw, S. K.; Agrawal, R. K. *Bioorg. Med. Chem.* 2012, 20, 3378.
- 3. Tripathi, A. C.; Gupta, S. J.; Fatima, G. N.; Sonar, P. K.; Verma, A.; Saraf, S. K. *Eur. J. Med. Chem.* **2014**, *72*, 52.

- Asati, V.; Mahapatra, D. K.; Bharti, S. K. Eur. J. Med. Chem. 2014, 87, 814.
- 5. Stojanovic, M.; Dzambaski, Z.; Bondzic, B.; Aleksic, J.; Baranac-Stojanovic, M. *Curr. Org. Chem.* **2014**, *18*, 1108.
- Rostamnia, S.; Doustkhah, E. In *Green Chemistry: Synthesis* of *Bioactive Heterocycles*; Ameta, K. L.; Dandia, A., Eds.; Springer India: New Delhi, 2014, p. 253.
- Gazieva, G. A.; Izmest'ev, A. N. Chem. Heterocycl. Compd. 2015, 50, 1515. [Химия гетероцикл. соединений 2014, 1649.]
- Havrylyuk, D.; Zimenkovsky, B.; Lesyk, R. Mini-Rev. Org. Chem. 2015, 12, 66.
- Havrylyuk, D.; Roman, O.; Lesyk, R. Eur. J. Med. Chem. 2016, 113, 145.
- 10. Takasu, K. Chem. Pharm. Bull. 2016, 64, 656.
- 11. Lesyk, R.; Zimenkovsky, B. Curr. Org. Chem. 2004, 8, 1547.
- 12. Tomasic, T.; Masic, L. P. Curr. Med. Chem. 2009, 16, 1596.
- Jain, V. S.; Vora, D. K.; Ramaa, C. S. Bioorg. Med. Chem. 2013, 21, 1599.
- 14. Zhan, P.; Pannecouque, C.; De Clercq, E.; Liu, X. J. Med. Chem. 2016, 59, 2849.
- Naim, M. J.; Alam, M. J.; Ahmad, S.; Nawaz, F.; Shrivastava, N.; Sahu, M.; Alam, O. *Eur. J. Med. Chem.* **2017**, *129*, 218.
- Kaur Manjal, S.; Kaur, R.; Bhatia, R.; Kumar, K.; Singh, V.; Shankar, R.; Kaur, R.; Rawal, R. K. *Bioorg. Chem.* 2017, 75, 406.
- Kaminskyy, D.; Kryshchyshyn, A.; Lesyk, R. Expert Opin. Drug Discovery 2017, 12, 1233.
- Kaminskyy, D.; Kryshchyshyn, A.; Lesyk, R. Eur. J. Med. Chem. 2017, 140, 542.
- 19. Löscher, W.; Schmidt, D. Epilepsy Res. 1994, 17, 95.
- Rizos, C. V.; Kei, A.; Elisaf, M. S. Arch. Toxicol. 2016, 90, 1861.
- 21. Nicolaou, K. C.; Vourloumis, D.; Winssinger, N.; Baran, P. S. *Angew. Chem., Int. Ed.* **2000**, *39*, 44.
- Рамш, С. М. Руководство по составлению названий гетероциклических соединений (с примерами и задачами); Химиздат: Санкт-Петербург, 2009, с. 321.
- IUPAC Compendium of Chemical Terminology. http:// goldbook.iupac.org /terms/view/R05393.
- 24. Matsui, M.; Asamura, Y.; Kubota, Y.; Funabiki, K.; Jin, J.; Yoshida, T.; Miura, H. *Tetrahedron* **2010**, *66*, 7405.
- Matsui, M.; Kotani, M.; Kubota, Y.; Funabiki, K.; Jin, J.; Yoshida, T.; Higashijima, S.; Miura, H. Dyes Pigm. 2011, 91, 145.
- 26. Matsui, M.; Fujita, T.; Kubota, Y.; Funabiki, K.; Jin, J.; Yoshida, T.; Miura, H. *Dyes Pigm.* **2010**, *86*, 143.
- 27. Matsui, M.; Shiota, T.; Kubota, Y.; Funabiki, K.; Jin, J.; Yoshida, T.; Higashijima, S.; Miura, H. *Tetrahedron* **2012**, 68, 4286.
- Matsui, M.; Inoue, T.; Ono, M.; Kubota, Y.; Funabiki, K.; Jin, J.; Yoshida, T.; Higashijima, S.; Miura, H. *Dyes Pigm.* **2013**, *96*, 614.
- 29. Mishra, A.; Fischer, M. K. R.; Bäuerle, P. Angew. Chem., Int. Ed. 2009, 48, 2474.
- Brogdon, P.; Cheema, H.; Delcamp, J. H. ChemSusChem 2018, 11, 86.
- 31. Lorcy, D.; Bellec, N. Chem. Rev. 2004, 104, 5185.
- 32. Toplak, R.; Bénard-Rocherullé, P.; Lorcy, D. Tetrahedron Lett. 2002, 43, 3879.
- 33. Eid, S.; Guerro, M.; Roisnel, T.; Lorcy, D. Org. Lett. 2006, 8, 2377.
- 34. Bellec, N.; Lorcy, D.; Robert, A.; Carlier, R.; Tallec, A. J. Electroanal. Chem. 1999, 462, 137.
- 35. Guérin, D.; Carlier, R.; Guerro, M.; Lorcy, D. *Tetrahedron* **2003**, *59*, 5273.

- 36. Olivier, C.; Toplak, R.; Guerro, M.; Carlier, R.; Lorcy, D. *C. R. Chim.* **2005**, *8*, 235.
- Arduengo, A. J.; Goerlich, J. R.; Marshall, W. J. *Liebigs Ann.* 1997, 365.
- Suzuki, K.; Tomura, M.; Tanaka, S.; Yamashita, Y. *Tetrahedron Lett.* 2000, *41*, 8359.
- Suzuki, K.; Tomura, M.; Tanaka, S.; Yamashita, Y. CCDC 154534: Experimental Crystal Structure Determination; 2001. DOI: 10.5517/cc55sz2.
- Iijima, K.; Le Gal, Y.; Higashino, T.; Lorcy, D.; Mori, T. J. Mater. Chem. C 2017, 5, 9121.
- Iijima, K.; Le Gal, Y.; Higashino, T.; Lorcy, D.; Mori, T. *CCDC 1558710: Experimental Crystal Structure Determination*; 2017. DOI: 10.5517/ccdc.csd.cc1p9yzx.
- Matsui, M.; Fujita, T.; Kubota, Y.; Funabiki, K.; Miura, H.; Shiro, M. CCDC 762266: Experimental Crystal Structure Determination; 2010. DOI: 10.5517/cctl67t.
- Matsui, M.; Fujita, T.; Kubota, Y.; Funabiki, K.; Miura, H.; Shiro, M. Bull. Chem. Soc. Jpn. 2010, 83, 709.
- Le Gal, Y.; Rajkumar, M.; Vacher, A.; Dorcet, V.; Roisnel, T.; Fourmigué, M.; Barrière, F.; Guizouarn, T.; Lorcy, D. CCDC 1471695: Experimental Crystal Structure Determination; 2016. DOI: 10.5517/ccdc.csd.cc1ldf1g.
- 45. Le Gal, Y.; Rajkumar, M.; Vacher, A.; Dorcet, V.; Roisnel, T.; Fourmigué, M.; Barrière, F.; Guizouarn, T.; Lorcy, D. *CrystEngComm* **2016**, *18*, 3925.
- 46. Baranac-Stojanović, M.; Kleinpeter, E. J. Org. Chem. 2011, 76, 3861.
- Baranac-Stojanović, M.; Klaumünzer, U.; Marković, R.; Kleinpeter, E. *Tetrahedron* 2010, 66, 8958.
- Rašović, A.; Blagojević, V.; Baranac-Stojanović, M.; Kleinpeter, E.; Marković, R.; Minić, D. M. New J. Chem. 2016, 40, 6364.
- Marković, R.; Baranac, M.; Juranić, N.; Macura, S.; Cekić, I.; Minić, D. J. Mol. Struct. 2006, 800, 85.
- 50. Kleinpeter, E. J. Serb. Chem. Soc. 2006, 71, 1.
- 51. Beverina, L.; Pagani, G. A. Acc. Chem. Res. 2014, 47, 319.
- 52. Ye, G.; Chatterjee, S.; Li, M.; Zhou, A.; Song, Y.; Barker, B. L.; Chen, C.; Beard, D. J.; Henry, W. P.; Pittman, C. U. *Tetrahedron* **2010**, *66*, 2919.
- Rattananakin, P.; Pittman, C. U.; Collier, W. E.; Saebø, S. Struct. Chem. 2007, 18, 399.
- 54. Kleinpeter, E.; Klod, S.; Rudorf, W.-D. J. Org. Chem. 2004, 69, 4317.
- Kleinpeter, E.; Koch, A.; Heydenreich, M.; Chatterjee, S. K.; Rudorf, W.-D. J. Mol. Struct. 1995, 356, 25.
- 56. Mueller, J. L.; Gibson, M. S.; Hartman, J. S. Can. J. Chem. **1996**, 74, 1329.
- Kleinpeter, E.; Heydenreich, M.; Woller, J.; Wolf, G.; Koch, A.; Kempter, G.; Pihlaja, K. J. Chem. Soc., Perkin Trans. 2 1998, 1877.
- Meier, H.; Mühling, B.; Gerold, J.; Jacob, D.; Oehlhof, A. Eur. J. Org. Chem. 2007, 625.
- 59. Kleinpeter, E.; Schulenburg, A. Tetrahedron Lett. 2005, 46, 5995.
- Kalogirou, A. S.; Michaelidou, S. S.; White, A. J. P.; Panayiotis, A. K. CCDC 1036126: Experimental Crystal Structure Determination; 2015. DOI: 10.5517/cc13s5fh.
- Kalogirou, A. S.; Michaelidou, S. S.; White, A. J. P.; Koutentis, P. A. *Tetrahedron* 2015, *71*, 1799.
- 62. Minkin, V. I.; Minyaev, R. M. Chem. Rev. 2001, 101, 1247.
- Iijima, K.; Le Gal, Y.; Higashino, T.; Lorcy, D.; Mori, T. *CCDC 1558720: Experimental Crystal Structure Determination*; 2017. DOI: 10.5517/ccdc.csd.cc1p9z98.
- Iijima, K.; Le Gal, Y.; Higashino, T.; Lorcy, D.; Mori, T. *CCDC 1558721: Experimental Crystal Structure Determination*; 2017. DOI: 10.5517/ccdc.csd.cc1p9zb9.

- Iijima, K.; Le Gal, Y.; Higashino, T.; Lorcy, D.; Mori, T. *CCDC 1558721: Experimental Crystal Structure Determination*; 2017. DOI: 10.5517/ccdc.csd.cc1p9zfd.
- Aragoni, M. C.; Arca, M.; Devillanova, F. A.; Isaia, F.; Lippolis, V.; Mancini, A.; Pala, L.; Slawin, A. M. Z.; Woollins, J. D. CCDC 262774: Experimental Crystal Structure Determination; 2006. DOI: 10.5517/cc8tfl2.
- Aragoni, M. C.; Arca, M.; Devillanova, F. A.; Isaia, F.; Lippolis, V.; Mancini, A.; Pala, L.; Slawin, A. M. Z.; Woollins, J. D. *Inorg. Chem.* 2005, 44, 9610.
- Le Gal, Y.; Bellec, N.; Barrière, F.; Clérac, R.; Fourmigué, M.; Dorcet, V.; Roisnel, T.; Lorcy, D. CCDC 951711: Experimental Crystal Structure Determination; 2013. DOI: 10.5517/cc10ybcn.
- Le Gal, Y.; Bellec, N.; Barrière, F.; Clérac, R.; Fourmigué, M.; Dorcet, V.; Roisnel, T.; Lorcy, D. *Dalton Trans.* 2013, 42, 16672.
- Iijima, K.; Le Gal, Y.; Higashino, T.; Lorcy, D.; Mori, T. *CCDC 1558711: Experimental Crystal Structure Determination*; 2017. DOI: 10.5517/ccdc.csd.cc1p9z0z.
- 71. Abd-Elmalek, H. A. *CCDC 830679: Experimental Crystal Structure Determination*; 2012. DOI: 10.5517/ccwwd37.
- Abdel-Malek, H. A. Phosphorus, Sulfur Silicon Relat. Elem. 2012, 187, 506.
- Le Gal, Y.; Rajkumar, M.; Vacher, A.; Dorcet, V.; Roisnel, T.; Fourmigué, M.; Barrière, F.; Guizouarn, T.; Lorcy, D. *CCDC 1471698: Experimental Crystal Structure Determination*; 2016. DOI: 10.5517/ccdc.csd.cc1ldf4k.
- Morel, G.; Gachot, G.; Lorcy, D. CCDC 259963: Experimental Crystal Structure Determination; 2005. DOI: 10.5517/cc8qhxc.
- 75. Morel, G.; Gachot, G.; Lorcy, D. Synlett 2005, 1117.
- Le Gal, Y.; Bellec, N.; Barrière, F.; Clérac, R.; Fourmigué, M.; Dorcet, V.; Roisnel, T.; Lorcy, D. CCDC 951710: Experimental Crystal Structure Determination; 2013. DOI: 10.5517/cc10ybbm.
- 77. Baryshnikov, G. V.; Minaev, B. F.; Minaeva, V. A.; Baryshnikova, A. T. *J. Struct. Chem.* **2012**, *53*, 428.
- Wang, H.-Y.; Cui, L.; Xie, J.-Z.; Leong, C. F.; D'Alessandro, D. M.; Zuo, J.-L. Coord. Chem. Rev. 2017, 345, 342.
- 79. Nakazawa, Y.; Imajo, S.; Matsumura, Y.; Yamashita, S.; Akutsu, H. Crystals 2018, 8, 143.
- Doni, E.; Murphy, J. A. Chem. Commun. (Cambridge, U. K.) 2014, 50, 6073.
- Le Gal, Y.; Ameline, D.; Bellec, N.; Vacher, A.; Roisnel, T.; Dorcet, V.; Jeannin, O.; Lorcy, D. *Org. Biomol. Chem.* 2015, *13*, 8479.
- Tormos, G. V.; Bakker, M. G.; Wang, P.; Lakshmikantham, M. V.; Cava, M. P.; Metzger, R. M. J. Am. Chem. Soc. 1995, 117, 8528.
- Wang, H.-J.; Shi, J.; Fang, M.; Li, Z.; Guo, Q.-X. J. Phys. Org. Chem. 2010, 23, 75.
- Bellec, N.; Lorcy, D.; Robert, A.; Carlier, R.; Tallec, A.; Rimbaud, C.; Ouahab, L.; Clerac, R.; Delhaes, P. *Adv. Mater.* **1997**, *9*, 1052.
- Bellec, N.; Guérin, D.; Lorcy, D.; Robert, A.; Carlier, R.; Tallec, A.; Shono, T.; Toftlund, H. *Acta Chem. Scand.* **1999**, *53*, 861.
- Pérez-Perarnau, A.; Preciado, S.; Palmeri, C. M.; Moncunill-Massaguer, C.; Iglesias-Serret, D.; González-Gironès, D. M.; Miguel, M.; Karasawa, S.; Sakamoto, S.; Cosialls, A. M.; Rubio-Patiño, C.; Saura-Esteller, J.; Ramón, R.; Caja, L.; Fabregat, I.; Pons, G.; Handa, H.; Albericio, F.; Gil, J.; Lavilla, R. Angew. Chem., Int. Ed. 2014, 53, 10150.
- Johansson, C. C. C.; Colacot, T. J. Angew. Chem., Int. Ed. 2010, 49, 676.

- Uno, M.; Seto, K.; Takahashi, S. J. Chem. Soc., Chem. Commun. 1984, 932.
- Charushin, V. N.; Chupakhin, O. N. Mendeleev Commun. 2007, 17, 249.
- Starodub, V. A.; Starodub, T. N. Russ. Chem. Rev. 2014, 83, 391. [Vcnexu xumuu 2014, 83, 391.]
- 91. Koyioni, M.; Koutentis, P. A. Org. Lett. 2017, 19, 174.
- 92. Kalogirou, A. S.; Koutentis, P. A. Tetrahedron 2009, 65, 6859.
- Filatre-Furcate, A.; Higashino, T.; Lorcy, D.; Mori, T. J. Mater. Chem. C 2015, 3, 3569.
- 94. Le Gal, Y.; Ameline, D.; Vacher, A.; Roisnel, T.; Dorcet, V.; Lorcy, D. *New J. Chem.* **2016**, *40*, 9930.
- Nasiri, F.; Zolali, A.; Asadbegi, S. J. Heterocycl. Chem. 2016, 53, 989.
- Alizadeh, A.; Rostamnia, S.; Zohreh, N.; Hosseinpour, R. Tetrahedron Lett. 2009, 50, 1533.
- 97. Iijima, K.; Le Gal, Y.; Lorcy, D.; Mori, T. *RSC Adv.* **2018**, *8*, 18400.
- 98. Zaleska, B.; Burgiel, M. M.; Serda, P. *Chem. Heterocycl. Compd.* **2008**, *44*, 349. [Химия гетероцикл. соединений **2008**, 452.]
- 99. Metwally, M. A.; Keshk, E. M.; Fekry, A.; Etman, H. A. *Phosphorus, Sulfur Silicon Relat. Elem.* **2004**, *179*, 2067.
- 100. Chaurasia, S.; Lin, J. T. Chem. Rec. 2016, 16, 1311.
- 101. Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H. *Chem. Rev.* 2010, 110, 6595.
- 102. Li, Z.; He, G.; Wan, X.; Liu, Y.; Zhou, J.; Long, G.; Zuo, Y.; Zhang, M.; Chen, Y. *Adv. Energy Mater.* **2012**, *2*, 74.
- 103. Guo, X.; Liao, Q.; Manley, E. F.; Wu, Z.; Wang, Y.; Wang, W.; Yang, T.; Shin, Y.-E.; Cheng, X.; Liang, Y.; Chen, L. X.; Baeg, K.-J.; Marks, T. J.; Guo, X. *Chem. Mater.* **2016**, *28*, 2449.
- 104. Tian, H.; Yang, X.; Chen, R.; Hagfeldt, A.; Sun, L. *Energy Environ. Sci.* **2009**, *2*, 674.
- 105. Wu, G.; Kong, F.; Zhang, Y.; Zhang, X.; Li, J.; Chen, W.; Zhang, C.; Dai, S. Dyes Pigm. 2014, 105, 1.
- 106. Cheng, H.-M.; Hsieh, W.-F. Energy Environ. Sci. 2010, 3, 442.
- 107. Le Bahers, T.; Pauporté, T.; Scalmani, G.; Adamo, C.; Ciofini, I. Phys. Chem. Chem. Phys. 2009, 11, 11276.
- 108. Xu, J.; Liang, G.; Wang, L.; Xu, W.; Cui, W.; Zhang, H.; Li, Z. J. Serb. Chem. Soc. 2010, 75, 259.
- 109. Ren, X.-F.; Zhang, J.; Kang, G.-J. J. Nanomaterials 2015, 605728.
- 110. Ham, H. W.; Kim, Y. S. Thin Solid Films 2010, 518, 6558.
- 111. Mee, J. D. US Patent 5679795.
- 112. He, G.; Li, Z.; Wan, X.; Liu, Y.; Zhou, J.; Long, G.; Zhang, M.; Chen, Y. J. Mater. Chem. **2012**, *22*, 9173.
- 113. Bahrami, K.; Khodaei, M. M.; Farrokhi, A. *Tetrahedron* **2009**, *65*, 7658.
- 114. Higashijima, S.; Miura, H.; Fujita, T.; Kubota, Y.; Funabiki, K.; Yoshida, T.; Matsui, M. *Tetrahedron* 2011, 67, 6289.
- 115. Matsui, M.; Tanaka, N.; Kubota, Y.; Funabiki, K.; Jin, J.; Higashijima, S.; Miura, H.; Manseki, K. *RSC Adv.* **2016**, *6*, 33111.
- 116. Kuang, D.; Uchida, S.; Humphry-Baker, R.; Zakeeruddin, S. M.; Grätzel, M. Angew. Chem., Int. Ed. 2008, 47, 1923.
- 117. Ito, S.; Zakeeruddin, S. M.; Humphry-Baker, R.; Liska, P.; Charvet, R.; Comte, P.; Nazeeruddin, M. K.; Péchy, P.; Takata, M.; Miura, H.; Uchida, S.; Grätzel, M. Adv. Mater. 2006, 18, 1202.
- 118. Horiuchi, T.; Miura, H.; Sumioka, K.; Uchida, S. J. Am. Chem. Soc. 2004, 126, 12218.
- 119. Onwona-Agyeman, B.; Nakao, M.; Asoka Kumara, G. R. J. Mater. Res. 2010, 25, 1838.

- 120. Lin, R. Y.-Y.; Lee, C.-P.; Chen, Y.-C.; Peng, J.-D.; Chu, T.-C.; Chou, H.-H.; Yang, H.-M.; Lin, J. T.; Ho, K.-C. Chem. Commun. 2012, 48, 12071.
- 121. Hosono, E.; Mitsui, Y.; Zhou, H. Dalton Trans. 2008, 5439.
- 122. Chiu, W.-H.; Lee, C.-H.; Cheng, H.-M.; Lin, H.-F.; Liao, S.-C.; Wu, J.-M.; Hsieh, W.-F. *Energy Environ. Sci.* 2009, 2, 694.
- 123. Liu, Z.; Ojima, H.; Hong, Z.; Kido, J.; Tian, W.; Wang, X.-F. Molecules 2013, 18, 3107.
- 124. Higashijima, S.; Inoue, Y.; Miura, H.; Kubota, Y.; Funabiki, K.; Yoshida, T.; Matsui, M. *RSC Adv.* **2012**, *2*, 2721.
- 125. Huckaba, A. J.; Yella, A.; McNamara, L. E.; Steen, A. E.; Murphy, J. S.; Carpenter, C. A.; Puneky, G. D.; Hammer, N. I.; Nazeeruddin, M. K.; Grätzel, M.; Delcamp, J. H. *Chem.– Eur. J.* 2016, 22, 15536.
- 126. Ito, S.; Miura, H.; Uchida, S.; Takata, M.; Sumioka, K.; Liska, P.; Comte, P.; Péchy, P.; Grätzel, M. *Chem. Commun.* 2008, 5194.
- 127. El-Zohry, A.; Orthaber, A.; Zietz, B. J. Phys. Chem. C 2012, 116, 26144.
- 128. El-Zohry, A. M.; Zietz, B. J. Phys. Chem. C 2013, 117, 6544.
- 129. Zietz, B.; Gabrielsson, E.; Johansson, V.; El-Zohry, A. M.; Sun, L.; Kloo, L. Phys. Chem. Chem. Phys. 2014, 16, 2251.
- 130. Hassaneen, H. M.; Miqdad, O. A.; Abunada, N. M.; Fares, A. A. *Nat. Sci. (Irvine, CA, U. S.)* **2011**, *3*, 199.
- 131. Salem, M. A. Croat. Chem. Acta 2017, 90, 7.
- 132. Hahnemann, C.; Hartmann, H. Helv. Chim. Acta 2003, 86, 1949.
- 133. Kawakami, M.; Koya, K.; Ukai, T.; Tatsuta, N.; Ikegawa, A.; Ogawa, K.; Shishido, T.; Chen, L. B. J. Med. Chem. 1997, 40, 3151.
- 134. Kulinich, A. V; Ishchenko, A. A. Russ. Chem. Rev. 2009, 78, 141. [Vcnexu xumuu 2009, 78, 151.]
- 135. Shindy, H. Mini. Rev. Org. Chem. 2012, 9, 352.
- 136. Sun, X.; Wong, J. R.; Song, K.; Hu, J.; Garlid, K. D.; Chen, L. B. *Cancer Res.* **1994**, *54*, 1465.
- 137. Dairkee, S. H.; Deng, G.; Stampfer, M.; Waldman, F. M.; Smith, H. S. *Cancer Res.* **1995**, *55*, 2516.
- 138. Koya, K.; Li, Y.; Wang, H.; Ukai, T.; Tatsuta, N.; Kawakami, M.; Shishido, T.; Chen, L. B. *Cancer Res.* **1996**, 56, 538.
- 139. Kawakami, M.; Koya, K.; Ukai, T.; Tatsuta, N.; Ikegawa, A.; Ogawa, K.; Shishido, T.; Chen, L. B. *J. Med. Chem.* **1998**, *41*, 130.
- 140. Weisberg, E. L.; Koya, K.; Modica-Napolitano, J.; Li, Y.; Chen, L. B. *Cancer Res.* **1996**, *56*, 551.

- 141. Britten, C. D.; Rowinsky, E. K.; Baker, S. D.; Weiss, G. R.; Smith, L.; Stephenson, J.; Rothenberg, M.; Smetzer, L.; Cramer, J.; Collins, W.; Von Hoff, D. D.; Eckhardt, S. G. *Clin. Cancer Res.* **2000**, *6*, 42.
- 142. Propper, D. J.; Braybrooke, J. P.; Taylor, D. J.; Lodi, R.; Styles, P.; Cramer, J. A.; Collins, W. C. J.; Levitt, N. C.; Talbot, D. C.; Ganesan, T. S.; Harris, A. L. Ann. Oncol. 1999, 10, 923.
- 143. Tatsuta, N.; Suzuki, N.; Mochizuki, T.; Koya, K.; Kawakami, M.; Shishido, T.; Motoji, N.; Kuroiwa, H.; Shigematsu, A.; Chen, L. B. *Cancer Chemother. Pharmacol.* 1999, 43, 295.
- 144. Takasu, K. Chem. Pharm. Bull. 2016, 64, 656.
- 145. Takasu, K.; Inoue, H.; Kim, H.-S.; Suzuki, M.; Shishido, T.; Wataya, Y.; Ihara, M. J. Med. Chem. **2002**, *45*, 995.
- 146. Kendall, J. D.; Suggate, H. G. J. Chem. Soc. 1949, 1503.
- 147. Takasu, K.; Terauchi, H.; Inoue, H.; Kim, H.-S.; Wataya, Y.; Ihara, M. J. Comb. Chem. **2003**, *5*, 211.
- 148. Takasu, K.; Terauchi, H.; Inoue, H.; Takahashi, M.; Sekita, S.; Ihara, M. *Heterocycles* **2004**, *64*, 215.
- 149. Li, X.; Srinivasan, S. R.; Connarn, J.; Ahmad, A.; Young, Z. T.; Kabza, A. M.; Zuiderweg, E. R. P.; Sun, D.; Gestwicki, J. E. ACS Med. Chem. Lett. 2013, 4, 1042.
- 150. Xiang, J.-F.; Liu, Y.-X.; Sun, D.; Zhang, S.-J.; Fu, Y.-L.; Zhang, X.-H.; Wang, L.-Y. *Dyes Pigm.* **2012**, *93*, 1481.
- 151. Li, Y. X.; Zhai, X.; Liao, W. K.; Zhu, W. F.; He, Y.; Gong, P. Chin. Chem. Lett. 2012, 23, 415.
- 152. Miyata, Y.; Li, X.; Lee, H.-F.; Jinwal, U. K.; Srinivasan, S. R.; Seguin, S. P.; Young, Z. T.; Brodsky, J. L.; Dickey, C. A.; Sun, D.; Gestwicki, J. E. ACS Chem. Neurosci. 2013, 4, 930.
- 153. Wang, A. M.; Miyata, Y.; Klinedinst, S.; Peng, H.-M.; Chua, J. P.; Komiyama, T.; Li, X.; Morishima, Y.; Merry, D. E.; Pratt, W. B.; Osawa, Y.; Collins, C. A.; Gestwicki, J. E.; Lieberman, A. P. *Nat. Chem. Biol.* **2013**, *9*, 112.
- 154. Pudhom, K.; Kasai, K.; Terauchi, H.; Inoue, H.; Kaiser, M.; Brun, R.; Ihara, M.; Takasu, K. *Bioorg. Med. Chem.* 2006, 14, 8550.
- 155. Takasu, K.; Pudhom, K.; Kaiser, M.; Brun, R.; Ihara, M. *J. Med. Chem.* **2006**, *49*, 4795.
- 156. Morisaki, D.; Kim, H.-S.; Inoue, H.; Terauchi, H.; Kuge, S.; Naganuma, A.; Wataya, Y.; Tokuyama, H.; Ihara, M.; Takasu, K. *Chem. Sci.* **2010**, *1*, 206.
- 157. Kasmi-Mir, S.; Zradni, F.-Z.; Rahmouni, M.; Kirsch, G. *Mediterr. J. Chem.* **2014**, *2*, 719.
- 158. Kasmi-Mir, S.; Djafri, A.; Hamelin, J.; Paquin, L.; Bazureau, J. P.; Rahmouni, M. Synth. Commun. 2007, 37, 4017.