

Реакции [3+2]-циклоприсоединения 1-замещенных 3,3,3-трифторпропенов с изонитрилами – синтез пирролов и пирролинов

Юрий Н. Маркитанов¹, Вадим М. Тимошенко^{1*}, Эдуард Б. Русанов¹, Юрий Г. Шермолович¹

¹ Институт органической химии НАН Украины, ул. Мурманская, 5, Киев 02660, Украина; e-mail: vadim@ioch.kiev.ua Поступило 23.07.2020 Принято после доработки 16.09.2020

$$R^2 = CO_2Et$$
 $R^2 = CO_2Et$
 $R^2 = CO_2Et$
 $R^2 = CO_2Et$
 $R^2 = CO_2Et$
 $R^2 = SO_2p$ -Tol
 $R^2 = SO_2p$ -Tol
 $R^2 = SO_2p$ -Tol
 SO_2NMe_2 , SO_2NMe_2 , SO_2NMe_3 , SO_2P -Tol, SO_2NMe_3 , SO_2

Реакции циклоприсоединения производных 3,3,3-трифторпропена, содержащих в положении 1 алкоксикарбонильный, сульфонильный, сульфоксиминный или сульфамидный заместитель, с этилизоцианацетатом проходят с образованием 3-(трифторметил)-2,3-дигидро-1*H*-пирролов, а реакции с (тозилметил)изоцианидом протекают с образованием 4-(трифторметил)-1*H*-пирролов.

Ключевые слова: пиррол, пирролидин, пирролин, сульфамид, сульфоксимин, сульфон, тозилметилизоцианид, этилизоцианацетат, трифторметильная группа, циклоприсоединение.

Гетероциклический цикл пиррола, а также его гидрированных производных – пирролина² пирролидина, входит в состав большого количества соединений как синтетического, так и природного происхождения, обладающих широким спектром биологической активности. Как следствие, новые структуры на основе этих гетероциклов являются перспективными для биологических исследований. Введение трифторметильной группы в молекулу гетероцикла может оказывать существенное влияние на ее химико-биологические свойства и, как следствие, значительное число фармпрепаратов и субстанций агрохимической промышленности представляют собой подобные соединения. Комбинация в молекуле гетероцикла трифторметильного заместителя с серосодержащими фармакофорными группами, такими как сульфамидная или сульфоксиминная, может приводить к изменению либо усилению уже имеющегося биологического действия, поэтому синтез новых представителей таких функционализированных соединений является актуальной задачей химии гетероциклов. В литературе описано множество примеров перспективных с медицинской точки зрения трифторметилсодержащих производных пирролина, ⁵ пиррола ⁶ и пирролидина. ⁷ При этом гораздо менее изучены аналогичные соединения с серосодержащим заместителем. ⁸

Одним из наиболее универсальных методов построения пятичленного цикла являются реакции [3+2]-циклоприсоединения. Ранее мы показали, что удобными субстратами для таких реакций могут служить легкодоступные электроноакцепторные олефины 1 с трифторметильным и серосодержащим заместителями. В продолжение наших исследований по синтезу новых гетероциклических соединений с использованием методологии [3+2]-циклизаций⁹ в данной работе мы сообщаем о получении пятичленных замещенных азагетероциклов реакциями циклоприсоединения производных (E)-3,3,3-трифторпропена **1а**-**e**, содержащих алкоксикарбонильную, сульфонильную, иминосульфонильную или сульфамоильную группу, с изоцианометилидами, образуемыми из этилизоцианацетата (2) или *пара*-толуолсульфонилметилизоцианида (TOSMIC) (6). Известно, что реакции замещенных олефинов с алкилизоцианацетатами приводят к образованию

Схема 1

$$F_{3}C$$

$$1a-e$$

$$R + EtO_{2}C$$

$$1a-e$$

$$2$$

$$AgOAc$$

$$(0.01 \text{ equiv})$$

$$MeCN, rt, 20 \text{ h}$$

$$1, 3, 4 \text{ a } R = CO_{2}Et, \textbf{ b } R = SO_{2}Me, \textbf{ c } R = SO_{2}\rho-Tol, \textbf{ d } R = SO_{2}NMe_{2}, \textbf{ e } R = S(O)(NCO_{2}Et)Me$$

$$R = SO_{2}NMe_{2}, \textbf{ e } R = S(O)(NCO_{2}Et)Me$$

$$R = SO_{2}NMe_{2}, \textbf{ e } R = S(O)(NCO_{2}Et)Me$$

$$R = SO_{2}NMe_{2}, \textbf{ e } R = S(O)(NCO_{2}Et)Me$$

$$R = SO_{2}NMe_{2}, \textbf{ e } R = S(O)(NCO_{2}Et)Me$$

$$R = SO_{2}NMe_{2}, \textbf{ e } R = S(O)(NCO_{2}Et)Me$$

$$R = SO_{2}NMe_{2}, \textbf{ e } R = S(O)(NCO_{2}Et)Me$$

$$R = SO_{2}NMe_{2}, \textbf{ e } R = S(O)(NCO_{2}Et)Me$$

$$R = SO_{2}NMe_{2}, \textbf{ e } R = S(O)(NCO_{2}Et)Me$$

$$R = SO_{2}NMe_{2}, \textbf{ e } R = S(O)(NCO_{2}Et)Me$$

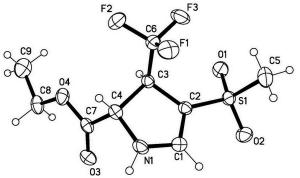
$$R = SO_{2}NMe_{2}, \textbf{ e } R = S(O)(NCO_{2}Et)Me$$

$$R = SO_{2}NMe_{2}, \textbf{ e } R = S(O)(NCO_{2}Et)Me$$

$$R = SO_{2}NMe_{2}, \textbf{ e } R = S(O)(NCO_{2}Et)Me$$

$$R = SO_{2}NMe_{2}, \textbf{ e } R = S(O)(NCO_{2}Et)Me$$

$$R = SO_{2}NMe_{2}, \textbf{ e } R = S(O)(NCO_{2}Et)Me$$


$$R = SO_{2}NMe_{2}, \textbf{ e } R = S(O)(NCO_{2}Et)Me$$

$$R = SO_{2}NMe_{2}, \textbf{ e } R = S(O)(NCO_{2}Et)Me$$

пирролинов, 10 тогда как в реакциях с (тозилметил)-изоцианидами промежуточно образующиеся α-тозилпирролины претерпевают *in situ* элиминирование толуолсульфоната с образованием пирролов (реакция Ван Леузена). 11 Однако данные циклизации для соединений 1 с серосодержащей функциональной группой в литературе не описаны. Их систематическое изучение позволило синтезировать новые замещенные азотсодержащие гетероциклы, а также исследовать стереохимию протекания реакций и влияние природы заместителей в исходных реагентах на строение конечных продуктов.

Мы обнаружили, что E-олефины $1\mathbf{a}$ — \mathbf{d} взаимодействуют с этилизоцианацетатом (2) при комнатной температуре в MeCN региоселективно с образованием 2,3-дигидро-1H-пирролов $3\mathbf{a}$ — \mathbf{d} с хорошими и умеренными выходами (схема 1). Для инициирования реакции мы применяли каталитическое количество (0.01 экв.) AgOAc, который, наряду с соединениями меди, часто используется в реакциях с участием алкилизоцианацетатов и активированных олефинов. 10

Строение пирролинов **3a-d** в кристаллическом состоянии было доказано методом рентгеноструктурного анализа на примере метилсульфонильного производного **3b** (рис. 1). При этом в растворах соединения **3a-d**

Рисунок 1. Молекулярная структура соединения **3b** в представлении атомов эллипсоидами тепловых колебаний с 50% вероятностью.

существуют прототропных виде изомеров Δ^2 -пирролинов **3a-d** и Δ^1 -пирролинов **4a-d**, соотношение которых в спектрах ЯМР меняется в зависимости от растворителя, в котором регистрируются спектры. Так, в растворе CDCl₃ для смеси пирролинов **3b** и **4b** наблюдается соотношение 1:1.4, в растворе ДМСО- d_6 это соотношение меняется на 2.4:1, тогда как в растворе СF₃CO₂D мы наблюдали сигналы только одного изомера. Мониторинг реакций алкенов 1a-d с изонитрилом 2 осуществляли с помощью спектроскопии ЯМР 19 Г реакционных растворов. Конверсия олефинов **1а-с**, согласно данным спектров ЯМР ¹⁹F, составляла 83-91%, в случае же соединения 1d реакция протекала не так гладко: наряду с более низкой конверсией (54%) происходили и побочные реакции. Соединение 3d было выделено с выходом 48%, однако в растворе СDС13 оно находилось практически полностью в виде изомера 4d и однозначно охарактеризовать изомер 3d нам не удалось. В случае циклоприсоединения алкена 1е с хиральным иминосульфонильзаместителем промежуточно образующийся пирролин Зе претерпевает ароматизацию цикла путем элиминирования метан(*N*-карбэтокси)имидосульфиновой кислоты (схема 1). При проведении реакции циклоприсоединения олефинов 1b,с и изонитрила 2 в ТГФ в присутствии основания (t-BuOK) сразу происходит элиминирование серосодержащего фрагмента из соединений 3b,с с образованием пиррола 5.

Отнесение сигналов Δ^2 -пирролинов $3\mathbf{a}$ — \mathbf{d} и Δ^1 -пирролинов $4\mathbf{a}$ — \mathbf{d} в спектрах $\mathrm{ЯМP}^{-1}\mathrm{H}$ и $^{13}\mathrm{C}$ в растворах CDCl_3 проводилось на основании данных спектра $^{1}\mathrm{H}$ — $^{13}\mathrm{C}$ HSQC изомеров $3\mathbf{b}$ и $4\mathbf{b}$. Относительную конфигурацию заместителей цикла пирролинов 3 и 4 а— \mathbf{d} определяли исходя из значений КССВ циклических протонов. Так, значения КССВ между циклическими протонами 2-СH и 3-CH соединений 3 и 4 а— \mathbf{d} составили $^{3}J_{\mathrm{HH}}=4.2$ —4.9 Γ ц, а между протонами 3-СH и 4-CH изомеров $4\mathbf{a}$ — \mathbf{d} эти значения составили $^{3}J_{\mathrm{HH}}=4.5$ —4.6 Γ ц, что указывает на взаимное *транс*-расположение заместителей в положениях 2 и 3,

а также 3 и 4. Аналогичные значения констант $^3J_{\rm HH}$ сообщались для подобных замещенных пирролиновых структур с *транс*-расположением заместителей. 10b В спектрах ЯМР 13 С изомеров **3** и **4** а–**d** сигналы ядер углерода С-3 проявлялись в виде квартетов ($^2J_{\rm CF}=29.1-31.6$ Гц) в области 45.0-49.3 м. д. Характеристичные сигналы ядер углерода С-4 Δ^1 -пирролинов **4а**–**d** наблюдались при 75.9-77.3 м. д., а Δ^2 -пирролинов **3а**–**d** в интервале 98.6-106.2 м. д. Спектральные данные этил-2-пирролкарбоксилата **5** согласуются с данными спектров ЯМР описанного метилового эфира 3-(трифторметил)пиррол-2-карбоновой кислоты. 12

Далее мы изучили реакции циклоприсоединения производных 3,3,3-трифторпропена **1a-e** с TOSMIC (**6**) (схема 2). Следует отметить, что данная циклизация описана только для β-перфторалкильных α,β-ненасыщенных карбонильных соединений с (тозилметил)изоцианидами, 11e,f,13 тогда как олефины с серосодержащим заместителем в подобных реакциях не изучались. При поиске оптимальных условий для генерирования изоцианометилид-аниона и протекания реакции с алкеном 1b в качестве модельного субстрата нами были проверены различные основания, такие как DBU, NaH, KOH и t-BuOK, а также растворители ДМСО– Et_2O , ДМФА, ТГФ. Наилучших результатов удалось добиться в случае применения в качестве основания t-BuOK и проведения реакции в ТГФ. Было найдено, что олефины 1a-е взаимодействуют с TOSMIC (6) в присутствии двукратного количества t-BuOK в ТГФ при охлаждении с образованием 1*H*-пирролов 7а-е с выходами 57-88% (схема 2). Реакции протекают гладко при полной конверсии олефинов 1 и заканчиваются в течение 1 ч, что позволило масштабировать данный процесс с получением мультиграммовых количеств 3,4-дизамещенных пирролов 7.

Пирролы **7а**—е представляют собой устойчивые кристаллические вещества, структура которых согласуется с данными спектроскопии ЯМР, а состав подтверждается данными масс-спектров и элементного

Cxema 2

F₃C

R +
$$p$$
-TolSO₂

NC

THF, 0°C \rightarrow rt, 1 h

57–88%

a R = CO₂Et, b R = SO₂Me, c R = SO₂ p -Tol

d R = SO₂NMe₂, e R = S(O)(NCO₂Et)Me

анализа. Соединение **7а** ранее было описано в патенте, ^{13с} однако не было охарактеризовано спектральными методами. Сигналы циклических ядер углерода соединений **7b—е** были однозначно отнесены при помощи спектров ЯМР ¹³С АРТ. В спектрах ЯМР ¹³С соединений **7b—е** характеристичные сигналы атома углерода С-4 проявляются в виде квартета ($^2J_{\rm CF}=37.1–38.1~\Gamma$ ц) в области 110.4–112.7 м. д., а сигналы атома углерода С-3 представлены квартетом при 116.2–121.2 м. д. с КССВ $^3J_{\rm CF}=1.2–2.1~\Gamma$ ц.

Мы исследовали некоторые превращения пирролинового цикла на примерах реакций окислительного дегидрирования, восстановления циклической иминофункции, а также реакций гидролиза, используя в качестве модельного объекта соединение 3b (схема 3). При гидролизе α-пирролинкарбоксилата 3b нагреванием с разбавленной HCl образуется α-пирролинкарбоновая кислота 8 с выходом 93%. В записанном в ДМСО- d_6 спектре ЯМР ¹Н кислоты наблюдается такое же соотношение Δ^2 - и Δ^1 -пирролинов **8а**,**b** как и для исходного эфира 3b. Для окислительного дегидрирования пирролина 3b с целью получения пиррола мы использовали методику α-галогенирования с последующим дегидрогалогенированием в присутствии основания. 2е,14 Так, при действии эквимолярного количества NBS как галогенирующего агента на соединение 3b в CH₂Cl₂ при комнатной температуре образуется промежуточное бромопроизводное, которое без выделения легко дегидробромируется под действием Et₃N с образованием 2-пирролкарбоксилата 9, выделенного с выходом 88%. При последующем кислом гидролизе эфира 9 в условиях длительного нагревания с разбавленной HCl с высоким выходом была получена 2-пирролкарбоновая кислота 10 (схема 3).

Восстановление пирролинового цикла соединений **3** до соответствующих пирролидинов с последующим гидролизом сложноэфирной функции открывает удобный синтетический путь к получению β-трифторметила-пирролидинкарбоновых кислот, содержащих экзоциклический серосодержащий заместитель. Следует отметить, что среди немногочисленных производных α-пирролидинкарбоксилатов, замещенных по положениям 3 и 4 цикла как полифторалкильной группой, так и серосодержащим заместителем, описаны только 2,3,4,5-тетразамещенные производные, содержащие в положении 5 арильную группу, ^{8h,i} а также 2-пиридоны. ¹⁵

В то же время среди 2,3,4-тризамещенных пирролкарбоксилатов, содержащих в молекуле одновременно группу СЕ3 и сульфонильный заместитель, описаны только этил-2-(4-толуолсульфонил)-3-(трифторметил)-1H-пиррол-4-карбоксилат, 8a,b а также этил-4-гексансульфонил-3-(трифторметил)-1*H*-пиррол-2-карбоксилат, выделенный с низким выходом из бинарной смеси продуктов. 16 Для селективного восстановления двойной связи в пирролине 3b оптимальным оказалось применение методики восстановления цианоборгидридом натрия в присутствии эквимолярного количества АсОН. Реакция носит диастереоселективный характер, о чем свидетельствуют данные спектров ЯМР как реакционной смеси, так и выделенного с выходом 83% этилпирролидин-2-карбоксилата 11, характеризующиеся одним набором сигналов. Относительное расположение заместителей в цикле пирролидина 11 было установлено исходя из значений КССВ протонов 2-СН и 3-СН, а также 3-СН и 4-СН, которые составляли 5.1 и 3.7 Гц соответственно, что характерно для трансориентированных заместителей в замещенных пирролидиновых циклах. 9а В результате кислого гидролиза эфира 11 в условиях нагревания с разбавленной HCl в течение 10 ч была получена пирролидин-2-карбоновая кислота 12 в виде гидрохлорида с выходом 95% (схема 3). Соединение 12 можно рассматривать как аналог пролина, замещенный в пирролидиновом цикле как группой СГ₃, так и серосодержащей функциональной группой.

Поскольку фторированные аналоги аминокислот, в том числе пролина, широко применяются в медицинской химии и химии белков, ¹⁷ найденный нами подход имеет несомненные преимущества по сравнению с другими многостадийными синтезами структурно близких соединений.

Таким образом, нами изучен подход к синтезу новых 3-(трифторметил)-2,3-дигидро-1H-пирролов, а также 4-(трифторметил)-1H-пирролов, содержащих сульфонильную, сульфоксиминную или сульфамидную группы, с использованием реакции циклоприсоединения препаративно доступных (E)- β -фторалкилвинилсульфонов, сульфоксиминов и -сульфамидов к изоцианометилидам. Полученные соединения оказались удобными субстратами для синтеза производных 3-(трифторметил)-пиррол-2-карбоновых кислот и 3-(трифторметил)-пирроллидин-2-карбоновых кислот, содержащих экзоциклическую функцию.

Экспериментальная часть

Спектры ЯМР 1 H, 13 C (AРТ 13 C), 19 F (400, 100 и 376 МГц соответственно), COSY и 1 H $-^{13}$ C HSQC записаны на приборе Bruker Avance-400 в CDCl $_{3}$ или ДМСО- d_{6} , внутренние стандарты: остаточные сигналы растворителя (CDCl $_{3}$: 7.26 м. д. для ядер 1 H и 77.2 м. д. для ядер 13 C; ДМСО- d_{6} : 2.50 м. д. для ядер 1 H и 39.5 м. д. для ядер 13 C), С $_{6}$ F $_{6}$: -162.9 м. д. относительно CFCl $_{3}$ для ядер 19 F. Хромато-масс-спектры (GC/MS) зарегистрированы на приборе Hewlett-Packard 5890/5972 при 70 эВ в режиме ЭУ. Хромато-масс-спектры (LC/MS) запи-

саны на приборе Agilent 1100 Series, оснащенном диодно-матричным и масс-селективным детектором Agilent LC/MSD SL, химическая ионизация при атмосферном давлении. Элементный анализ выполнен в аналитической лаборатории Института органической химии НАН Украины. Данные элементного анализа получены методом экспресс-гравиметрии (С, Н), методом сожжения по Шёнигеру (S) и методом Дюма—Прегля (N). Температуры плавления определены на приборе Boetius.

Все растворители предварительно высушены и перегнаны согласно стандартным методикам. Мониторинг реакций осуществлен методом спектроскопии ЯМР 19 F реакционных смесей. Для колоночной хроматографии использован силикагель марки Merck 60 (70–230 мкм), для тонкослойной хроматографии – пластины марки SUPELCO $^{\otimes}$ Analytical, UV 254. Соединения **1b**-е получены из соответствующих гидратов трифторметилкетонов. 9a

Получение 3-(трифторметил)-2-пирролинов 3а-d и 3-(трифторметил)-1-пирролинов 4а-d (общая методика). К раствору 2.00 ммоль производного 3,3,3-трифторпропена 1а-d и 0.41 г (2.10 ммоль) этилизоцианацетата (2) в 7 мл сухого МеСN добавляют 5 мг (0.02 ммоль) AgOAc, реакционную смесь перемешивают при комнатной температуре в течение 20 ч. Далее растворитель упаривают досуха при пониженном давлении. Для соединений За-с остаток после упаривания обрабатывают 5 мл смеси PhH-Et₂O, 4:1, отделившийся осадок отфильтровывают, промывают 2 мл РhН и сушат. Продукты 3a-с не требуют дополнительной очистки, аналитические образцы получают кристаллизацией. Для соединения 3d маслянистый остаток после упаривания реакционной смеси очищают колоночной хроматографией на силикагеле (EtOAcгексан, 2:1).

Диэтиловый эфир 3-(трифторметил)-2,3-дигидро-1Н-пиррол-2,4-дикарбоновой кислоты (3а) и диэтиловый эфир 3-(трифторметил)-3,4-дигидро-2Н-пиррол-2,4-дикарбоновой кислоты (4а), смесь двух изомеров **3a**:**4a** в соотношении 8:1. Выход 0.40 г (72%), светлокоричневое твердое вещество, т. пл. 69-70°C (гексан). Спектр ЯМР ¹Н (CDCl₃), δ, м. д. (*J*, Гц): 1.23* (3H, т, $^{3}J = 7.2$, OCH₂C $\underline{\text{H}}_{3}$); 1.28–1.30 (3H, M, OCH₂C $\underline{\text{H}}_{3}$); 1.29** (3H, T, $^{3}J = 7.2$, OCH₂C<u>H</u>₃); 3.78–3.82 (1H, M, 3-CH); 4.04* (1H, к. д, ${}^{3}J_{HF} = 7.8$, ${}^{3}J = 3.2$, 3-CH); 4.11–4.16** (2H, M, OCH₂CH₃); 4.21-4.24 (1H, M, 4-CH); 4.22-4.25** (2H, M, OC $\underline{\text{H}}_2\text{CH}_3$); 4.44* (1H, $\underline{\text{H}}$, ${}^3J = 2.8$, 2-CH); 4.92 $(1H, д, ^3J = 4.6, 2$ -CH); 5.16*(1H, уш. c, NH); 7.42*(1H, yu. c, NH); 7.42*(1H, yu.д, $^{3}J = 2.4$, 5-CH); 7.62–7.64 (1H, м, 5-CH). Спектр ЯМР ¹³С (CDCl₃), δ, м. д. (*J*, Гц): 14.1** (ОСН₂СН₃); 14.4** (OCH₂CH₃); 45.4 (κ , ${}^{2}J_{CF}$ = 29.1, C-3); 48.5* (κ , ${}^{2}J_{CF}$ = 30.5, C-3); 57.5 (κ , ${}^{3}J_{CF}$ = 1.7, C-2); 59.7** (OCH_2CH_3) ; 62.4 (OCH_2CH_3) ; 61.8* $(\kappa, {}^3J_{CF} = 2.8, C-2)$; 62.7* (OCH₂CH₃); 75.9 (κ , ${}^{3}J_{CF} = 1.6$, C-4); 98.6* (C-4); 126.1* (κ , $J_{CF} = 281.7$, CF_3); 126.3 (κ , $J_{CF} = 275.9$, CF_3); 151.5* (C-5); 163.5 (C-5); 164.5* (C=O); 166.9 (C=O);

^{*} Здесь и далее в экспериментальной части сигналы преобладающего изомера отмечены звездочкой (*), сигналы обоих изомеров – двумя звездочками (**).

169.1 (C=O); 170.8* (C=O). Спектр ЯМР 19 F (CDCl₃), δ , м. д. (J, Γ II): -71.5 (3F, д, $^2J_{\rm FH}=9.2$, CF₃); -73.8* (3F, д, $^2J_{\rm FH}=7.8$, CF₃). Масс-спектр** (LC/MS), m/z: 282 [M+H][†]. Масс-спектр* (GC/MS), m/z ($I_{\rm OTH}$, %): 281 [M] (23), 236 (40), 208 (38), 188 (23), 162 (51), 164 (26), 140 (66). Масс-спектр (GC/MS), m/z (%): 281 [M] (12), 236 (21), 208 (23), 164 (35), 162 (33), 140 (28), 136 (100), 116 (65). Найдено, %: C 46.99; H 5.06; N 4.99. $C_{11}H_{14}F_3NO_4$. Вычислено, %: C 46.98; H 5.02; N 4.98.

Этиловый эфир 4-метансульфонил-3-(трифторметил)-2,3-дигидро-1*H*-пиррол-2-карбоновой кислоты (3b) и этиловый эфир 4-метансульфонил-3-(трифторметил)-3,4-дигидро-2*H*-пиррол-2-карбоновой кислоты **(4b)**, смесь изомеров **3b**:**4b** в соотношении 1:1.4. Выход 0.43 г (75%), бесцветные кристаллы, т. пл. 100-101°C (МТБЭ). Спектр ЯМР 1 Н (CDCl₃), δ , м. д. (J, Γ ц): 1.33 (3H, T, ${}^{3}J = 7.2$, OCH₂C<u>H</u>₃); 1.35* (3H, T, ${}^{3}J = 7.2$, OCH₂CH₃); 2.99* (3H, c, SO₂CH₃); 3.04 (3H, c, SO₂CH₃); 3.85* (1H, к. д. д, ${}^{3}J_{HF} = 8.1$, ${}^{3}J = 4.9$, ${}^{3}J = 4.6$, 3-CH); 4.28* (2H, κ , $^{3}J = 7.2$, OCH₂CH₃); 4.28–4.36 (3H, κ , ОС<u>Н</u>₂CH₃, 3-CH); 4.51* (1H, д, 3J = 4.9, 2-CH); 4.54 (1H, д, 3J = 4.2, 2-CH); 5.13* (1H, д. д, 3J = 4.6, 3J = 2.9, 4-CH); 5.25 (1H, уш. c, NH); 7.38 (1H, д, 3J = 2.9, 5-CH); 7.73–7.75* (1H, м, H-5). Спектр ЯМР 13 С (CDCl₃), δ , м. д. (J, Γ ц): 14.1** (OCH₂CH₃); 40.1* (SO₂CH₃); 44.9 (SO₂CH₃); 45.1* (κ , ${}^{2}J_{CF} = 29.7$, C-3); 49.3 (κ , ${}^{2}J_{CF} = 30.6$, C-3); 62.6 (κ , ${}^{3}J_{\text{CF}} = 2.8, \text{ C-2}; 63.0** (O\underline{\text{C}}\text{H}_{2}\text{CH}_{3}); 74.3* (C-2); 77.3*$ (C-4); 104.5 (C-4); 125.4 (κ , $J_{CF} = 281.0$, CF₃); 125.5* (κ , $J_{\text{CF}} = 281.2, \text{ CF}_3$; 153.4 (C-5); 159.0* (C-5); 168.3* (C=O): 169.5 (C=O). Спектр ЯМР ¹⁹F (CDCl₃), б, м. д. $(J, \Gamma_{\rm II})$: $-71.3*(3F, \pi, {}^2J_{\rm FH} = 8.1, CF_3)$; $-72.9(3F, \pi, {}^2J_{\rm FH} = 7.8,$ CF₃). Macc-cnextp**(LC/MS), m/z: 288 [M+H]⁺. Maccспектр* (GC/MS), *m/z* (*I*_{отн}, %): 194 (22), 161 (20), 136 (100), 135 (23), 116 (31), 80 (21). Macc-спектр (GC/MS), m/z $(I_{\text{OTH}}, \%)$: 207 (51), 179 (34), 162 (46), 161 (100), 142 (48), 133 (23), 40 (23). Найдено, %: С 37.61; Н 4.26; N 4.82; S 11.10. C₉H₁₂F₃NO₄S. Вычислено, %: С 37.63; Н 4.21; N 4.88; S 11.16.

Этиловый эфир 4-(толуол-4-сульфонил)-3-(трифторметил)-2,3-дигидро-1*H*-пиррол-2-карбоновой кислоты (3с) и этиловый эфир 4-(толуол-4-сульфонил)-3-(трифторметил)-3,4-дигидро-2*H*-пиррол-2-карбоновой кислоты (4с), смесь изомеров 3с:4с в соотношении 1:7. Выход 0.49 г (67%), бежевые кристаллы, т. пл. 101-102°C (PhH). Спектр ЯМР ¹H (CDCl₃), δ , м. д. (J, Γ ц): 1.26 (3H, T, ${}^{3}J = 7.1$, OCH₂C<u>H</u>₃); 1.27* (3H, T, ${}^{3}J = 7.1$, OCH₂C<u>H</u>₃); 2.41 (3H, c, SO₂CH₃); 2.47* (3H, c, SO₂CH₃); 3.75* (1H, к. д. д, ${}^{3}J_{HF} = 9.0$, ${}^{3}J = 4.5$, ${}^{3}J = 4.5$, 3-CH); 4.17-4.23**(2H, м, OCH₂CH₃); 4.24-4.27 (1H, м, 3-CH); 4.48 (1H, д, $^{3}J = 4.4, 2\text{-CH}$; $4.53*(1H, \pi, ^{3}J = 4.5, 2\text{-CH})$; $5.01*(1H, \pi, ^{3}J = 4.5, ^{3}J$ д. д. 3J = 4.5, 3J = 2.5, 4-CH); 5.19 (1H, уш. c, NH); 7.27 (2H, AA'XX' система, $^3J_{\rm AX}$ = 7.9, H Ar); 7.72 (2H, АА'XX' система, ${}^{3}J_{AX}$ = 7.9, H Ar), 7.41* (2H, AA'XX' система, ${}^{3}J_{AX}$ = 7.9, H Ar); 7.78* (2H, AA'XX' система, $^{3}J_{AX}$ = 7.9, H Ar); 7.51–7.53 (1H, M, 5-CH); 7.62–7.64* (1H, м, 5-CH). Спектр ЯМР ¹³С (CDCl₃), δ, м. д. (*J*, Гц): 14.0 (OCH₂CH₃); 14.1* (OCH₂CH₃); 21.6 (C₆H₄CH₃); 21.8* (C₆H₄CH₃); 44.9* (κ , $^2J_{CF} = 30.4$, C-3); 49.1 (κ , $^2J_{CF} = 31.3$, C-3); 62.7 (C-2); 62.8* (OCH₂CH₃); 63.0 (OCH₂CH₃); 75.1* (C-2); 76.9* (C-4); 106.2 (C-4); 124.9 (к, $J_{\rm CF}=281.8$, CF₃); 125.4* (к, $J_{\rm CF}=279.2$, CF₃); 127.2 (CH Ar); 129.2* (CH Ar); 129.4 (CH Ar); 130.5* (CH Ar); 133.2* (C Ar); 139.2 (C Ar); 143.3 (C Ar); 146.5* (C Ar); 152.9 (C-5); 159.1* (C-5); 167.7* (C=O); 169.7 (C=O). Спектр ЯМР ¹⁹F (CDCl₃), δ , м. д. (J, Γ II): -72.0* (3F, д, $^2J_{\rm FH}=9.0$, CF₃); -72.5 (3F, д, $^2J_{\rm FH}=8.2$, CF₃). Масс-спектр** (LC/MS), m/z: 364 [M+H]⁺. Масс-спектр* (GC/MS), m/z ($I_{\rm OTH}$, %): 207 (64), 179 (32), 162 (60), 161 (100), 142 (51), 133 (24). Масс-спектр (GC/MS), m/z ($I_{\rm OTH}$, %): 253 (24), 208 (24), 207 (61), 162 (41), 161 (59), 154 (26), 153 (56), 136 (48), 133 (27), 116 (21), 92 (23), 91 (97), 44 (51), 40 (100). Найдено, %: С 49.61; H 4.46; N 3.87; S 8.77. $C_{15}H_{16}F_{3}NO_{4}S$. Вычислено, %: С 49.58; H 4.44; N 3.85; S 8.82.

Этиловый эфир 4-(диметилсульфамоил)-3-(трифторметил)-3,4-дигидро-2*H*-пиррол-2-карбоновой **кислоты (4d)**. Выход 0.30 г (48%), желтоватое масло, $R_{\rm f}$ 0.7 (EtOAc-гексан, 2:1). Спектр ЯМР ¹Н (CDCl₃), δ , м. д. (J, Γ ц): 1.35 (3H, т, 3J = 7.1, OCH₂CH₃); 2.98 (6H, c, N(CH₃)₂); 3.75 (1H, к. д. д. $^{3}J_{HF} = 9.1$, $^{3}J = 4.6$, $^{3}J = 4.6$, 3-CH); 4.27-4.35 (2H, M, OCH₂CH₃); 4.52 (1H, π , $^3J = 4.6$, 2-CH); 5.08 (1H, д. д, ${}^{3}J$ = 4.6, ${}^{3}J$ = 3.0, 4-CH); 7.68–7.69 (1H, м, 5-CH). Спектр ЯМР ¹³С (CDCl₃), δ, м. д. (*J*, Гц): 14.3 (OCH_2CH_3) ; 38.0 $(N(CH_3)_2)$; 45.0 $(\kappa, {}^2J_{CF} = 31.6, C-3)$; 62.9 (OCH₂CH₃); 71.3 (C-2); 77.30 (C-4); 125.9 (κ, $J_{\text{CF}} = 277.9$, CF₃); 160.3 (C-5); 168.4 (C=O). Спектр ЯМР ¹⁹F (CDCl₃), δ , м. д. (J, Γ ц): –71.7 (3F, д, ${}^3J_{\text{FH}} = 9.1$, CF₃). Масс-спектр (LC/MS), m/z: 317 [M+H]⁺. Масс-спектр (GC/MS), m/z (I_{OTH} , %): 243 (25), 209 (27), 189 (45), 161 (28), 136 (100), 116 (48), 108 (81). Найдено, %: С 37.99; Н 4.76; N 8.82; S 10.10. $C_{10}H_{15}F_3N_2O_4S$. Вычислено, %: C 37.97; H 4.78; N 8.86; S 10.14.

Этиловый эфир 3-(трифторметил)-1*H*-пиррол-2-карбоновой кислоты (5) получают аналогично методике получения соединений 3а-d. После упаривания MeCN остаток обрабатывают 10 мл EtOAc и экстрагируют H_2O (2 × 5 мл). Органический экстракт сушат над Na₂SO₄, растворитель упаривают досуха, маслянистый остаток очищают флеш-хроматографией (элюент гексан-Et₂O, 4:1). Выход 0.37 г (89%), желтоватое прозрачное масло. Спектр ЯМР 1 Н (CDCl₃), δ , м. д. $(J, \Gamma_{\rm H})$: 1.36 (3H, τ , $^3J = 7.1$, OCH₂CH₃); 4.35 (2H, κ , $^{3}J = 7.1$, OC $\underline{\text{H}}_{2}$ CH₃); 6.51 (1H, $_{\text{T}}$, $^{3}J = 2.5$, H-4); 6.90 (1H, т, ${}^{3}J = 2.5$, H-5); 10.09 (1H, уш. c, NH). Спектр ЯМР 13 С (CDCl₃), δ, м. д. (*J*, Гц): 14.1 (OCH₂<u>C</u>H₃); 61.4 $(O\underline{C}H_2CH_3)$; 110.5 (κ , ${}^3J_{CF} = 4.0$, C-4); 119.0 (κ , ${}^2J_{CF} = 37.8$, C-3); 120.7 (κ , ${}^{3}J_{CF} = 3.2$, C-2); 121.3 (κ , ${}^{4}J_{CF} = 1.6$, C-5); 122.9 (к, $J_{CF} = 267.1$, CF₃); 160.0 (C=O). Спектр ЯМР ¹⁹F (CDCl₃), δ, м. д.: −58.3 (3F, c, CF₃). Масс-спектр, *m/z*: 206 [M-H]⁻. Найдено, %: С 46.46; Н 3.82; N 6.84. C₈H₈F₃NO₂. Вычислено, %: С 46.38; Н 3.89; N 6.76.

Получение этилового эфира 3-(трифторметил)-1*H*-пиррол-2-карбоновой кислоты (5) из соединений **1b,c** (общая методика). К раствору 0.11 г (1.00 ммоль) *t*-ВиОК в 8 мл сухого ТГФ добавляют 1.00 ммоль производного 3,3,3-трифторпропена **1b,c** и 0.20 г (1.05 ммоль) этилизоцианацетата (2). Реакционную смесь перемешивают в течение 0.5 ч при комнатной температуре, выливают в 7 мл насыщенного водного

раствора NaCl и экстрагируют EtOAc (2×7 мл). Органические экстракты сушат над Na₂SO₄, растворитель упаривают досуха, маслянистый остаток очищают флеш-хроматографией (элюент гексан–Et₂O, 4:1). Выход 0.36 г (85%) из олефина **1b**, 0.33 г (80%) из олефина **1c**, желтоватое прозрачное масло.

Получение производных 4-(трифторметил)-1H-пиррола 7a—е (общая методика). К раствору 0.47 г (4.20 ммоль) t-ВиОК в 5 мл сухого ТГФ при 0°С и интенсивном перемешивании добавляют раствор 2.00 ммоль производного 3,3,3-трифторпропена 1a—е и 0.41 г (2.10 ммоль) TOSMIC (6) в 5 мл сухого ТГФ так, чтобы температура реакционной смеси не поднималась выше 5°С. Смесь выдерживают при 0–5°С 10 мин и перемешивают еще в течение 1 ч при комнатной температуре, добавляют 5 мл насыщенного водного раствора NaCl и экстрагируют EtOAc (3 × 7 мл). Объединенные органические экстракты промывают 10 мл H_2 O, сушат над Na_2SO_4 , растворитель упаривают досуха, твердый остаток очищают кристаллизацией.

Этиловый эфир 4-(трифторметил)-1*H*-пиррол-3-карбоновой кислоты (7а). Выход 0.35 г (80%), т. пл. $161-163^{\circ}$ С ($C_2H_4Cl_2$) (т. пл. $163-164^{\circ}$ С 14). Спектр ЯМР 1 Н (CDCl₃), δ , м. д. (J, Γ ц): 1.36 (3H, т, $^{3}J=7.1$, OCH₂CH₃); 4.32 (2H, κ , $^{3}J=7.1$, OCH₂CH₃); 7.24-7.26 (1H, м, CH); 7.49-7.51 (1H, м, CH); 9.10 (1H, уш. с, NH). Спектр ЯМР 13 С (CDCl₃), δ , м. д. (J, Γ ц): 14.0 (OCH₂CH₃); 61.2 (OCH₂CH₃); 114.5 (κ , $^{2}J_{CF}=37.1$, C-4); 115.5 (κ , $^{3}J_{CF}=1.8$, C-3); 120.8 (κ , $^{3}J_{CF}=6.3$, C-5); 122.9 (κ , $J_{CF}=266.0$, CF₃); 126.3 (C-2). Спектр ЯМР 19 F (CDCl₃), δ , м. д.: -58.2 (3F, с, CF₃). Масс-спектр (LC/MS), m/z: 206 [M–H]. Найдено, %: С 46.49; H 3.86; N 6.80. $C_8H_8F_3NO_2$. Вычислено, %: С 46.38; H 3.89; N 6.76.

3-Метансульфонил-4-(трифторметил)-1*H***-пиррол (7b)**. Выход 0.35 г (83%), белые кристаллы, т. пл. 117–118°С (PhMe). Спектр ЯМР 1 Н (ДМСО- d_6), δ , м. д. (J, Γ и): 3.12 (3H, c, CH₃); 7.58 (1H, т, 3J = 1.5, CH); 7.59 (1H, т, 3J = 1.5, CH); 12.37 (1H, уш. c, NH). Спектр ЯМР 13 С (ДМСО- d_6), δ , м. д. (J, Γ и): 45.3 (CH₃); 110.4 (к, $^2J_{\rm CF}$ = 37.1, C-4); 121.2 (к, $^3J_{\rm CF}$ = 1.4, C-3); 123.1 (к, $^3J_{\rm CF}$ = 6.1, C-5); 122.8 (к, $J_{\rm CF}$ = 265.6, CF₃); 127.1 (C-2). Спектр ЯМР 19 Р (ДМСО- d_6), δ , м. д.: -54.4 (3F, c, CF₃). Масс-спектр (LC/MS), m/z: 212 [M–H]⁻. Масс-спектр (GC/MS), m/z ($I_{\rm ОТН}$, %): 213 [M] (77), 198 (100), 150 (79), 131 (37), 115 (21), 107 (22). Найдено, %: С 33.85; Н 2.86; N 6.60; S 15.00. С $_6$ H $_6$ F $_3$ NO $_2$ S. Вычислено, %: С 33.80; Н 2.84; N 6.57; S 15.04.

3-(Толуол-4-сульфонил)-4-(трифторметил)-1*Н*-**пиррол** (**7c**). Выход 0.35 г (57%), белые кристаллы, т. пл. 175–176°С (PhCH₃). Спектр ЯМР 1 Н (ДМСО- d_{6}), δ , м. д. (J, Γ ц): 2.36 (3H, c, CH₃); 7.11 (1H, т, ^{3}J = 1.5, CH); 7.45 (1H, т, ^{3}J = 1.5, CH); 7.38 (2H, AA'XX' система, $^{3}J_{AX}$ = 7.2, H Ar); 7.72 (2H, AA'XX' система, $^{3}J_{AX}$ = 7.2, H Ar); 12.25 (1H, уш. c, NH). Спектр ЯМР 13 С (ДМСО- d_{6}), δ , м. д. (J, Γ ц): 21.0 (CH₃); 110.4 (κ , $^{2}J_{CF}$ = 38.1, C-4); 121.2 (κ , $^{3}J_{CF}$ = 1.8, C-3); 123.5 (κ , $^{3}J_{CF}$ = 6.1, C-5); 122.6 (κ , J_{CF} = 267.0, CF₃); 126. 9 (CH Ar); 127.9 (C-2, CH Ar); 139.9 (C Ar); 143.5 (C Ar). Спектр ЯМР 19 Г (ДМСО- d_{6}), δ , м. д.: –54.5 (3F, c, CF₃). Масс-спектр

(LC/MS), m/z: 288 [M–H]⁻. Масс-спектр (GC/MS), m/z ($I_{\text{отн}}$, %): 289 [M] (100), 182 (75), 108 (50), 107 (20), 91 (20). Найдено, %: С 49.92; Н 3.52; N 4.84; S 11.04. С₁₂H₁₀F₃NO₂S. Вычислено, %: С 49.82; Н 3.48; N 4.84; S 11.08.

Диметиламид 4-(трифторметил)-1Н-пиррол-**3-сульфоновой кислоты (7d)**. Выход 0.43 г (88%), бледно-коричневые кристаллы, т. пл. 125-126°C (PhH). Спектр ЯМР 1 Н (CDCl₃), δ , м. д. (*J*, Γ ц): 2.77 (6H, c, $N(CH_3)_2$; 7.22 (1H, T, $^3J = 1.5$, CH); 7.33 (1H, T, $^3J = 1.5$, CH); 9.54 (1H, уш. c, NH). Спектр ЯМР ¹³С (CDCl₃), δ , м. д. (J, Γ ц): 37.5 N(CH₃)₂); 112.7 (κ , $^2J_{CF} = 37.2$, C-4); 116.5 (κ , ${}^{3}J_{CF} = 2.1$, C-3); 122.3 (κ , ${}^{3}J_{CF} = 6.1$, C-5); 122.4 (к, $J_{\text{CF}} = 267.4$, CF₃); 126.6 (C-2). Спектр ЯМР ¹⁹F (CDCl₃), δ, м. д.: -57.4 (3F, c, CF₃). Macc-спектр (LC/MS), m/z: 243 [M+H]⁺. Масс-спектр (GC/MS), *m/z* (*I*_{отн}, %): 242 [M] (100), 223 (26), 198 (76), 150 (59), 135 (34), 115 (40), 107 (27), 44 (45), 42 (60). Найдено, %: С 34.81; Н, 3.77; N 11.58; S 13.20. С₇H₉F₃N₂O₂S. Вычислено, %: С 34.71; Н 3.75; N 11.57; S 13.24.

Этил $\{[4-(трифторметил)-1$ *H*-пиррол-3-ил](метил)оксидо- λ^4 -сульфанилиден}карбамат (7e). Выход 0.42 г (74%), бледно-коричневые кристаллы, т. пл. 116–117°С (PhH). Спектр ЯМР ¹Н (CDCl₃), δ , м. д. (J, Γ ц): 1.26 (3H, $_{\rm T}$, $^3J = 7.0$, OCH₂CH₃); 3.29 (3H, c, SCH₃); 4.10 (2H, κ, $^{3}J = 7.0$, OCH₂CH₃); 7.12 (1H, $_{T}$, $^{3}J = 1.5$, CH); 7.16 (1H, т, ${}^{3}J$ = 1.5, CH); 10.83 (1H, уш. c, NH). Спектр ЯМР 13 С (CDCl₃), δ, м. д. (*J*, Гц): 14.3 (OCH₂CH₃); 46.2 (SCH₃); 62.5 (O<u>C</u>H₂CH₃); 111.7 (κ , ²J_{CF} = 37.5, C-4); 116.5 (κ , ³J_{CF} = 1.2, C-3); 122.3 (κ , J_{CF} = 266.9, CF₃); 123.7 (κ , $^{3}J_{CF}$ = 5.9, C-5); 127.1 (C-2); 159.9 (C=O). Спектр ЯМР 19 F (CDCl₃), б, м. д.: –57.3 (3F, с, CF₃). Macc-спектр (LC/MS), m/z: 285 [M+H]⁺. Macc-спектр (GC/MS), m/z ($I_{\text{отн}}$, %): 239 [M] (100), 193 (20), 182 (96), 181 (87), 166 (61), 150 (40), 139 (39), 115 (22), 44 (47). Найдено, %: С 38.06; Н 3.95; N 9.89; S 11.24. С₉H₁₁F₃N₂O₃S. Вычислено, %: С 38.03; H 3.90; N 9.86; S 11.28.

4-Метансульфонил-3-(трифторметил)-2,3-дигидро-1Н-пиррол-2-карбоновая кислота (8а) и 4-метансульфонил-3-(трифторметил)-3,4-дигидро-2H-пиррол-2-карбоновая кислота (8b), смесь изомеров 8a:8b в соотношении 2.4:1. Смесь 172 мг (0.60 ммоль) эфира 3b и 3 мл 9 н. HCl нагревают при 90°C и перемешивании в течение 8 ч, после чего реакционную смесь концентрируют при пониженном давлении до образования твердого остатка, который высушивают в вакууме масляного насоса $(10^{-3} \text{ мм рт. ст.})$. Выход 0.14 г (93%), гигроскопичное бежевое твердое вещество, т. пл. >235°С (с разл.). Спектр ЯМР ¹Н (ДМСО-*d*₆), δ, м. д. (J, Гц): 2.95* (3H, c, SO₂CH₃); 3.27 (3H, c, SO₂CH₃); 3.79 (1H, к. д, ${}^{3}J_{HF} = 9.5$, ${}^{3}J = 4.2$, 3-CH); 4.05* (1H, к. д, ${}^{3}J_{HF} = 9.5$, ${}^{3}J = 4.2$, 3-CH); 4.62* (1H, д, ${}^{3}J = 4.2$, 2-CH); 5.16–5.18 (1H, м, 4-CH); 5.28 (1H, д, ${}^{3}J = 4.2$, 2-CH); 5.90** (1H, yiii. c, CO₂H); 7.43–7.45* (1H, M, 5-CH); 7.84– 7.85 (1H, м, 5-CH); 8.00* (1H, уш. c, NH). Спектр ЯМР ¹³С (ДМСО- d_6), δ , м. д. (J, Γ ц): 38.8** (SO₂CH₃); 42.9 (κ , $^{2}J_{\text{CF}} = 29.8, \text{ C-3}$; 48.5 (k, $^{2}J_{\text{CF}} = 29.8, \text{ C-3}$); 62.0* (C-2); 72.4 (C-2); 76.3 (C-4); 99.2* (C-4); 125.9** (κ , J_{CF} = 279.2, CF₃); 154.1 (C-5)*; 159.7 (C-5); 169.6 (C=O); 171.2 (C=O).

Спектр ЯМР 19 Г (ДМСО- d_6), δ , м. д. (J, Γ ц): -71.3* (3F, д, $^2J_{\rm FH}=8.5$, CF₃); -69.3 (3F, д, $^2J_{\rm FH}=9.5$, CF₃). Массспектр (LC/MS), m/z: 260 [M+H] $^+$. Найдено, %: С 32.45; Н 3.11; N 5.49; S 12.30. С $_7H_8F_3NO_4S$. Вычислено, %: С 32.44; Н 3.11; N 5.40; S 12.37.

Этиловый эфир 4-метансульфонил-3-(трифторметил)-1*H*-пиррол-2-карбоновой кислоты (9). Раствор 287 мг (1.00 ммоль) пирролина **3b** и 187 мг (1.05 ммоль) NBS в 5 мл CH₂Cl₂ перемешивают в течение 10 ч. Реакционную смесь экстрагируют H_2O (2 × 5 мл), органический экстракт сушат над Na₂SO₄, фильтруют и к фильтрату добавляют 0.25 мл (1.80 ммоль) Et_3N . Реакционную смесь перемешивают 10 ч, растворитель упаривают при пониженном давлении, остаток обрабатывают 5 мл EtOAc, экстрагируют H_2O (2 × 5 мл) и органический экстракт сушат над Na₂SO₄. После упаривания растворителя твердый остаток обрабатывают 5 мл Et₂O, отделившийся осадок отфильтровывают, сушат и кристаллизуют. Выход 250 мг (88%), бледножелтые иглы, т. пл. 108-109°C (РhH-гексан, 2:1). Спектр ЯМР 1 H (CDCl₃), δ , м. д. (J, Γ ц): 1.38 (3H, т, ^{3}J = 7.1, OCH₂CH₃); 3.21 (3H, c, SO₂CH₃); 4.40 (2H, κ , ³J = 7.1, OCH₂CH₃); 7.62 (1H, c, CH); 9.25 (1H, ym. c, NH). Спектр ЯМР 13 С (CDCl₃), δ , м. д. (J, Γ ц): 14.0 (OCH₂CH₃); 44.8 (SO₂CH₃); 62.6 (O<u>C</u>H₂CH₃); 115.2 (κ , ² J_{CF} = 39.0, C-3); 121.5 (κ , $J_{CF} = 270.0$, CF₃); 125.1 (κ , ${}^{3}J_{CF} = 3.2$); 125.7 (κ , $^{3}J_{\text{CF}}$ = 1.8); 127.7 (C-2); 159.0 (C=O). Спектр ЯМР 19 F (CDCl₃), δ, м. д.: –53.9 (3F, c, CF₃). Масс-спектр (LC/MS), m/z: 284 [M–H]⁻. Масс-спектр (GC/MS), m/z ($I_{\text{отн}}$, %): 285 [M] (48), 257 (34), 222 (100), 202 (62), 220 (30). Найдено, %: С 37.92; Н 3.52; N 4.84; S 11.34. С₉H₁₀F₃NO₄S. Вычислено, %: С 37.90; Н 3.53; N 4.91; S 11.24.

4-Метансульфонил-3-(трифторметил)-1*H*-пиррол-**2-карбоновая кислота (10)**. Смесь 114 мг (0.40 ммоль) эфира 9 и 3 мл 9 н. HCl нагревают при 80°C и перемешивании в течение 10 ч, после чего реакционную смесь концентрируют при пониженном давлении до образования твердого остатка, который высушивают в вакууме масляного насоса (10^{-3} мм рт. ст.). Выход 94 мг (91%), гигроскопичное бежевое твердое вещество, т. пл. >190°С (с разл.). Спектр ЯМР ¹Н (ДМСО-*d*₆), δ, м. д.: 3.21 (3H, c, CH₃); 3.64 (1H, уш. c, NH); 7.55–7.56 (1H, м, CH); 13.29 (1H, уш. с, CO₂H). Спектр ЯМР ¹³С (ДМСО d_6), δ , м. д. (J, Γ ц): 44.4 (CH_3); 112.6 (κ , $^2J_{CF} = 38.1$, C-3); 121.7 (κ , $J_{CF} = 267.8$, CF_3); 124.6 (κ , ${}^3J_{CF} = 1.6$); 125.7 (κ , $^{3}J_{\text{CF}} = 3.5$); 127.2 (C-2); 159.5 (C=O). Спектр ЯМР 19 F (ДМСО- d_6), δ , м. д.: –51.6 (3F, c, CF₃). Масс-спектр (LC/MS), *m/z*: 258 [M+H]⁺. Найдено, %: С 49.92; Н 3.52; N 4.84; S 11.04. С₇H₆F₃NO₄S. Вычислено, %: С 49.82; H 3.48; N 4.84; S 11.08.

Этиловый эфир 4-метансульфонил-3-(трифторметил)пирролидин-2-карбоновой кислоты (11). К раствору 287 мг (1.00 ммоль) пирролина **3b** в 8 мл абсолютного МеОН при 0°С и перемешивании добавляют сначала раствор 66 мг (1.10 ммоль) ледяной АсОН в 2 мл МеОН, а затем 75.6 мг (1.20 ммоль) NаВН₃CN. Реакционную смесь перемешивают при комнатной температуре в течение 12 ч. Далее раство-

ритель упаривают при пониженном давлении, остаток обрабатывают 10 мл EtOAc, нерастворившийся осадок отфильтровывают, фильтрат промывают насыщенным водным раствором NaHCO₃ (2 × 2 мл), сушат над Na_2SO_4 , растворитель упаривают досуха, получая в остатке аналитически чистое соединение. Выход 0.24 г (83%), желтоватое прозрачное вязкое масло. Спектр ЯМР ¹H (CDCl₃), δ , м. д. (J, Γ ц): 1.30 (3H, τ , ³J = 7.1, OCH₂CH₃); 2.63 (1H, ym. c, NH); 2.97 (3H, c, SO₂CH₃); 3.35 (1H, к. д. д, ${}^3J_{HF} = 9.1$, ${}^3J = 5.1$, ${}^3J = 3.8$, 3-CH); 3.34 (1H, д. д, AB система, J = 12.5, $^{3}J = 7.4$, 5-CH₂) и 3.72 (1H, д. д, AB система, J = 12.5, ${}^{3}J = 3.8$, 5-CH₂); 3.62 $^{3}J = 5.1$, 2-CH); 4.22–4.30 (2H, м, OCH₂CH₃). Спектр ЯМР ¹³С (CDCl₃), δ, м. д. (*J*, Гц): 14.1 (ОСН₂СН₃); 39.8 (SO_2CH_3) ; 49.1 (κ , ${}^2J_{CF} = 27.4$, C-3); 49.4 (C-5); 62.3 (κ , ${}^{3}J_{\text{CF}} = 1.7$, CH); 62.5 (OCH₂CH₃); 63.7 (CH); 126.0 (κ , $J_{\text{CF}} = 277.3$, CF₃); 170.2 (C=O). Спектр ЯМР ¹⁹F (CDCl₃), δ , м. д. (J, Γ ц): -70.2 (3F, д, ${}^2J_{\text{FH}} = 9.1$, CF₃). Macc-спектр, m/z: 290 [M+H]⁺. Найдено, %: С 37.44; Н 4.86; N 4.90; S 11.00. С₉H₁₄F₃NO₄S. Вычислено, %: С 37.37; Н 4.88; N 4.84; S 11.08.

Гидрохлорид 4-метансульфонил-3-(трифторметил)пирролидин-2-карбоновой кислоты (12). К раствору 173 мг (0.60 ммоль) эфира 11 в 2 мл 1,4-диоксана при перемешивании добавляют 1 мл 20% раствора НС1 в безводном 1,4-диоксане. Через некоторое время выпадает белый осадок гидрохлорида эфира 11·HCl, после чего суспензию перемешивают в течение 30 мин, осадок отфильтровывают, растворяют в 3 мл 9 н. НСІ и нагревают при 80°C и перемешивании в течение 10 ч. Реакционную смесь концентрируют при пониженном давлении до образования твердого остатка белого цвета, который высушивают в вакууме масляного насоса $(10^{-3} \text{ мм рт. ст.})$, обрабатывают 5 мл Et₂O, отделившийся осадок отфильтровывают и сушат. Выход 0.17 г (95%), бежевое твердое вещество, т. пл. > 235°C (с разл.). Спектр ЯМР 1 Н (ДМСО- d_{6}), δ , м. д. (J, Γ ц): 3.28 (3H, с, SO₂CH₃); 3.68 (1H, д. д, AB система, J=13.7, ${}^3J=8.3$, 5-CH₂) и 3.82 (1H, д. д, AB система, J=13.7, ${}^3J=3.7$, 5-CH₂); 3.80 (2H, уш. c, NH₂+); 4.03 (1H, к. д. д. д, ${}^3J_{\rm HF}=9.5$, ${}^3J=4.0$, ${}^3J=3.6$, 3-CH); 4.59 (1H, д. д. I_{A} , I_{A} $I_{$ 2-CH). Спектр ЯМР ¹³С (ДМСО-*d*₆), δ, м. д. (*J*, Гц): 38.8 (SO_2CH_3) ; 45.5 (C-5); 45.7 (κ , ${}^2J_{CF} = 30.3$, C-4); 58.9 (CH); 59.7 (CH); 125.2 (κ , J_{CF} = 280.2, CF₃); 166.9 (C=O). Спектр ЯМР 19 F (ДМСО- d_6), δ , м. д. (J, Γ ц): -69.1 $(3F, д, {}^{2}J_{FH} = 9.5, CF_{3})$. Macc-спектр (LC/MS), m/z: 262 [M-HCl+H]⁺. Найдено, %: С 28.21; H 3.76; N 4.82; S 10.70. С₇H₁₁ClF₃NO₄S. Вычислено, %: С 28.24; Н 3.72; N 4.71; S 10.77.

Рентгеноструктурное исследование соединения 3b проведено на приборе Bruker SMART APEX II. Кристаллы соединения 3b получены из раствора МТБЭ. Результаты расшифрованы прямым методом и уточнены МНК с использованием комплекса программ Bruker SHELXTL. В Полные рентгеноструктурные данные депонированы в Кембриджском банке структурных данных (депонент CCDC 2018284).

Список литературы

- (a) Bhardwaj, V.; Gumber, D.; Abbot, V.; Dhiman, S.; Sharma, P. RSC Adv. 2015, 5, 15233. (b) Dannhardt, G.; Kiefer, W.; Krämer, G.; Maehrlein, S.; Nowe, U.; Fiebich, B. Eur. J. Med. Chem. 2000, 35, 499.
- (a) Bellina, F.; Rossi, R. Tetrahedron 2006, 62, 7213.
 (b) Zhang, Y.; Ran, C.; Zhou, G.; Sayre, L. M. Bioorg. Med. Chem. 2007, 15, 1868.
 (c) Kawai, H.; Yuan, Z.; Kitayama, T.; Tokunaga, E.; Shibata, N. Angew. Chem., Int. Ed. 2013, 52, 5575.
 (d) Medran, N. S.; La-Venia, A.; Testero, S. A. RSC Adv. 2019, 9, 6804.
 (e) Meninno, S.; Capobianco, A.; Peluso, A.; Lattanzi, A. Green Chem. 2015, 17, 2137.
- 3. (a) Elbein, A. D. Annu. Rev. Biochem. 1987, 56, 497. (b) Winchester, B.; Fleet, G. W. Glycobiology 1992, 2, 199. (c) Hensler, M. E.; Bernstein, G.; Nizet, V.; Nefzi, A. Bioorg. Med. Chem. Lett. 2006, 16, 5073. (d) Li, X.; Li, Y.; Xu, W. Bioorg. Med. Chem. 2006, 14, 1287. (e) Malawska, B. Curr. Top. Med. Chem. 2005, 5, 69. (f) Colandrea, V. J.; Legiec, I. E.; Huo, P.; Yan, L.; Hale, J. J.; Mills, S. G.; Bergstrom, J.; Card, D.; Chebret, G.; Hajdu, R.; Keohane, C. A.; Milligan, J. A.; Rosenbach, M. J.; Shei, G.-J.; Mandala, S. M. Bioorg. Med. Chem. Lett. 2006, 16, 2905. (g) Yan, L.; Budhu, R.; Huo, P.; Lynch, C. L.; Hale, J. J.; Mills, S. G.; Hajdu, R.; Keohane, C. A.; Rosenbach, M. J.; Milligan, J. A.; Shei, G.-J.; Chrebet, G.; Bergstrom, J.; Card, D.; Mandala, S. M. Bioorg. Med. Chem. Lett. 2006, 16, 3564. (h) Barrett, D. G.; Catalano, J. G.; Deaton, D. N.; Hassell, A. M.; Long, S. T.; Miller, A. B.; Miller, L. R.; Ray, J. A.; Samano, V.; Shewchuk, L. M.; Wells-Knecht, K. J.; Willard, D. H., Jr.; Wright, L. L. Bioorg. Med. Chem. Lett. 2006, 16, 1735. (i) Tran, J. A.; Chen, C. W.; Jiang, W.; Tucci, F. C.; Fleck, B. A.; Marinkovic, D.; Arellano, M.; Chen, C. Bioorg. Med. Chem. Lett. 2007, 17, 5165.
- (a) Gakh, A. A.; Shermolovich, Yu. G. Curr. Top. Med. Chem. 2014, 14, 952. (b) Hagmann, W. K. J. Med. Chem. 2008, 51, 4359. (c) Prakash, G. S.; Chacko, S. Curr. Opin. Drug Discovery Dev. 2008, 11, 793. (d) Müller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881.
- (a) Kawai, H.; Yuan, Z.; Kitayama, T.; Tokunaga, E.; Shibata, N. Angew. Chem., Int. Ed. 2013, 52, 5575. (b) Marrec, O.; Christophe, C.; Billard, T.; Langlois, B.; Vors, J.-P.; Pazenoc, S. Adv. Synth. Catal. 2010, 352, 2825. (c) Kawai, H.; Kitayama, T.; Tokunaga, E.; Takashi, M.; Sato, S.; Shiro, M.; Shibata. N. Chem. Commun. 2012, 48, 4067.
- (a) Zhu, Z.; Guo, Y.; Wang, X.; Wu, F.; Wu, Y. J. Fluorine Chem. 2017, 195, 102. (b) Tang, D.-D.; Wang, Y.; Wang, J.-R.; Xu, P.-F. Tetrahedron Lett. 2014, 55, 4133. (c) Muzalevksiy, V. M.; Shastin, A. V.; Balenkova, E. S.; Haufe, G.; Nenajdenko, V. G. Synthesis 2009, 3905.
- Kirk, K. L. In Fluorinated Heterocyclic Compounds: Synthesis, Chemistry and Applications; Petrov, C. A., Ed.; John Wiley & Sons: Hoboken, 2009, p. 91.
- (a) Larionov, O. V.; de Meijere, A. Angew. Chem., Int. Ed. 2005, 44, 5664.
 (b) Lygin, A. V.; Larionov, O. V.; Korotkov, V. S.; de Meijere, A. Chem.–Eur. J. 2009, 15, 227.
 (c) Yang, X.-G.; John, R.; Seitz, G. Arch. Pharm. 1991, 324, 923.
 (d) Chen, C.-Y.; Bocian, D. F.; Lindsey, J. S. J. Org. Chem. 2014, 79, 1001.

- (e) Taguchi, T.; Tomizawa, G.; Kawara, A.; Nakajima, M.; Kobayashi, Y. *J. Fluorine Chem.* **1988**, *40*, 171. (f) Ponce, A.; Alonso, I.; Adrio, J.; Carretero, J. C. *Chem.–Eur. J.* **2016**, *22*, 4952. (g) Feng, B.; Lu, L.-Q. Chen, J.-R.; Feng, G.; He, B.-Q.; Lu, B.; Xiao, W.-J. *Angew. Chem., Int. Ed.* **2018**, *57*, 5888. (h) Cheng, F.; Kalita, S. J.; Zhao, Z.-N.; Yang, X.; Zhao, Y.; Schneider, U.; Shibata, N.; Huang, Y. Y. *Angew. Chem., Int. Ed.* **2019**, *58*, 16637. (i) Llamas, T.; Arrayás, R. G.; Carretero, J. C. *Synthesis* **2007**, 950.
- 9. (a) Markitanov, Yu. N.; Timoshenko, V. M.; Shermolovich, Yu. G.; Mykhalchuk, V. L.; Grafova, I. A.; Grafov, A. V. Chem. Heterocycl. Compd. 2016, 52, 503. [Химия гетероцикл. соединений 2016, 52, 503.] (b) Markitanov, Yu. M.; Timoshenko, V. M.; Shermolovich, Yu. G. Chem. Heterocycl. Compd. 2018, 54, 89. [Химия гетероцикл. соединений 2018, 54, 89.] (c) Markitanov, Yu. M.; Timoshenko, V. M.; Rudenko, T. V.; Rusanov, E. B.; Shermolovich, Yu. G. J. Sulfur Chem. 2019, 40, 629.
- (a) Grigg, R.; Lansdell, M. I.; Thornton-Pett, M. *Tetrahedron* 1999, 55, 2025. (b) Saegusa, T.; Ito, Y.; Kinoshita, H.;
 Tomita, S. J. Org. Chem. 1971, 36, 3316.
- (a) Van Leusen, A. M.; Siderius, H.; Hoogenboom, B. E.; Van Leusen, D. *Tetrahedron Lett.* 1972, 52, 5337. (b) Tandon, V. K.: Rai, S. *Sulfur Rep.* 2003, 24, 307. (c) Ma, Z.; Ma, Z.; Zhang, D. *Molecules* 2018, 23, 2666. (d) Aoyagi, K.; Haga, T.; Toi, H.; Aoyama, Y.; Mizutani, T.; Ogoshi, H. *Bull. Chem. Soc. Jpn.* 1997, 70, 937. (e) Leroy, J. *J. Fluorine Chem.* 1991, 53, 61. (f) Aoyagi, K.; Haga, T.; Toi, H.; Aoyama, Y.; Ogoshi, H. *Chem. Lett.* 1988, 17, 1891.
- (a) Winters, M. P.; Sui, Z.; Wall, M.; Wang, Y.; Gunnet, J.; Leonard J.; Hua, H.; Yan, W.; Suckow, A.; Bell, A.; Clapper, W.; Jenkinson, C.; Haug, P.; Koudriakova, T.; Huebert, N.; Murray, W. V. *Bioorg. Med. Chem. Lett.* 2018, 28, 841.
 (b) Monteiro, J. L.; Cameiro, P. F.; Elsner, P.; Roberge, D. M.; Wuts, P. G. M.; Kurjan, K. C.; Gutmann, B.; Kappe, C. O. *Chem.-Eur. J.* 2017, 23, 176. (c) Baar, M.; Blechert, S. *Chem.-Eur. J.* 2015, 21, 526.
- 13. (a) Walter, H. Z. Naturforsch., B: J. Chem. Sci. 2008, 63, 351. (b) Эберле, М.; Вальтер, Х. Патент РФ 2264388C2, 1999. (c) Brown, D. G.; Diehl, R. E.; Lowen, G. T.; Wright, D. P., Jr.; Kukel, C. F.; Herman, R. A.; Addor, R. W. US Patent 5162308A, 1992.
- 14. (a) Black, D. St. C.; Bowyer, M. C.; Kumar, N. *Tetrahedron* 1997, 53, 8573. (b) Gribble, G. W.; Hoffman, J. H. *Synthesis* 1977, 859.
- 15. Zhang, H.-H.; Shen, W.; Lu, L. Tetrahedron Lett. 2018, 59, 1042.
- 16. Uno, H.; Tanaka, M.; Inoue, T.; Ono, N. Synthesis 1999, 471.
- (a) Hodges, J. A.; Raines, R. T. J. Am. Chem. Soc. 2005, 127, 15923. (b) Verhoork, S. J. M.; Killoran, P. M.; Coxon, C. R. Biochemistry 2018, 57, 6132. (c) Chaume, G.; Van Severen, M.-C.; Marinkovic, S.; Brigaud, T. Org. Lett. 2006, 8, 6123. (d) Del Valle, J. R.; Goodman, M. Angew. Chem., Int. Ed. 2002, 41, 1600. (e) Kondratov, I. S.; Dolovanyuk, V. G.; Tolmachova, N. A.; Gerus, I. I.; Bergander, K.; Fröhlich, R.; Haufe, G. Org. Biomol. Chem. 2012, 10, 8778.
- Sheldrick, G. M. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, A64, 112.