ХИМИЯ ГЕТЕРОЦИКЛИЧЕСКИХ СОЕДИНЕНИЙ. — 1999. — № 4. — С.550—556

# Е. В. Бабаев, А. В. Ефимов, В. Б. Рыбаков, С. Г. Жуков

## ГЕТЕРОЦИКЛЫ С МОСТИКОВЫМ АТОМОМ АЗОТА\*

#### 11\*\*. РЕЦИКЛИЗАЦИЯ КАТИОНА 5-МЕТИЛОКСАЗОЛО[3,2-а]ПИРИДИНИЯ ПОД ДЕЙСТВИЕМ НУКЛЕОФИЛОВ, СОДЕРЖАЩИХ ГРУППУ NH2. КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА ПЕРХЛОРАТА 3-(*napa*-нитрофенил)-1,4-ДИГИДРОПИРИДО[2,1-*c*]-*as*-триазиния

Обнаружено, что в реакциях перхлората 5-метил-2-(*пара*-нитрофенил) оксазоло [3,2-*a*] пиридиния с аммиаком и гидразином, в отличие от реакции со вторичными аминами, не происходит образования индолизинов. В реакции с аммиаком образуется 5-метил-2-(*пара*-нитрофенил)имидазо [1,2-*a*] пиридин, а в реакции с гидразином образуется полуперхлорат 3-(*пара*-нитрофенил)-1,4-дигидропиридо [2,1-*c*] -*as*-триазиния (2 моль основания на 1 моль кислоты); строение последнего вещества доказано рентгеноструктурным анализом.

Ранее мы обнаружили [2—4], что производные 5-метилоксазоло [3,2-*а*]пиридиния 1 под действием вторичных аминов подвергаются необычной рециклизации оксазольного цикла в пиррольный с образованием неизвестного подкласса 5-аминоиндолизинов 2. Низшие гомологи оксазолопиридина, не содержащие метильной группы в положении 5, в реакции со вторичными аминами подвергаются раскрытию шестичленного цикла [4, 5], а в реакции с аммиаком [6, 7] и первичными аминами [7] происходит трансформация оксазольного фрагмента в имидазольный. Реакция катионов 1 с нуклеофилами, содержащими группу NH<sub>2</sub>, не изучалась; продуктами таких реакций могли бы являться как 5-замещенные индолизины, так и другие гетероциклы, например, ряда имидазопиридина.



**1-4** Ar =  $p - NO_2C_6H_4$ 

Посвящаетя профессору Х. ван дер Пласу в связи с его 70-летием.

<sup>\*\*</sup> Cooбщение 10 см. [1].



Рис. 1. Геометрическое расположение атомов в молекуле 4. При нумерации атомов в таблицах 1—3 первая цифра означает принадлежность атома к первой или ко второй независимым молекулам соли состава 2[C<sub>14</sub>H<sub>12</sub>N4O<sub>2</sub>] • HClO<sub>4</sub>

Нами найдено, что соль 1 (Ar = p-NO<sub>2</sub>C<sub>6</sub>H<sub>4</sub>) не реагирует с анилином и *n*-анизидином; после продолжительного кипячения реагентов регенерируется исходное вещество. Реакция соли 1 с первичными аминами RNH<sub>2</sub> (R-бутил, *втор*-бутил, бензил) в среде амина или в растворе ацетонитрила сопровождается значительным осмолением; реакционная смесь дает отрицательную пробу Эрлиха (цветной тест на наличие индолизинов [8]) и из нее не удается выделить ковалентных веществ. Реакция с газообразным аммиаком в ДМСО, напротив, протекает весьма гладко, приводя с практически количественным выходом к имидазопиридину 3. (Заметим, что существующий способ получения соединения 3 по схеме Чичибабина [9] характеризуется низким выходом и сложностью выделения вещества.)

В реакции с гидразином было выделено красное кристаллическое вещество, которое, по данным РСА, представляло собой прехлорат 3-(*пара*-нитрофенил)-1,4-дигидропиридо [2,1-*с*]-*аs*-триазиния 4 состава основание—хлорная кислота, 2 : 1. В спектре ПМР соли 4 наблюдаются синглеты метиленовой и метильной групп, разрешенные сигналы протонов пиридинового и арильного фрагментов.

Следует отметить, что первые представители подкласса 3-арил-1.4-дигидропиридо [2,1-*c*]-*as*-триазинов были синтезированы Брэдшером реакцией 2-хлор-N-фенацилпиридиниевых солей с гидразином [7]. В этой работе был выделен обычный перхлорат, который под действием оснований превращался в соединение, содержащее 2 моль основания на 1 моль кислоты (аналог молекулы 4). Для объяснения строения последнего соединения предполагалось расположение двух молекул основания вокруг одного протона с симметричными водородными связями. Как следует из наших данных, в элементарной ячейке соединения 4 действительно содержатся две кристаллографически независимые молекулы (см. рис. 2, табл. 2, 3). По данным табл. 2, межатомные расстояния в скелетах обеих молекул близки, хотя и не идентичны. Кроме того, такие пары молекул расположены внутри кристаллической ячейки практически параллельно (см. рис. 2), что исключает возможность реализации линейных водородных связей в плоскости, содержащей оба бицикла. К сожалению, из-за низкого качества кристаллов не удалось локализовать атом водорода, ответственный за образование водородной связи. Возможным решением этой проблемы служила бы постановка аналогичного эксперимента с дифракцией нейтронов на дейтерированном образце (например, при обработке дейтерохлорной кислотой образца соли 4), что позволило бы локализовать положение атома водорода.

| Координаты | атомов            | (×10 <sup>4</sup> ) | и   | эквивалентны | е изотропн | ые |
|------------|-------------------|---------------------|-----|--------------|------------|----|
| параметры  | $(U_{3KB} \times$ | 10 <sup>5</sup> ) e | : P | сследованной | структуре  | 4  |

| Атом              | x         | у         | Z                    | U <sub>ЭКВ</sub> |
|-------------------|-----------|-----------|----------------------|------------------|
| 1                 | 2         | 3         | 4                    | 5                |
|                   |           |           |                      |                  |
| Cl                | 7627(1)   | 1436(1)   | 498(1)               | 49(1)            |
| <b>O</b> (1)      | 7926(3)   | 2208(4)   | 1190(3)              | 144(3)           |
| O(2)              | 8100(3)   | 1480(4)   | -83(4)               | 172(3)           |
| O(3)              | 6610(3)   | 1570(4)   | -56(3)               | 139(2)           |
| O(4)              | 7720(4)   | 694(4)    | 1049(4)              | 179(3)           |
| N(11)             | 2773(2)   | -1681(2)  | -3214(2)             | 43(1)            |
| N(12)             | 2828(2)   | -2624(2)  | -3063(2)             | 34(1)            |
| C(13)             | 3568(3)   | -2940(3)  | -2316(3)             | 35(2)            |
| C(14)             | 4379(3)   | -2380(3)  | -1499(2)             | 23(1)            |
| N(15)             | 4260(2)   | -1382(2)  | -1779(2)             | 24(1)            |
| C(16)             | 5021 (3)  | -792(3)   | -1195(3)             | 37(2)            |
| C(17)             | 4883(3)   | 117(4)    | -1394(3)             | 55(2)            |
| C(18)             | 4023(3)   | 427(3)    | -2214(3)             | 45(2)            |
| C(19)             | 3338(3)   | -155(3)   | -2852(3)             | 30(2)            |
| C(110)            | 3453(3)   | -1085(3)  | -2589(3)             | 41 (2)           |
| C(11)             | 3617(3)   | -3936(3)  | -2233(3)             | 36(2)            |
| C(112)            | 2837(3)   | -4497(3)  | -2842(3)             | 38(2)            |
| $C_{(112)}$       | 2900(3)   | -5420(4)  | -2767(3)             | 51(2)            |
| C(113)            | 3709(3)   | -5830(3)  | -2008(3)             | 40(2)            |
| C(114)            | 4467(3)   | -5295(3)  | -1295(3)             | 48(2)            |
| C(113)            | 4428(3)   | -4341 (3) | -1403(3)             | 40(2)            |
| C(110)            | 5928(3)   | -1162(3)  | -328(3)              | 37(2)            |
| V(117)            | 3765(3)   | -6818(3)  | -1872(3)             | 62(2)            |
| $\Omega(17)$      | 3138(2)   | -7257(2)  | -2545(2)             | 68(1)            |
| 0(171)            | 4469(2)   | -7144(3)  | -1197(2)             | 73(2)            |
| <b>U</b> (172)    | -1360(2)  | 1082(2)   | -4974(2)             | 50(2)            |
| IN(21)            | -1274(2)  | 156(3)    | -4925(3)             | 53(2)            |
| IN(22)            | -552(2)   | -218(3)   | -4171(2)             | 22(1)            |
| C(23)             | 306(3)    | 210(3)    | -3360(3)             | 27(1)            |
| C(24)             | 00(3)     | 1279(2)   | -3444(2)             | 31(1)            |
| IN(25)            | 756(3)    | 1868(3)   | -2707(3)             | 32(2)            |
| C(26)             | 625(3)    | 2810(4)   | -2838(3)             | 52(2)            |
| C(27)             | -162(3)   | 2010(4)   | -3677(3)             | 46(2)            |
| C(28)             | -922(3)   | 2580(3)   | -4393(3)             | 49(2)            |
| C <sub>(29)</sub> | -690(3)   | 1644(3)   | -4274(3)             | 38(2)            |
| C(210)            | -080(3)   | -1220(2)  | -4173(3)             | 27(1)            |
| C(211)            | -528(5)   | -1229(3)  | -4885(3)             | 48(2)            |
| C(212)            | -1315(3)  | -1/42(3)  | -4003(3)             | 51(2)            |
| C(213)            | -1259(3)  | -20/7(4)  | -4913(3)             | 31(2)            |
| C(214)            | -467(3)   | -3117(3)  | -4144(3)<br>-3405(3) | 49(2)            |
| C(215)            | 313(3)    | -2398(3)  | -3403(3)             | A3(2)            |
| C(216)            | 286(3)    | -1009(3)  | -1916(2)             | 45(2)            |
| C(217)            | 1605(3)   | 1420(3)   | -1010(3)             | 58(2)            |
| N(27)             | -391 (3)  | -4124(3)  | -41/3(3)             | 30(2)            |
| O(271)            | -1084(2)  | -4519(3)  | -40/0(2)             | 62(1)            |
| O(272)            | 293(2)    | -4514(2)  | -3502(2)             | 02(1)            |
| H(14A)            | 4273(20)  | -2429(23) | -721(21)             | 52(11)           |
| H(14B)            | 5056(23)  | -2566(27) | -1432(24)            | 51(13)           |
| H(17)             | 5367 (20) | 548(24)   | -998(20)             | 23(11)           |

Окончание таблицы 1

| 1      | 2         | 3          | 4          | 5       |
|--------|-----------|------------|------------|---------|
| H(18)  | 3927(25)  | 994(28)    | -2251 (27) | 62(14)  |
| H(19)  | 2758(22)  | 65(25)     | -3390(23)  | 46(12)  |
| H(112) | 2261 (24) | -4223(28)  | -3403(26)  | 67(14)  |
| H(113) | 2322(18)  | -5837(20)  | -3207(18)  | 3(8)    |
| H(115) | 5075(23)  | -5586(26)  | -794(23)   | 48(12)  |
| H(116) | 4968(23)  | -3928(25)  | -1003(24)  | 50(12)  |
| H(11A) | 6322(21)  | -1544(27)  | -635(21)   | 42(11)  |
| H(11B) | 5735(22)  | -1527(26)  | 108(23)    | 44(12)  |
| H(11C) | 6361 (28) | -612(34)   | 140(30)    | 104(18) |
| H(24A) | 354(22)   | 59(26)     | -2650(24)  | 46(13)  |
| H(24B) | 978(29)   | 91 (32)    | -3539(30)  | 98(17)  |
| H(27)  | 1079(20)  | 3169(22)   | -2388(20)  | 18(10)  |
| H(28)  | -176(27)  | 3660(32)   | -3898(29)  | 84(16)  |
| H(29)  | -1381(23) | 2748(27)   | -4969(25)  | 56(13)  |
| H(212) | -1863(28) | -1470(33)  | -5292(30)  | 107(17) |
| H(213) | -1794(27) | -2921 (31) | -5419(28)  | 82(16)  |
| H(215) | 829(23)   | -2829(26)  | -2937(24)  | 46(12)  |
| H(216) | 853(27)   | -1345(31)  | -2884(28)  | 82(16)  |
| H(21A) | 2047 (28) | 1868(33)   | -1421 (30) | 101(17) |
| H(21B) | 1999(22)  | 1154(25)   | -2022(23)  | 45(12)  |
| H(21C) | 1269(21)  | 1152(23)   | -1443(21)  | 29(11)  |

Еще одной особенностью структуры молекулы 4 является отчетливое альтернирование длин простых и двойных связей в пиридиновом фрагменте. Этот эффект отмечался нами ранее [1, 2] для различных представителей ряда азолопиридинов с мостиковым атомом азота.



Рис. 2. Упаковка молекул в кристалле соединения 4

| Связь                   | đ        | Связь                  | đ        |
|-------------------------|----------|------------------------|----------|
| Cl-O(1)                 | 1,453(5) | C1-O(3)                | 1,372(4) |
| C1 - O(2)               | 1,298(6) | C1-O(4)                | 1,322(6) |
| N(11)-C(110)            | 1,346(5) | N(21)-C(210)           | 1,362(5) |
| N(11)-N(12)             | 1,393(5) | N(21)-N(22)            | 1,358(5) |
| N(12)-C(13)             | 1,257(4) | N(22)—C(23)            | 1,282(4) |
| $C_{(13)} - C_{(111)}$  | 1,461(6) | C(23)-C(211)           | 1,478(6) |
| $C_{(13)}-C_{(14)}$     | 1,520(5) | C(23)—C(24)            | 1,516(5) |
| $C_{(14)} - N_{(15)}$   | 1,505(5) | C(24)-N(25)            | 1,458(6) |
| N(15)—C(110)            | 1,343(4) | N(25)-C(210)           | 1,374(4) |
| N(15)—C(16)             | 1,381(5) | N(25)—C(26)            | 1,397(5) |
| $C_{(16)} - C_{(17)}$   | 1,357(7) | C(26)—C(27)            | 1,393(7) |
| $C_{(16)} - C_{(117)}$  | 1,497(5) | C(26)—C(217)           | 1,513(5) |
| $C_{(17)} - C_{(18)}$   | 1,397(5) | C(27)-C(28)            | 1,363(5) |
| $C_{(18)}-C_{(19)}$     | 1,345(5) | C(28)-C(29)            | 1,350(6) |
| C(19)—C(110)            | 1,404(6) | $C_{(29)} - C_{(210)}$ | 1,399(7) |
| $C_{(111)} - C_{(112)}$ | 1,382(5) | C(211)-C(212)          | 1,400(5) |
| $C_{(111)} - C_{(116)}$ | 1,420(5) | C(211)-C(216)          | 1,392(5) |
| $C_{(112)} - C_{(113)}$ | 1,354(7) | C(212)—C(213)          | 1,371(7) |
| $C_{(113)} - C_{(114)}$ | 1,372(5) | C(213)—C(214)          | 1,387(5) |
| C(114)C(115)            | 1,397(6) | C(214)—C(215)          | 1,416(5) |
| C(114)N(17)             | 1,457(6) | C(214)N(27)            | 1,478(6) |
| C(115)—C(116)           | 1,401(7) | C(215)-C(216)          | 1,359(7) |
| N(17)-O(172)            | 1,184(4) | N(27)—O(272)           | 1,210(4) |
| $N_{(17)} - O_{(171)}$  | 1,208(5) | N(27)-O(271)           | 1,234(4) |

Длины связей d (Å) в молекулах исследованного соединения 4

Таблица З

Валентные углы  $\omega$  (град.) в молекулах исследованного соединения 4

| Угол                                    | ω        | Угол                                  | ω        |
|-----------------------------------------|----------|---------------------------------------|----------|
| O(2)ClO(4)                              | 119,2(4) | O(2)-Cl-O(1)                          | 109,1(3) |
| $O_{(2)} - C_{1} - O_{(3)}$             | 110,2(3) | $O_{(3)}$ —Cl— $O_{(1)}$              | 103,6(3) |
| $O_{(4)} - Cl - O_{(3)}$                | 106,7(3) | $O_{(4)}$ ClO(1)                      | 106,9(3) |
| $N_{(12)} - N_{(11)} - C_{(110)}$       | 123,8(3) | $N_{(22)} - N_{(21)} - C_{(210)}$     | 122,7(3) |
| $C_{(13)} - N_{(12)} - N_{(11)}$        | 118,2(3) | $C_{(23)} - N_{(22)} - N_{(21)}$      | 119,6(3) |
| $N_{(12)} - C_{(13)} - C_{(111)}$       | 115,7(3) | $N_{(22)} - C_{(23)} - C_{(211)}$     | 115,9(3) |
| $N_{(12)}-C_{(13)}-C_{(14)}$            | 125,9(4) | $N_{(22)}-C_{(23)}-C_{(24)}$          | 124,7(4) |
| $C_{(111)}$ — $C_{(13)}$ — $C_{(14)}$   | 118,4(3) | $C_{(211)}$ — $C_{(23)}$ — $C_{(24)}$ | 119,2(3) |
| $N_{(15)} - C_{(14)} - C_{(13)}$        | 110,2(3) | $N_{(25)} - C_{(24)} - C_{(23)}$      | 110,5(3) |
| $C_{(110)} - N_{(15)} - C_{(16)}$       | 121,5(4) | $C_{(210)} - N_{(25)} - C_{(26)}$     | 119,1(4) |
| $C_{(110)} - N_{(15)} - C_{(14)}$       | 120,7(3) | $C_{(210)} - N_{(25)} - C_{(24)}$     | 121,4(3) |
| $C_{(16)} - N_{(15)} - C_{(14)}$        | 117,8(3) | $C_{(26)} - N_{(25)} - C_{(24)}$      | 119,3(3) |
| $C_{(17)} - C_{(16)} - N_{(15)}$        | 118,1(3) | $C_{(27)}-C_{(26)}-N_{(25)}$          | 119,5(3) |
| $C_{(17)} - C_{(16)} - C_{(117)}$       | 122,2(4) | $C_{(27)} - C_{(26)} - C_{(217)}$     | 123,8(3) |
| $N_{(15)}-C_{(16)}-C_{(117)}$           | 119,5(4) | N(25)-C(26)-C(217)                    | 116,7(4) |
| $C_{(16)} - C_{(17)} - C_{(18)}$        | 120,0(4) | $C_{(26)} - C_{(27)} - C_{(28)}$      | 118,7(4) |
| $C_{(19)} - C_{(18)} - C_{(17)}$        | 121,9(4) | $C_{(29)} - C_{(28)} - C_{(27)}$      | 123,8(5) |
| $C_{(18)} - C_{(19)} - C_{(110)}$       | 117,0(3) | $C_{(28)} - C_{(29)} - C_{(210)}$     | 117,3(4) |
| N(11)-C(110)-N(15)                      | 120,8(4) | $N_{(21)}-C_{(210)}-N_{(25)}$         | 120,0(4) |
| $N_{(11)} - C_{(110)} - C_{(19)}$       | 118,1(3) | $N_{(21)} - C_{(210)} - C_{(29)}$     | 118,3(3) |
| $N_{(15)} - C_{(110)} - C_{(19)}$       | 120,9(4) | $N_{(25)} - C_{(210)} - C_{(29)}$     | 121,5(3) |
| $C_{(112)}$ — $C_{(111)}$ — $C_{(116)}$ | 117,9(4) | $C_{(212)} - C_{(211)} - C_{(216)}$   | 120,1(4) |
| $C_{(112)} - C_{(111)} - C_{(13)}$      | 122,6(3) | $C_{(212)} - C_{(211)} - C_{(23)}$    | 121,6(3) |
| $C_{(116)} - C_{(111)} - C_{(13)}$      | 118,8(3) | $C_{(216)} - C_{(211)} - C_{(23)}$    | 118,2(3) |
| $C_{(113)} - C_{(112)} - C_{(111)}$     | 122,0(4) | $C_{(213)} - C_{(212)} - C_{(211)}$   | 121,0(4) |
| $C_{(112)} - C_{(113)} - C_{(114)}$     | 120,5(4) | $C_{(212)} - C_{(213)} - C_{(214)}$   | 118,5(4) |
| $C_{(113)} - C_{(114)} - C_{(115)}$     | 120,1(4) | $C_{(213)} - C_{(214)} - C_{(215)}$   | 119,9(4) |
| $C_{(113)} - C_{(114)} - N_{(17)}$      | 121,6(4) | $C_{(213)} - C_{(214)} - N_{(27)}$    | 119,0(3) |
| $C_{(115)} - C_{(114)} - N_{(17)}$      | 118,2(3) | $C_{(215)}-C_{(214)}-N_{(27)}$        | 120,7(3) |
| $C_{(114)} - C_{(115)} - C_{(116)}$     | 119,4(4) | $C_{(214)} - C_{(215)} - C_{(216)}$   | 121,0(4) |
| $C_{(115)} - C_{(116)} - C_{(111)}$     | 119,4(4) | $O_{(272)} - N_{(27)} - C_{(214)}$    | 119,4(3) |
| O(171)-N(17)-C(114)                     | 115,8(3) | C(271)-N(27)-C(214)                   | 116,5(3) |

Таким образом, в реакциях 5-метилоксазолопиридинов с нуклеофилами, содержащими группу NH<sub>2</sub>, не образуется производных индолизинов. По-видимому, раскрытые формы, содержащие достаточно кислые протоны амино- или гидразиногрупп, подвергаются таутомерии; образующаяся фенацильная функция вступает в дальнейшую внутримолекулярную циклизацию с участием азотсодержащего нуклеофила и замыканием пяти- и тестичленного цикла.

### ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Взаимодействие 5-метил-2-(*пара*-нитрофенил) оксазоло[3,2-*а*] пиридиния с аммиаком. Раствор ДМСО насыщают газообразным аммиаком и суспендируют в 20 мл этого раствора 0,1 г (0,3 ммоль) перхлората 1. Раствор выдерживают 7 дней при комнатной температуре, выливают в воду, отфильтровывают образующийся осадок. Получают 0,07 г (98%) 5-метил-2-(*пара*-нитрофенил) имидазо[1,2-*a*] пиридина (3), идентичного по свойствам (*Т*пл, ИК и ПМР спектры, хроматографическое поведение) заведомому образцу [1].

Взаимодействие 5-метил-2-(*пара*-нитрофенил)оксазоло[3,2-*а*] пиридиния с гидразином. К раствору 0,1 г (0,3 ммоль) соли 1 в 5 мл ацетонитрила добавляют 0,3 мл гидразингидрата. Раствор выдерживают 7 дней при комнатной температуре, отфильтровывают выпавшие красные кристаллы. Выделяют 0,07 г (78%) соединения 4,  $T_{\Pi\Pi}$  268 °C. Спектр ПМР (400 МГц, ДМСО-D<sub>6</sub>): 8,29 (2H, м, *p*-NO<sub>2</sub>Ph); 8,14 (2H, м, *p*-NO<sub>2</sub>Ph); 7,78 (1H, д. д, 8-H); 7,02 (1H, д, 9-H, *J* = 9,25 Гц); 6,97 (1H, д, *J* = 8,9 Гц, 7-H); 5,32 (2H, с, CH<sub>2</sub>); 2,68 м. д. (3H, с, CH<sub>3</sub>).

Рентгеноструктурное исследование соединения 4 проведено на монокристальном дифрактометре САD-4 [10] на излучении  $\lambda$ МоК $\alpha$  с использованием графитового монохроматора. Параметры элементарной ячейки определяли и уточняли в интервале углов 13...15°  $\theta$  по 25 рефлексам. Кристаллы изученного соединения относятся к моноклинной сингонии (пространственная группа P21/c) с параметрами элементарной ячейки a = 14.560(4), b = 14.618(9), c = 14.579(5) Å,  $\beta = 114.69(3)^\circ, Z = 8, V = 2820(2)$  Å<sup>3</sup>.

Структура решена прямыми методами по программному комплексу SHELXS-97 [11] и уточнена полноматричным МНК по комплексу программ SHELXL-97 [12] в анизотропном приближении для неводородных атомов. Позиции всех атомов водорода гетероциклов (кроме протона у атома N<sub>(1)</sub>, см. выше) были локализованы из разностного Фурье-синтеза электронной плотности. Окончательное значение *R*-фактора составляет 0.1088 по 4480 независимым отражениям с *I* > 2 $\sigma$  (*I*).

Позиционные параметры атомов в исследованном соединении и изотропные тепловые параметры, эквивалентные соответствующим анизотропным, приведены в табл. 1. Межатомные расстояния и валентные углы представлены в табл. 2 и 3, пространственное расположение атомов в молекуле и их нумерация — на рис. 1, а упаковка молекул в кристалле — на рис. 2 [13].

Авторы признательны фонду РФФИ за финансирование работ (грант 99-03-33076) и финансовую поддержку в оплате лицензии на пользование Кембриджским банком структурных данных (проект 96-07-89187).

#### СПИСОК ЛИТЕРАТУРЫ

- 1. Бабаев Е. В., Рыбаков В. Б., Жуков С. Г., Орлова И. А. // ХГС. 1999. № 4. С. 542.
- 2. Бабаев Е. В., Ефимов А. В., Жуков С. Г., Рыбаков В. Б. // ХГС. 1998. № 7. С. 983.
- 3. Бабаев Е. В., Ефимов А. В. // ХГС. 1997. № 7. С. 998.
- 4 Babaev E. V., Efimov A. V., Maiboroda D. A., Jug K. // Europ. J. Org. Chem. 1998. N 1. P. 193.
- 5. Майборода Д. А., Бабаев Е. В., Гончаренко Л. В. // Хим.-фарм. журн. 1998. № 6. С. 24.
- 6. Бабаев Е. В., Пасичниченко К. Ю., Майборода Д. А. // ХГС. 1997. № 3. С. 397.
- Bradsher C. K., Brandau R. D., Boilek J. E., Hough T. L. // J. Org. Chem. 1969. Vol. 34. — P. 2129.

- Flitsch W. // Comprehensive Heterocyclic Chemistry / Eds. A. R. Katritzky, C. W. Rees.— Oxford: Pergamon, 1984. — Vol. 4. — P. 443.
- Mattu F., Marongiu E. // Rend. Sem. Fac. Sci. Univ. Calgiari. 1964. N 34. P. 190; C. A. — 1965. — Vol. 63. — 18069.
- 10. Enraf-Nonius CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands, 1989.
- 11. Sheldrick G. M. / SHELXS-97. Program for the Solution of Crystal Structures. University of Gottingen. Germany, 1997.
- 12. Sheldrick G. M. / SHELXL-97. Program for the Refinement of Crystal Structures. University of Gottingen. Germany, 1997.
- 13. Spek A. L. / PLUTON-92. Molecular Graphics Program. University of Utrecht. The Netherlands, 1992.

Московский государственный университет им. М. В. Ломоносова, Москва 119899, Россия e-mail: babaev@org.chem.msu.su Поступило в редакцию 21.01.99