Е. А. Зауэр*

ЭНТАЛЬПИИ ОБРАЗОВАНИЯ ПРОИЗВОДНЫХ ТИОФЕНА

С помощью полуэмпирических квантово-химических методов PM3, MINDO, AM1 и MNDO для 21 карбонильного соединения ряда тиофена рассчитаны энтальпии образования в газовой фазе. Их сравнение с экспериментальными данными показало, что наилучшая линейная корреляция достигается при использовании метода PM3. Последний в сочетании с выведенным уравнением линейной регрессии использован для прогнозирования энтальпий образования 22 карбоновых кислот и кетонов ряда тиофена.

Ключевые слова: производные тиофена, полуэмпирические квантово-химические методы расчёта, теплота образования.

Энтальпия образования является одной из важнейших энергетических характеристик соединений, данные о которой позволяют оптимизировать условия проведения технологических процессов с их участием. Однако экспериментальное определение энтальпий образования органических соединений достаточно трудоёмкая, а иногда и невыполнимая задача. Поэтому всё чаще для прогнозирования энергетических свойств веществ используют расчётные квантово-химические методы, реализуемые с помощью специальных компьютерных комплексов и программ. Однако без связи с экспериментальными данными их применение зачастую даёт неоднозначные результаты, которые трудно интерпретировать.

В данной работе в целях прогнозирования энтальпий образования производных тиофена использованы полуэмпирические квантово-химические методы РМЗ, MINDO, AM1 и MNDO, входящие в программный пакет MOPAC. Соединения ряда тиофена встречаются среди продуктов растительного происхождения, но ещё большее значение имеют как производимые в промышленности синтетические лекарственные препараты и красители [1].

При выборе метода расчёта исходили из необходимости обеспечения наилучшей корреляции между рассчитанными и экспериментальными значениями энтальпий образования производных тиофена. Для этого были использованы следующие соединения с известными экспериментальными значениями энтальпий образования в газовой фазе [2–13]: тиофен-2-карбальдегид (1), тиофен-3-карбальдегид (2), 3-метилтиофен-2-карбальдегид (3), 5-метилтиофен-2-карбальдегид (4), 5-этилтиофен-2-карбальдегид (5), 2-ацетилтиофен (6), 3-ацетилтиофен (7), 2-ацетил-3-метилтиофен (8), 2-ацетил-4-метилтиофен (9), 2-ацетил-5-метилтиофен (10), 3-ацетил-2,5диметилтиофен (11), тиофен-2-карбоновая кислота (12), тиофен-3-кар-

1 $R = R^{1} = H$; **3** R = Me, $R^{1} = H$; **4** R = H, $R^{1} = Me$; **5** R = H, $R^{1} = Et$; **6** $R = R^{1} = R^{2} = H$; **7** $R = R^{1} = H$; **8** R = Me, $R^{1} = R^{2} = H$; **9** $R = R^{2} = H$, $R^{1} = Me$; **10** $R = R^{1} = H$, $R^{2} = Me$; **11** $R = R^{1} = Me$

12, 14, 15 $R^1 = H$, 12 $R = R^2 = H$, 14 R = Me, $R^2 = H$, 15 R = H, $R^2 = Me$; 16, 17 R = H; 20, 21 R = Me; 22 $R = R^2 = H$, $R^1 = Me$; 23, 24 R = Me, 23 $R^1 = H$, $R^2 = Me$, 24 $R^1 = Me$, $R^2 = H$; 25 R = H, $R^1 = R^2 = Me$; 26 R = Et, $R^1 = R^2 = H$; 27 $R = R^1 = H$, $R^2 = Et$; 28–32 R = Et, 28 $R^1 = H$, $R^2 = Me$, 29 $R^1 = H$, $R^2 = Et$, 30 $R^1 = Et$, $R^2 = H$, 31 $R^1 = Me$, $R^2 = H$, 32 $R^1 = R^2$

19 $R = R^1 = H$; **33** R = H, $R^1 = Et$; **34** $R = R^1 = Me$; **35** R = Me, $R^1 = Et$; **36** $R = R^1 = Et$; **37** R = Et, $R^1 = R^2 = H$; **38** R = Et, $R^1 = H$, $R^2 = Me$; **39** R = H, $R^1 = Et$, $R^2 = Me$; **40** R = Et, $R^1 = R^2 = Me$; **41** $R = R^1 = H$; **42** R = Me, $R^1 = H$; **43** $R = R^1 = Me$

боновая кислота (13), 3-метилтиофен-2-карбоновая кислота (14), 5-метилтиофен-2-карбоновая кислота (15), 2-тиенилуксусная кислота (16), 3-тиенилуксусная кислота (17), 5-ацетилтиофен-2-карбоновая кислота (18), тиофен-2,5-дикарбоновая кислота (19), метиловый эфир 2-тиенилуксусной кислоты (20), метиловый эфир 3-тиенилуксусной кислоты (21).

A LP0		-7.1 ± 1.9 [9]	-7.4 ± 1.9 [9]	-40.6 [6]	-37.3 [6]	-70.1 [6]	-59.2 ± 2.1 [9]	-54.5 ± 1.8 [9]	-90.9 [3]	-92.4 [3]	-96.0 [3]	-123.2±2.7 [2]	-259.2±1.9 [7, 11]	-261.8 ± 1.7 [11]	-295.6 [3]	-293.8 [3]	-265.7 ± 2.2 [10]	-275.5 ± 2.4 [10]	-424.3 [5]	-632.6±2.2 [7]	-268.5 ± 2.8 [13]	-267.6 ± 2.4 [13]		
	∇	25.16	19.83	24.92	40.22	28.22	1.15	1.03	2.93	7.32	7.34	19.00	7.55	4.60	7.19	18.24	27.98	15.55	8.07	6.50	5.99	7.74	13.64	
	MNDO	-32.26	-27.23	-65.52	-77.52	-98.32	-58.05	-55.53	-93.83	-99.72	-103.34	-142.2	-266.75	-266.40	-302.79	-312.04	-293.68	-291.05	-432.37	-639.10	-262.51	-259.86		
	∇	9.56	10.52	8.85	12.10	3.84	15.56	8.68	21.5	14.66	19.43	24.54	0.59	2.28	5.10	1.40	25.77	19.89	11.62	34.13	4.36	0.49	12.14	
Дж/моль	AM1	-16.66	-17.92	-49.45	-49.40	-73.94	-43.64	-45.82	-69.40	-77.74	-76.57	-98.66	-259.79	-264.08	-290.50	-292.40	-291.47	-295.39	-412.68	-598.47	-264.14	-267.11		
$\Delta_{\rm f} H^{\rm o}_{\rm pacu, K}$	∇	36.93	4.23	32.31	73.86	71.38	29.49	3.06	15.85	24.39	60.09	56.44	65.38	32.41	I	98.72	I	17.98	122.79	154.14	I	4.15	49.80	
	OUNIM	-44.03	-11.63	-72.91	-111.16	-141.48	-88.69	-51.44	-106.75	-116.79	-156.09	-179.64	-324.58	-294.21	I	-392.52	I	-293.48	-547.09	-786.74	Ι	-263.45		
	∇	0.68	6.66	3.11	2.38	11.51	22.11	6.24	15.34	17.63	30.00	13.8	27.88	14.04	28.28	30.66	2.53	6.48	31.62	54.11	38.37	25.73	18.67	
	PM3	-7.78	-14.06	-43.71	-39.68	-58.59	-37.09	-48.26	-75.56	-74.77	-66.00	-109.22	-231.32	-247.76	-267.32	-263.14	-263.17	-269.02	-392.68	-578.49	-230.13	-241.87		
Соеди-	нение	1	2	3	4	Ś	6	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	Среднее	600 TIOTION

Таблица 1

Данные квантово-химического расчёта энтальпий образования (Δ_fH^o) соединений 1–21 (Δ = |Δ_fH^o _{эксп} |)

1640

Для каждого из этих соединений были выполнены полная оптимизация геометрии молекул и расчёт их энтальпий образования методами PM3, MINDO, AM1 и MNDO. Рассчитанные методами PM3, MNDO, AM1 и MINDO теплоты образования $\Delta_f H^{o}_{pac4}$ (табл. 1) коррелируют с результатами эксперимента $\Delta_f H^{o}_{эксп}$. Коэффициенты корреляции составляют, соответственно, 0.9976, 0.9971, 0.9955 и 0.8022. Согласно предложенной Джаффе системе оценки корреляции [14], результаты расчетов методами PM3, MNDO и AM1 превосходно коррелируют с экспериментальными данными для газовой фазы. Наилучшую корреляционную связь между $\Delta_f H^{o}_{рас4}$ и $\Delta_f H^{o}_{эксп}$ для газовой фазы обеспечивает использование метода PM3. Описывается эта связь уравнением линейной регрессии (1).

$$\Delta_{\rm f} H^{\rm o}_{\rm pacy} = 0.9255 \, \Delta_{\rm f} H^{\rm o}_{\rm {}_{\rm 5KC\Pi}} + 3.4049, \tag{1}$$

с помощью которого был выполнен пересчёт рассчитанных теплот образования выбранных соединений (табл. 1) для их приведения к экспериментальным данным. Результаты пересчёта представлены в табл. 2. Из таблицы видно, что при переходе от рассчитанных значений теплот образования $\Delta_f H^o{}_{pac4}$ выбранного набора соединений к исправленным $\Delta_f H^o{}_{pac4}$ с помощью уравнения (1) отклонения (обозначены как Δ и Δ^* соответственно) от экспериментально полученных значений существенно уменьшаются: среднее абсолютное отклонение составляет 8.74 кДж/моль (вместо 18.67 кДж/моль). Наибольшие отклонения от экспериментальных данных наблюдаются для соединений 6, 10, 16, 17 и 20.

Полученное уравнение линейной регрессии можно использовать для корректировки рассчитанных методом РМЗ теплот образования соединений данного класса. Результаты такого расчета для производных тиофена с неизвестными экспериментальными значениями энтальпий образования – 4-метилтиофен-2-карбоновой кислоты (22), 3,5-диметилтиофен-2карбоновой кислоты (23), 3,4-диметилтиофен-2-карбоновой кислоты (24), 4,5-диметилтиофен-2-карбоновой кислоты (25), 3-этилтиофен-2-карбоновой кислоты (26), 5-этилтиофен-2-карбоновой кислоты (27), 5-метил-3этилтиофен-2-карбоновой кислоты (28), 3,5-диэтилтиофен-2-карбоновой кислоты (29), 3,4-диэтилтиофен-2-карбоновой кислоты (30), 4-метил-3этилтиофен-2-карбоновой кислоты (31), 4,5-диметил-3-этилтиофен-2-карбоновой кислоты (32), 3-этилтиофен-2,5-дикарбоновой кислоты (33), 3,4-диметилтиофен-2,5-дикарбоновой кислоты (34), 3-метил-4-этилтиофен-2,5-дикарбоновой кислоты (35), 3,4-диэтилтиофен-2,5-дикарбоновой кислоты (36), 2-ацетил-3-этилтиофена (37), 2-ацетил-5-метил-3-этилтиофена (38), 2-ацетил-5-метил-4-этилтиофена (39), 2-ацетил-4,5-диметил-3-(40), 2,5-диацетилтиофена (41), этилтиофена 2,5-диацетил-3-2,5-диацетил-3,4-диметилтиофена метилтиофена (42) И (43)представлены в табл. 3.

Таким образом, в данной работе установлена хорошая корреляция между значениями энтальпий образования в газовой фазе некоторых альдегидов, кетонов и кислот ряда тиофена, полученными экспериментально и вычисленными с помощью полуэмпирического квантово-химического

(Δh)	$I_{\text{pacy}} = 0.9255, \Delta_{\text{f}}$	$I_{3KC\Pi} + 5.4049, -1$	$\Delta = \Delta_{\rm f} I _{\rm pacy} - \Delta_{\rm f} I_{\rm JKC}$	en)		
Соеди-	Энтал	A *				
нение	$\Delta_{\rm f} H^{\rm o}{}_{\rm pac4}$	$\Delta_{\rm f} H^{\circ} *_{\rm pacy}$	$\Delta_{\mathrm{f}} H^{\mathrm{o}}{}_{\mathfrak{I} \mathrm{KCII}}$	Δ^{+}		
1	-7.78	-12.09	- 7.1 [9]	4.99		
2	-14.06	-18.87	- 7.4 [9]	11.47		
3	-43.71	-50.91	-40.6 [6]	10.31		
4	-39.68	-46.55	-37.3 [6]	9.25		
5	-58.59	-66.99	-70.1 [6]	3.11		
6	-37.09	-43.75	-59.2 [9]	15.45		
7	-48.26	-55.82	-54.5 [9]	1.32		
8	-75.56	-85.32	-90.9 [3]	5.58		
9	-74.77	-84.47	-92.4 [3]	7.93		
10	-66.0	-74.99	-96.0 [3]	21.01		
11	-109.2	-121.69	-123.2 [2]	1.51		
12	-231.32	-253.62	-259.2 [7, 11]	5.58		
13	-247.76	-271.38	-261.8 [11]	9.58		
14	-267.32	-292.52	-295.6 [3]	3.08		
15	-263.14	-288.00	-293.8 [3]	5.80		
16	-263.17	-288.03	-265.7 [10]	22.33		
17	-269.02	-294.35	-275.5 [10]	18.85		
18	-392.68	-427.97	-424.3 [5]	3.67		
19	-578.49	-628.74	-632.6 [7]	3.86		
20	-230.13	-252.33	-268.5 [13]	16.17		
21	-241.87	-265.02	-267.6 [13]	2.58		
Среднее абсолютное отклонение				8.74		

Сравнение результатов расчёта исправленных значений энтальпий образования
в газовой фазе

 $(\Delta_{\rm f} H^{\rm o}_{\rm pacy} = 0.9255, \ \Delta_{\rm f} H^{\rm o}_{\rm _{3KCR}} + 3.4049; \ -\Delta^{*} = |\Delta_{\rm f} H^{*}_{\rm _{pacy}} - \ \Delta_{\rm f} H_{\rm _{3KCR}}|)$

Таблица 3

Энтальпии образования производных тиофена 22–43 в газовой фазе, рассчитанные методом PM3 и скорректированные с помощью уравнения (1)

Соеди-	Энтальпия с кДж/	образования, моль	Соеди-	Энтальпия образования, кДж/моль					
нение	$\Delta_{\rm f} H^{\rm o}_{\rm pacy}$	$\Delta_{\rm f} H^{\rm o} *_{\rm pacy}$	нение	$\Delta_{\rm f} H^{\rm o}_{\rm pacy}$	$\Delta_{\rm f} H^{\rm o} *_{\rm pacy}$				
22	-271.79	-297.35	33	-633.76	-688.45				
23	-297.43	-325.05	34	-651.77	-707.91				
24	-305.48	-333.75	35	-670.00	-727.61				
25	-303.36	-331.46	36	-695.57	-755.24				
26	-285.17	-311.80	37	-94.47	-105.75				
27	-282.14	-308.53	38	-125.77	-139.57				
28	-316.54	-345.70	39	-128.64	-142.67				
29	-333.04	-363.53	40	-163.94	-180.82				
30	-339.51	-370.52	41	-197.38	-216.95				
31	-325.75	-355.65	42	-236.02	-258.70				
32	-356.86	-389.27	43	-267.66	-292.88				

метода PM3, что позволяет рекомендовать этот метод для термохимических расчётов соединений этого класса. Установлено уравнение линейной регрессии, описывающее связь между рассчитанными и экспериментальными значениями теплот образования, позволяющее скорректировать результаты квантово-химических расчетов, максимально приблизив их к экспериментальным значениям. С помощью этого метода рассчитаны энтальпии образования двадцати двух производных тиофена в газовой фазе, которые могут быть полезны при изучении механизмов химических реакций и поиске способов управления ими.

СПИСОК ЛИТЕРАТУРЫ

- 1. Т. Джилкрист, Химия гетероциклических соединений, Мир, Москва, 1996.
- M. A. V. Ribeiro da Silva, A. F. L. O. M. Santos, J. Chem. Thermodyn., 40, 1217 (2008).
- 3. M. A. V. Ribeiro da Silva, A. F. L. O. M. Santos, J. Chem. Thermodyn., 40, 1309 (2008).
- W. N. Hubbard, D. W. Scott, F. R. Frow, G. Waddington, J. Am. Chem. Soc., 77, 5855 (1955).
- 5. M. A. V. Ribeiro da Silva, A. F. L. O. M. Santos, J. Chem. Thermodyn., 40, 1451 (2008).
- M. A. V. Ribeiro da Silva, A. F. L. O. M. Santos, J. Chem. Thermodyn., 40, 917 (2008).
- 7. M. V. Roux, M. Temprado, P. Jiménez, C. Foces-Foces, R. Notario, S. P. Verevkin, J. F. Liebman, J. Phys. Chem., A, 110, 12477 (2006).
- 8. J. B. Pedley, *Thermochemical Data and Structures of Organic Compounds*; *TRC Data Series*; Thermodynamics Research Center: College Station, Texas, 1994, vol. 1.
- 9. M. A. V. Ribeiro da Silva, L. M. P. F. Amaral, J. Chem. Thermodyn., 41, 26 (2009).
- 10. M. Temprado, M. V. Roux, P. Jiménez, C. Foces-Foces, R. Notario, J. Phys. Chem., A, 112, 10378 (2008).
- 11. M. Temprado, M. V. Roux, P. Jiménez, J. Z. Dávalos, R. Notario, *J. Phys. Chem.*, *A*, **106**, 11173 (2002).
- 12. G. Waddington, J. W. Knowlton, D. W. Scott, G. D. Oliver, S. S. Todd, W. N. Hubbard, J. C. Smith, H. M. Huffman, *J. Am. Chem. Soc.*, **71**, 797 (1949).
- M. V. Roux, M. Temprado, R. Notario, J. S. Chickos, A. F. L. O. M. Santos, M. A. V. Ribeiro da Silva, *J. Phys. Chem.*, *A*, **111**, 5280 (2007).
- 14. Ю. А. Жданов, В. И. Минкин, Корреляционный анализ в органической химии, Изд-во Рост. ун-та, Ростов-на-Дону, 1966, с. 19.

Волгоградский государственный технический университет, Волгоград 400131, Россия e-mail: zea@vstu.ru Поступило 05.02.2010