В. В. Бахарев,* А. А. Гидаспов, Е. В. Селезнева, И. В. Ульянкина, Д. Б. Криволапов,^а И. А. Литвинов,^а О. С. Ельцов^б

РЕАКЦИИ 1,3,5-ТРИАЗИНИЛНИТРОФОРМАЛЬДОКСИМОВ

3.* ВЗАИМОДЕЙСТВИЕ 1,3,5-ТРИАЗИНИЛНИТРОФОРМАЛЬДОКСИМОВ С ЭФИРОМ МАЛОНОВОЙ КИСЛОТЫ

Реакция 4-R-6-метокси-1,3,5-триазин-2-илнитроформальдоксимов с метиловым эфиром малоновой кислоты приводит к образованию цвиттер-ионных 4-мет-оксикарбонил-3-(4-R-6-метокси-1,3,5-триазин-2-ил)-4,5-дигидроизоксазол-5-онов. Приведены данные РСА цвиттер-ионного 3-(4-метокси-6-пиперидино-1,3,5-три-азин-2-ил)-4-метоксикарбонил-4,5-дигидроизоксазол-5-она.

Ключевые слова: 3,4-дизамещённые 4,5-дигироизоксазол-5-оны, метиловый эфир малоновой кислоты, 1,3,5-триазинилнитрилоксиды, 1,3,5-триазинилнитроформальдоксимы.

При действии оснований 1,3,5-триазинилнитроформальдоксимы генерируют 1,3,5-триазинилнитрилоксиды, способные реагировать с енолятами дикетонов или кетоэфиров по реакции диполярного [3+2]-циклоприсоединения с образованием производных 3,4,5-тризамещённого изоксазола [2]. Однако примеров взаимодействия нитрилоксидов с эфирами малоновой кислоты мы не обнаружили. Пытаясь восполнить этот пробел, мы исследовали реакцию 1,3,5-триазинилнитроформальдоксимов с диметиловым эфиром малоновой кислоты.

Реакция 4-R-6-метокси-1,3,5-триазин-2-илнитроформальдоксимов 1а-d с метиловым эфиром малоновой кислоты 2 в присутствии щёлочи протекает через образование ряда интермедиатов и их взаимодействие между собой. При действии щёлочи из соединений 1а-d образуются нитрилоксиды, а из соединения 2 – карбанион. Их взаимодействие по реакции диполярного [3+2]-циклоприсоединения приводит к отщеплению метанола и замыканию цикла изоксазола. После обработки кислотой образуются цвиттер-ионные 3-(4-R-6-метокси-1,3,5-триазин-2-ил)-4-метоксикарбонил-4,5-дигидроизоксазол-5-оны 3а-d с выходом 59–75%.

^{*} Сообщение 2 см. [1].

Поглощение карбонильных групп в изоксазолах **3а-d** проявляется в виде одной полосы в области 1716–1720 см⁻¹. Усреднение и некоторое снижение частоты поглощения карбонильных групп в соединениях **3а-d** в сравнении с 5-метил-3-(4-R-6-метокси-1,3,5-триазин-2-ил)-4-этоксикарбонилизоксазолами [2] обусловлено, вероятно, уменьшением кратности связей С=О карбонильных групп, которое можно отобразить предельными структурами **3A-D**:

Данные спектров ЯМР ¹³ С цвиттер-ионных 3-(4-R-6-метокси-1,3,5-триазин-2-ил)- токсикарбонил-4,5-дигидроизоксазол-5-онов За-d и 5-метил-3-(4-R-6-метокси-1,3,5-триазин-2-ил)-4-этоксикарбонилизоксазолов

Данные 4-метоксикарбонил-4,5-дигидроиз	: спектров ЯМ зоксазол-5-оно	Р ¹³ С цвитт)в За–d и 5-	сер-ионны Э-(стил-3-	іх 3-(4-R-6-	метокси-1, кси-1,3,5-т	3,5-триази риазин-2-	н-2-ил)- ал)-4-этокс	икарбонилизоксазолов
				Хих	иические сл	цвиги, б, м	т. д.	
Соединение	Цикл 1,	,3,5-триазиі	Ha	Цик	сл изоксазо.	ла	<u>C</u> OOMe,	стп
	C(2)	C(4)	C(6)	C(3)	C(4)	C(5)	<u>C</u> 00Et	ацругие
3a	164.9	163.1	163.1	158.0	80.7	173.3	164.7	36.9, 37.1 (N(CH ₃) ₂); 50.6 (COOC <u>H₃</u>); 55.5 (OCH ₃)
3b	165.3	161.3	163.4	158.1	79.9	173.1	167.6	24.8, 25.1 (CH ₂); 47.6, 47.8 (CH ₂ N); 50.8 (COOC <u>H₃</u>); 56.0 (OCH ₃)
3с	164.9	162.4	162.8	157.6	76.6	172.8	164.8	23.7, 23.3, 25.4 (CH ₂); 44.9, 45.2 (CH ₂ N); 50.5 (COOC <u>H₃</u>); 55.6 (OCH ₃)
3d	165.1	164.5	163.5	159.3	80.2	172.9	165.1	43.4, 43.8 (CH ₂ N); 50.0 (COOC <u>H₃);</u> 55.0 (OCH ₃); 65.7 (OCH ₂)
3-(6-Диметиламино-4-метокси-1,3,5-триазин- 2-ил)-4-этоксикарбонил-5-метилизоксазол	169.78	165.74	164.99	160.16	108.45	174.40	159.29	12.01 (CH ₃); 13.28 (CH ₃); 35.50, 35.75 (N(CH ₃) ₂); 53.98 (OCH ₃); 60.23 (OCH ₂)
5-Метил-3-(4-метокси-6-пирролидинил-1,3,5- триазин-2-ил)-4-этоксикарбонилизоксазол	169.58	165.66	162.84	160.15	108.44	174.38	159.29	12.03 (CH ₃); 13.28 (CH ₃); 24.13, 24.29 (CH ₂); 45.84, 46.08 (CH ₂ N); 53.94 (OCH ₃); 60.21 (OCH ₂)
5-Метил-3-(4-метокси-6-пиперидино-1,3,5- триазин-2-ил)-4-этоксикарбонилизоксазол	170.07	166.06	163.99	160.18	108.46	174.35	159.26	11.97 (CH ₃); 13.28 (CH ₃); 23.51, 24.83, 24.91 (CH ₃); 43.48, 43.83 (CH ₂ N); 53.99 (OCH ₃); 60.23 (OCH ₂)
5-Метил-3-(4-метокси-6-морфолино-1,3,5- триазин-2-ил)-4-этоксикарбонилизоксазол	170.07	166.15	164.47	160.14	108.45	174.50	159.16	11.99 (CH ₃); 13.30 (CH ₃); 43.02, 43.38 (CH ₂ N); 54.16 (OCH ₃); 60.27 (OCH ₂); 65.37 (OCH ₂)

Таблица 1

1711

Подтверждение строения полученных соединений и отнесение сигналов ¹Н и ¹³С (см. табл. 1) было выполнены на основании данных спектров ЯМР ¹H, ¹³C и двумерных протон-углеродных корреляций (gs-HMBC, gs-HSQC). В частности, можно отметить наличие кросс-пиков, обусловленных дальними взаимодействиями атомов С(2), С(4) триазинового цикла, карбонильного атома углерода сложноэфирной группы и протонов соответствующих заместителей, что однозначно позволило сделать их отнесение. Доказательством наличия карбанионного центра на атоме С(4) цикла изоксазола служит химический сдвиг 76-80 м. д., характерный для sp^3 -гибридного атома углерода. Смещение сигнала этого атома в спектре ЯМР ¹³С в сильное поле по сравнению с 5-метил-3-(4-R-6-метокси-1,3,5триазин-2-ил)-4-этоксикарбонилизоксазолами составляет примерно 29-32 м. д. (δ C(4) = 108–109 м. д.). Помимо этого в спектрах gs-HSQC атом C(4) цикла изоксазола не имеет каких-либо кросс-пиков с протонами, что также подтверждает отсутствие ковалентной связи с протонами и его карбанионный характер.

Строение изоксазола Зс подтверждено методом РСА (рисунок, табл. 2-4).

Молекулярная структура 3-(4-метокси-6-пиперидино-1,3,5-триазин-2-ил)-4-метоксикарбонил-4,5-дигидроизоксазол-5-она **3с**

Таблица 2

Связь	d, Å	Связь	<i>d</i> , Å
N(1)–C(2)	1.356(2)	C(10)–C(11)	1.513(3)
N(1)–C(6)	1.348(2)	C(11)–C(12)	1.512(3)
N(5)–C(4)	1.367(2)	C(6)–C(15)	1.480(2)
N(5)–C(6)	1.304(2)	C(15)–N(17)	1.309(2)
N(3)–C(2)	1.297(2)	O(18)–N(17)	1.404(2)
N(3)–C(4)	1.360(2)	O(18)–C(19)	1.402(2)
O(13)–C(2)	1.309(2)	O(19)–C(19)	1.215(2)
O(13)–C(14)	1.452(2)	C(20)–C(19)	1.426(2)
C(4)–N(7)	1.324(2)	C(20)–C(21)	1.427(2)
N(7)–C(8)	1.475(2)	O(22)–C(21)	1.335(2)
N(7)–C(12)	1.468(2)	O(22)–C(23)	1.440(2)
C(8)–C(9)	1.500(3)	O(21)–C(21)	1.235(2)
C(9)–C(10)	1.508(3)	C(15)-C(20)	1.427(2)

Длины связей (d) соединения 3с

Таблица З

Валентные углы (ω) соединения 3с

Угол	ω, град.	Угол	ω, град.
C(2)–N(1)–C(6)	117.82(11)	C(12)–N(7)–C(8)	114.66(13)
C(2)-N(3)-C(4)	115.45(12)	N(1)-C(6)-C(15)	117.26(10)
C(4)-N(5)-C(6)	115.58(11)	N(5)-C(6)-C(15)	119.68(11)
N(1)-C(6)-N(5)	123.06(12)	C(6)–C(15)–N(17)	115.43(11)
N(1)-C(2)-N(3)	123.46(12)	C(6)-C(15)-C(20)	131.33(11)
N(3)-C(4)-N(5)	124.61(11)	C(15)–N(17)–O(18)	105.92(10)
C(2)–O(13)–C(14)	117.48(11)	N(17)-O(18)-C(19)	110.56(10)
O(13)–C(2)–N(1)	113.12(11)	O(18)–C(19)–O(19)	118.61(13)
O(13)–C(2)–N(3)	123.41(13)	O(18)–C(19)–C(20)	105.80(11)
N(3)-C(4)-N(7)	117.80(12)	O(19)–C(19)–C(20)	135.59(12)
C(4)–N(7)–C(8)	122.19(13)	N(17)-C(15)-C(20)	113.17(12)
N(5)-C(4)-N(7)	117.59(12)	C(19)–C(20)–C(15)	104.53(11)
C(4)-N(7)-C(12)	123.04(12)	C(15)-C(20)-C(21)	130.72(12)
N(7)-C(8)-C(9)	111.26(15)	C(19)–C(20)–C(21)	124.74(12)
C(8)–C(9)–C(10)	111.39(15)	C(20)–C(21)–O(21)	126.09(12)
C(9)–C(10)–C(11)	110.38(16)	C(20)–C(21)–O(22)	113.84(11)
C(10)-C(11)-C(12)	111.37(16)	C(21)-O(22)-C(23)	116.28(12)
C(11)-C(12)-N(7)	109.89(14)	O(21)–C(21)–O(22)	120.06(12)
		II	I

Таблица 4

Торсионные углы (0) соединения 3с

Угол	θ, град.	Угол	θ, град.
C(14)-O(13)-C(2)-N(3)	1.6(2)	N(1)-C(6)-C(15)-C(20)	-2.2(2)
C(14)-O(13)-C(2)-N(1)	-177.4(1)	N(1)-C(6)-C(15)-N(17)	-179.0(1)
O(13)-C(2)-N(3)-C(4)	-179.9(1)	N(5)-C(6)-C(15)-N(17)	0.7(2)
O(13)-C(2)-N(1)-C(6)	-179.1(1)	N(5)-C(6)-C(15)-C(20)	177.5(1)
C(2)-N(3)-C(4)-N(5)	-0.5(2)	C(6)-C(15)-C(20)-C(21)	2.4(2)
N(3)-C(4)-N(5)-C(6)	1.0(2)	C(6)-C(15)-N(17)-O(18)	177.5(1)
C(4)-N(5)-C(6)-N(1)	-0.0(2)	C(6)-C(15)-C(20)-C(19)	-176.0(1)
N(5)-C(6)-N(1)-C(2)	-1.3(2)	C(15)-N(17)-O(18)-C(19)	-1.1(1)
C(6)-N(1)-C(2)-N(3)	1.9(2)	N(17)-O(18)-C(19)-O(19)	-178.1(1)
N(1)-C(2)-N(3)-C(4)	-1.0(2)	N(17)-O(18)-C(19)-C(20)	1.6(1)
N(3)-C(4)-N(7)-C(8)	-6.1(2)	O(18)-C(19)-C(20)-C(21)	-180.0(1)
N(3)-C(4)-N(7)-C(12)	178.1(1)	O(18)-C(19)-C(20)-C(15)	-1.4(1)
N(5)-C(4)-N(7)-C(12)	-2.5(2)	C(15)-C(20)-C(19)-O(19)	178.2(2)
N(5)-C(4)-N(7)-C(8)	173.4(1)	C(15)-C(20)-C(21)-O(22)	-176.6(1)
C(4)-N(7)-C(8)-C(9)	129.7(2)	C(19)-C(20)-C(15)-N(17)	0.8(2)
C(4)-N(7)-C(12)-C(11)	129.3(2)	C(20)–C(21)–O(22)–C(23)	175.7(1)
N(7)-C(12)-C(11)-C(10)	55.0(2)	C(15)-C(20)-C(21)-O(21)	3.7(2)
C(12)-C(11)-C(10)-C(9)	56.2(2)	C(19)-C(20)-C(21)-O(21)	-178.1(1)
C(11)-C(10)-C(9)-C(8)	-55.0(2)	C(19)–C(20)–C(21)–O(22)	1.5(2)
C(10)-C(9)-C(8)-N(7)	53.2(2)	O(21)-C(21)-C(20)-C(19)	-178.1(1)
C(9)-C(8)-N(7)-C(12)	-54.1(2)	C(21)-C(20)-C(19)-O(19)	-0.3(3)
C(8)–N(7)–C(12)–C(11)	54.6(2)	O(21)-C(21)-C(20)-C(15)	3.7(2)

Несмотря на наличие заместителя в положении 4 цикла изоксазола (сравнение с данными РСА этилового эфира 5-метил-3-(4-метокси-6пирролидинил-1,3,5-триазин-2-ил)изоксазол-4-карбоновой кислоты [2]), вся молекула плоская за исключением пиперидинового цикла, имеющего конформацию кресло. Планарность молекулы достигается за счёт внутримолекулярной водородной связи O(21)-H(1)-N(1) (параметры водородной связи: N(1)-H(1) 0.972, H(1)…O(21) 1.616, N(1)…O(21) 2.567 Å, угол N(1)-H(1)…O(21) 165.72°). Цикл 1,3,5-триазина симметрично деформирован: связи C(2)-N(3) и C(6)-N(5) укорочены до 1.290-1.310 Å; связи C(4)-N(3), C(4)-N(5), C(2)-N(1) и C(6)-N(1) увеличены до 1.35-1.37 Å. Атом С(20), на котором в основном сосредоточен отрицательный заряд, имеет плоскую тригональную конфигурацию: все связи С(15)-С(20), C(21)-C(20) и C(19)-C(20) одинаковы (1.427 Å); отклонение величины углов от 120° (С(15)-С(20)-С(21) 130.72°, С(21)-С(20)-С(19) 124.74° и C(19)-C(20)-C(15) 104.53°) связано с тем, что атом C(20) является частью шиклической системы изоксазола.

ИК спектры записаны на спектрофотометре Avatar 360ESP в таблетках KBr, спектры ЯМР ¹H и ¹³C – на спектрометре Bruker Avance II (400 и 100 МГц соответственно) в ДМСО-d₆, внутренний стандарт ТМС. Элементный анализ выполнен на приборе Eurovector EA 3000.

Рентгеноструктурный анализ соединения 3с выполнен при 20° на автоматическом дифрактометре Bruker Smart APEX2 (λ МоК α , графитовый монохроматор, ω -сканирование). Учёт поглощения не проводился ввиду его малости. Структура расшифрована прямым методом по программе SIR [3] и уточнена вначале в изотропном, затем в анизотропном приближении по программе SHELXL-97 [4]. Координаты атомов водорода выявлены из разностных рядов Фурье и уточнены изотропно. Все расчёты проведены с помощью программ WinGX [5] и APEX2 [6]. Рисунок и анализ водородных связей выполнены с помощью программы PLATON [7].

Кристаллы соединения **3с**: бесцветные, прозрачные призматические, триклинные; $C_{14}H_{17}N_5O_5$, M = 335.33, a = 7.0908(5), b = 10.5571(7), c = 11.1432(8) Å, $\alpha = 98.552(1)$, $\beta = 107.493(1)$, $\gamma = 97.187(1)^\circ$, V = 773.88(9) Å³, $d_{\text{выч}} = 1.44 \text{ г/см}^3$, Z = 2, пространственная группа $P\overline{1}$. Угол сканирования $2.0^\circ \le \theta \le 27.0^\circ$. Измерено 3361 независимое отражение, 2806 из которых с $I > 2\sigma(I)$. Учёт поглощения не проводился ввиду его малости (μ (Mo) = 0.112 см⁻¹). Окончательные значения факторов расходимости $R_{105} = 0.037$ и $R_{wobs} = 0.0978$ по 2806 рефлексам.

Исследование монокристалла соединения **3с** проведено в Отделении рентгеноструктурных исследований Центра коллективного пользования ЦКП САЦ на базе Лаборатории дифракционных методов исследования ИОФХ им. А. Е. Арбузова КНЦ РАН.

Координаты атомов и структурные параметры соединения **3**с депонированы в Кембриджском банке структурных данных (депонент ССDС 736560).

Соединения **1а–d** синтезированы по методике [8]. 5-Метил-3-(4-R-6-метокси-1,3,5-триазин-2-ил)-4-этоксикарбонилизоксазолы синтезированы по методике [1].

Цвиттер-ионный 3-(4-диметиламино-6-метокси-1,3,5-триазин-2-ил)-4-метоксикарбонил-4,5-дигидроизоксазол-5-он (3а). К раствору 1.6 г (4 ммоль) гидроксида натрия в 20 мл метанола при 20–25 °С и перемешивании приливают 2.30 мл (2 ммоль) метилового эфира малоновой кислоты, затем добавляют 2.42 г (1 ммоль) соединения 1а. Реакционную массу выдерживают при 20–25 °С и перемешивании до исчезновения исходного соединения 1а, по данным TCX (1 ч – 1 ч 30 мин). После окончания выдерживают и промывают 5 мл холодного метанола. Оса-док растворяют в 20 мл воды, подкисляют разбавленной соляной кислотой, выпав-ший осадок отфильтровывают, промывают холодной водой. Выход 2.12 г (72%). Т. пл. 175–177 °С (с разл.). ИК спектр, v, см⁻¹: 3018, 2958, 1720, 1648, 1618, 1502, 1467, 1413, 1214, 1193, 1083, 1024, 935, 906, 885, 781, 732. Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 3.21 и 3.23 (6H, два с, NCH₃); 3.51 (3H, с, COOCH₃); 3.99 (3H, с, OCH₃); 11.07 (уш. с, NH⁺). Найдено, %: С 44.88; H 4.28; N 23.60. С₁₁H₁₃N₅O₅. Вычислею, %: С 44.75; H 4.44; N 23.72.

Цвиттер-ионный 3-(6-метокси-4-пирролидинил-1,3,5-триазин-2-ил)-4-метоксикарбонил-4,5-дигидроизоксазол-5-он (3b) получают аналогично из 2.68 г (1 ммоль) соединения **1b**. Выход 1.90 г (59%). Т. пл. 140–142 °C (с разл.). ИК спектр, v, см⁻¹: 2958, 2887, 2439, 1716, 1648, 1608, 1500, 1459, 1378, 1213, 1122, 1078, 1037, 1027, 908, 885, 781, 659. Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 1.96 (4H, м, CH₂); 3.55 (3H, с, COOCH₃); 3.61 (4H, т, *J* = 8.0, NCH₂); 4.02 (3H, с, OCH₃); 10.13 (1H, уш. с, NH⁺). Найдено, %: C 48.54; H 4.87; N 21.91. C₁₃H₁₅N₅O₅. Вычислено, %: C 48.60; H 4.71; N 21.80. **Цвиттер-ионный 3-(6-метокси-4-пиперидино-1,3,5-триазин-2-ил)-4-метоксикарбонил-4,5-дигидроизоксазол-5-он (3с)** получают аналогично из 2.82 г (1 ммоль) соединения **1с**. Выход 2.25 г (67%). Т. пл. 145–147 °С (с разл). ИК спектр, v, см⁻¹: 3432, 3012, 2863, 1718, 1710, 1652, 1612, 1560, 1498, 1467, 1450, 1382, 1290, 1214, 1180, 1153, 1093, 1035, 910, 779, 673. Спектр ЯМР ¹Н, δ, м. д.: 1.08–1.15 (6H, м, CH₂); 3.53 (3H, с, COOCH₃); 3.87 (4H, м, NCH₂); 4.00 (3H, с, OCH₃); 11.83 (уш. с, NH⁺). Найдено, %: С 50.32; Н 5.17; N 20.75. С₁₄H₁₇N₅O₅. Вычислено, %: С 50.15; Н 5.11; N 20.89.

Цвиттер-ионный 3-(6-метокси-4-морфолино-1,3,5-триазин-2-ил)-4-метоксикарбонил-4,5-дигидроизоксазол-5-он (3d) получают аналогично из 2.84 г (1 ммоль) соединения 1d. Выход 2.53 г (75%). Т. пл. 155–157 °С (с разл). ИК спектр, v, см⁻¹: 3012, 2954, 2860, 1718, 1646, 1602, 1500, 1465, 1448, 1380, 1303, 1284, 1211, 1116, 1078, 1016, 904, 881, 783, 622. Спектр ЯМР ¹Н, δ , м. д.: 3.51 (3H, c, COOCH₃); 3.66–3.84 (8H, м, NCH₂CH₂O); 3.97 (3H, c, OCH₃); 10.50 (уш. с, NH⁺). Найдено, %: С 46.13; H 4.41; N 20.57. С₁₃H₁₅N₅O₆. Вычислено, %: С 46.29; H 4.48; N 20.76.

СПИСОК ЛИТЕРАТУРЫ

- В. В. Бахарев, А. А. Гидаспов, Е. В. Переседова, Д. Б. Криволапов, Е. В. Миронова, И. А. Литвинов, *XTC*, 1345 (2009). [*Chem. Heterocycl. Comp.*, 45, 1075 (2009)].
- 2. В. В. Бахарев, Е. В. Переседова, Д. Б. Криволапов, Е. В. Миронова, И. А. Литвинов, *XIC*, 743 (2009). [*Chem. Heterocycl. Comp.*, **45**, 587 (2009)].
- 3. A. Altomare, G. Cascarano, C. Giacovazzo, D. Viterbo, *Acta Crystallogr.*, A47, 744 (1991).
- 4. G. M. Sheldrick, *SHELXL-97. Program for Crystal Structure Refinement*, Univ. of Gottingen, Germany, 1997.
- L. J. Farrugia, WinGX 1.64.05. An Integrated System of Windows Programs for the Solution, Refinement and Analysis of Single Crystal X-Ray Diffraction Data, J. Appl. Crystallogr., 32, 837 (1999).
- APEX2 (Version 2.1), SAINTPlus. Data Reduction and Correction Program, v. 7.31A, Bruker Advansed X-ray Solutions, BrukerAXS Inc., Madison, Wisconsin, USA, 2006.
- 7. A. L. Spek, Acta Crystallogr., A46, 34 (1990).
- В. В. Бахарев, А. А. Гидаспов, Е. В. Переседова, В. Г. Граник, Н. Б. Григорьев, В. И. Левина, И. С. Северина, А. Ю. Щеголев, Д. Е. Дмитриев, А. Б. Шере-метев, Изв. АН, Сер. хим., 1900 (2009).

Самарский государственный технический университет, Самара 443100, Россия e-mail: knil@sstu.smr.ru Поступило 01.04.2010

^аИнститут органической и физической химии им. А. Е. Арбузова Казанского научного центра РАН, Казань 420088, Республика Татарстан e-mail: litvinov@iopc.knc.ru

⁶Уральский государственный технический университет – УПИ, Екатеринбург 620002, Россия e-mail: oleg-eltsov@yandex.ru