А. А. Калинин, В. А. Мамедов*

ПИРРОЛО[1,2-*a*]ХИНОКСАЛИНЫ НА ОСНОВЕ ПИРРОЛОВ (ОБЗОР)

Обобщены и систематизированы литературные данные по методам синтеза пирроло[1,2-*a*]хиноксалинов, базирующихся на производных пирролов, а также на соединениях, изначально не являющихся производными хиноксалинов или пир-ролов.

Ключевые слова: пирролы, пирроло[1,2-а]хиноксалины.

В продолжение предыдущего обзора [1], где были рассмотрены возможные методы конструирования пирроло[1,2-*a*]хиноксалинов на основе хиноксалинов, здесь приводятся данные по методам синтеза, базирующихся на пирролах и других системах, не являющихся производными ни хиноксалинов, ни пирролов.

Пирроло[1,2-а]хиноксалины

Ниже приведены возможные варианты конструирования пирроло[1,2-*a*]-хиноксалиновой системы на основе пирролов.

^{*} Здесь и далее в номере фамилия автора, с которым следует вести переписку, отмечена звездочкой.

Методы получения по типу А1

Стратегия синтеза пирроло[1,2-а]хиноксалинов, базирующаяся на производных пирролов, может быть разработана на основе структурных компонентов, используемых для формирования пиразинового цикла. Чаще всего применяют вытекающие из ретросинтетического анализа принципы, представленные символикой А1, т. е циклоконденсацию 1-арилпроизводных пиррола, содержащих в орто-положении арильного заместителя фрагменты N-C. Примером синтеза с использованием такого подхода является внутримолекулярная циклизация 1-(2-изоцианофенил)пиррола (1а), легко получаемого дегидратированием соответствующего формиламинопроизводного смесью POCl₃/Et₃N в ТГФ. Реакция протекает в присутствии каталитических количеств эфирата трехфтористого бора в мягких условиях (CH₂Cl₂, 0 °C), в результате образуется с почти количественным выходом незамещенный пирроло[1,2-а]хиноксалин (2) [2, 3]. Катализируемая эфиратом трехфтористого бора циклизация соединения 1 также хорошо идет в присутствии разнообразных альдегидов и кетонов [2, 3], полуацеталей [2], 2,5-диэтокситетрагидрофурана [2] и под действием различных эпоксидов [2], при этом, в зависимости от используемого карбонильного компонента, образуются различные замещенные в положении 4 производные пирроло[1,2-а]хиноксалинов 2–5, 7, 9 с выходами 3–97% [2, 3].

1 a R = H, **b** R = Me; **3 a**-**e** R² = H, **a** R¹ = Et, **b** R¹ = 2-Pr, **c** R¹ = CMe₂Et, **d** R¹ = Ph, **e** R¹ = 2- ϕ ypun; **f** R¹ = R² = Me; **g** R¹+R² = (CH₂)₆; **h** R¹ = Ph, R² = Me; **i** R¹ = Me, R² = CO₂Et; **j** R¹ = Me, R² = (CH₂)₂CO₂Et; **4 a** R = R² = H, R¹ = R³ = Me; **b** R = R² = H, R¹ = Me, R³ = Et; **c** R = H, R¹ = R² = Me, R³ = Et, **d** R = R² = H, R¹ = BUHUII, R³ = Et, **e** R = R² = H, R¹ = Ph, R³ = Me; **f** R = R¹ = Me, R² = H, R³ = Et; **9 a** R = R¹ = R² = H, R³ = Me; **b** R = R¹ = R² = H, R³ = Ph; **c** R = R³ = H, R¹+R² = (CH₂)₄; **d** R = R¹ = R² = H; R³ = (CH₂)₂CH=CH₂; **e** R = Me, R¹+R² = (CH₂)₄, R³ = H; **10 a** R = H, **b** R = Me

Реакция 1-(2-изоцианоарил)пирролов с солью Эшенмозера 11 также протекает гладко с образованием иодидов диметил(пирроло[1,2-*a*]хиноксалин-4-илметил)аммония 12, которые после обработки водным раствором NaHCO₃, легко, с количественными выходами дают свободные основания. На примере реакций 1-(2-изоцианофенил)пирролов 1a,b с другими солями иминия типа 13 и 15, получаемыми из вторичных аминов и альдегидов в присутствии Me₃SiCl/NaI/Et₃N, показана общность такого синтеза 4-(1-диалкиламиноалкил)пирроло[1,2-*a*]хиноксалинов 14, 16 и 17 [4].

1, 12 а R = H, b R = Me, 13, 14 а R¹ = Me, R² = Et, b R¹ = (CH₂)₅, R² = *i*-Pr, c R¹ = Me, R² = *t*-Bu, d R¹ = Me, R² = Ph, e R¹ = (CH₂)₄, R² = Ph, f-i R¹ = Me, f R² = 4-MeOC₆H₄, g R² = 4-O₂NC₆H₄, h R² = 2-фурил, i R² = 4-ClC₆H₄

Источником фрагмента N–C при конструировании пиразинового кольца пирроло[1,2-*a*]хиноксалиновой системы может непосредственно выступать не только изоциановая ($-N^+ \equiv C^-$), но и ациламинная функция (-NHC(O)R) [3, 5–10]. В результате еще в 1966 г. был предложен общий метод получе-ния пирроло[1,2-*a*]хиноксалинов [5] циклизацией 1-(2-аминофенил)пир-ролов, получаемых по реакции Клаусона-Кааса [11], и их производных **18**. Циклизация ациламинов **18** протекает под действием хлороксида фосфора.

18, **19** a–d R¹ = R² = H, a R = Me, b R = NHPh, c R = Ph, d R = CH₂Cl; e R = Ph, R¹ = Cl, R² = H; f–k R¹ = CF₃, R² = H, f R = CH₂Cl, g R = Bu, h R = CH₂CH=CHMe, i R = C₆H₁₃, j R = CH₂CH=CHPr, k R = (CH₂)₂C₆H₃(OCH₂O)-3,4; I–o R¹ = OMe, R² = H; I R = Me, m R = Bu, n R = C₆H₁₃, o R = CH₂CH=CHPr; p, r R¹ = H, R² = OMe, p R = CH₂CH=CHMe, q R = CH₂CH=CHPr; **18r**, **2** R = R¹ = R² = H Неожиданно оказалось [6], что исходным для получения пирролохиноксалина **19e** может служить оксим *o*-(пиррол-1-ил)бензофенона **20**, который при действии POCl₃ в ДМФА подвергается перегруппировке Бекмана в 5-хлор-2-(пиррол-1-ил)бензанилид (**18e**). Структура пирролохиноксалина **19e** была однозначно подтверждена не только спектрально, но и встречным синтезом из заведомого 5-хлор-2-(пиррол-1-ил)бензанилида (**18e**) по методу [5].

Аналогичным образом конденсированные производные пирроло[1,2-*a*]хиноксалинов **21–24** были получены из 5-(пиррол-1-ил)хинолинов **25** [12], 3-(пиррол-1-ил)дибензофуранов **26** [13] и 3-(пиррол-1-ил)карбазола **27** [14], содержащих в положениях 6, 2 и 4, соответственно, функциональную группировку RC(X)NH, вводимую конденсацией соответствующих аминов с уксусным ангидридом, фенилизоционатом, фенилизотиоционатом и алифатическими изотиоцианатами.

При нагревании в присутствии POCl₃ достигается замыкание пиразинового кольца в соединениях **25а–с**. Циклизация соединений **25d**,е с образованием пирролохиноксалинов **21а**,**b** протекает, соответственно, в кипящем растворе толуола в течение 1.5–2 ч и при кратковременном термолизе [12].

21 a X = S, b X = O; 22 a R = Me, b R = NHPh, c R = CH₂Bu-*t*; 25 a-c X = O, a R = Me, b R = NHPh, c R = CH₂Bu-*t*; d X = S, R = NHPh; e X = O, R = NHPh

Формирование пиразинового цикла в 2-пирролилдибензофуранах 26 также достигается при нагревании присутствии POCl₃ [13].

Замыкание пиразинового цикла в пирролилкарбазоле 27 происходит при кратковременном термолизе при температуре выше 200 °C [14].

Циклизация диметилового эфира [2-(пиррол-1-ил)анилино]фумаровой кислоты (29), полученного взаимодействием N-(2-аминофенил)пиррола (28а) с диметилацетилендикарбоксилатом в кипящем хлороформе в течение недели, приводит к метил-4-(2-метокси-2-оксоэтил)пирроло[1,2-*a*]хинок-салин-4-карбоксилату (31). В то же время диэтиловый эфир [2-(пиррол-1-ил)анилино]метиленмалоновой кислоты (30), легко получаемый из N-(2-аминофенил)пиррола (28а) при взаимодействии с диэтилэтоксиметиленмалонатом в кипящем РОСІ₃, за 15 мин превращается в пирроло[1,2-*a*]-хиноксалин (2) [15].

Методы получения по типу А2

Для реализации синтетического подхода типа A2 существует всего один метод, включающий восстановление эфиров N-(2-нитрофенил)пирролидин-2-карбоновой кислоты 34 или эфиров N-(2-нитрофенил)пиррол-2-карбоновой кислоты 39. Соединения 34 были получены конденсацией 2-нитро-1-фторбензолов 32 с пирролидин-2-карбоновой кислотой (33а) или ее эфиром 33b [16–18] в кипящем этаноле в присутствии NaHCO₃. Восстановительную циклизацию соединений 34 в 35 проводили как циклогексеном в кипящем этаноле в присутствии 10% Pd/C [16], так и порошкообразным железом в уксусной кислоте [17, 18], а также для соединения 34а дитионитом натрия в воде [17].

32 a R = H, b $R = NO_2$; **33** a $R^1 = H$, b $R^1 = Me$; **34** a $R = R^1 = H$, b R = H, $R^1 = Me$, c $R = NO_2$, $R^1 = H$; **35** a R = H, b $R = NO_2$

Способ синтеза производного N-(2-нитрофенил)пирролидин-2-карбоновой кислоты **39** включает в себя алкоголиз 1-(2-нитро-5-хлорфенил)-2-трихлорацетил-1Н-пиррола (**38**), который, в свою очередь, получают в результате двухстадийного процесса из 2-нитро-5-хлоранилина (**36**) [19]. Восстановительная циклизация в этом случае успешно реализуется при использовании порошкообразного железа в уксусной кислоте (60 °C, 3 ч).

При использовании в качестве восстановителя сульфида аммония из арилпирролидина **34d** ($R = NO_2$, $R^1 = Me$) образуется смесь тетрагидропирролохиноксалина **42** и N-гидроксипроизводного **41** [20].

Этот подход нашел широкое применение в синтезе конденсированных гетероциклических систем с гидрированным пирроло[1,2-*a*]хиноксалиновым фрагментом **44** [21–23].

Соеди- нения 43, 44	R^1	R ²	Соеди- нения 43, 44	R^1	R ²	Соеди- нения 43, 44	R^1	R ²
a	Me	Н	j	Ph	Н	r	Me	OMe
b	Me	Me	k	Н	Ph	S	Me	OEt
c	Me	OMe	1	Me	Ph	t	Me	Cl
d	Me	OEt	m	OMe	Ph	u	Ph	Н
e	Me	Cl	n	OEt	Ph	v	Ph	Me
f	Ph	Н	0	Cl	Ph	w	Ph	OMe
g	Ph	OMe	р	Me	Н	х	Ph	OEt
h	Ph	OEt	q	Me	Me	у	Ph	Cl
i	Ph	Cl						

43, **44 a**–**j** R³ = Cl, **k**–**o** R³ = H; **43 p**–**y** R³ = NO₂; **44 p**–**y** R³ = NH₂

Методы получения по типу АЗ

Ключевая стадия синтеза пирроло[1,2-*a*]хиноксалинов **47** по типу **А3** [24, 25] включает в себя внутримолекулярное замещение в ароматическом кольце атома фтора образующейся *in situ* под действием КОН карбоксиамидной группой в 1-арил-2-цианопирролах **46**. Образование соединений **46** представляет многостадийный процесс: синтез 1-арилпирролов по реакции Клаусона-Кааса [11] и введение группы СN в положение 2 пиррольного кольца по ниже приведенной схеме.

Замещенные амиды пирролкарбоновых кислот 49 циклизуются под дей-1770 ствием гидрида натрия в 5-замещенные пирролохиноксалин-4-оны 50 [26].

49, 50 a R = Et, **b** $R = C_6H_{11}$, **c** R = Ph, **d** R = 2-MeO₂CC₆H₄, **e** R = 4-ClC₆H₄, **f** R = 4-MeOC₆H₄

Методы получения по типу А4

Специальный метод для синтеза пирроло[1,2-*a*]хиноксалинов с использованием синтона A4 не разработан. Однако при получении пирроло-1,4-бензодиазепинов внедрением монооксида углерода в 2-[N-R-N-(2-бромфенил)аминометил]пирролидины 51 в присутствии каталитических количеств Pd(OAc)₂ и PPh₃, наряду с другими продуктами, образующимися в результате миграции, например ацильной группы от анилинового атома азота к пирролидиновому [27], были обнаружены и пирроло[1,2-*a*]хиноксалины 54.

51–54 a R = Ac, b R = CHO, c R = PhCO, d $R = MeSO_2$

Структура и механизм образования пирролохиноксалина **54** в этой реакции частично были прояснены проведением реакции замыкания соединения цикла в соединении **51** в атмосфере аргона в отсутствие монооксида углерода. Более того, было показано, что нагревание соединения **51** в атмосфере аргона в отсутствие палладиевого катализатора также приводит с небольшим выходом к пирроло[1,2-*a*]хиноксалинам. Участие катализатора при замыкании пиразинового кольца непонятно.

Методы получения по типу В1

Превосходным примером, демонстрирующим получение пирролохиноксалинов по пути **B1**, является циклизация 1-(2-аминофенил)пирролов муравьиной кислотой. Так, кипячение соединения **28a** в муравьиной кислоте приводит к образованию незамещенного пирроло[1,2-a]хиноксалина **2** с выходом 80% [5, 28]. Взаимодействие же диаминофенилпиррола **28e** в этих условиях приводит к формированию 9-формиламидопирролохиноксалина **55d** [29].

2, 28 a $R^1 = R^2 = R^3 = H$; **28 b, c, 55 a, b** $R^1 = R^3 = H$, **28b, 55a** $R^2 = Me$, **28c, 55b** $R^2 = Br$; **28d, 55c** $R^1 = R^3 = OMe$, $R^2 = H$; **28e** $R^1 = NH_2$, $R^2 = R^3 = H$; **55d** $R^1 = NHC(O)H$, $R^2 = R^3 = H$

При использовании аналогичной стратегии синтеза пирроло[1,2-*a*]хиноксалина из 3,6-диметокси-2-нитроанилина был получен перспективный, ввиду наличия метоксигрупп, 6,9-диметоксипирроло[1,2-*a*]хиноксалин (**55с**), который в соответствующих условиях был превращен в 6,9-дигидроксипирроло[1,2-*a*]хиноксалин и пирроло[1,2-*a*]хиноксалин-6,9-дион (**56**). Гетероциклический хинон **56** может быть использован в синтезах более сложных конденсированных систем по реакции Дильса–Альдера с различными диенами [30].

Методы синтеза пироло[1,2-а]хиноксалинов, базирующиеся на 1-(2аминофенил)пирролах, начали развиваться после того, как был предложен более удобный и эффективный метод получения исходного соединения с общим выходом 75%, который включает в себя восстановление 1-(2-нитрофенил)пиррола, получаемого из о-нитроанилина и 2,5-диэтокситетрагидрофурана. Выход же 1-(2-аминофенил)пиррола из о-фенилендиамина и тетрагидро-2,5-дипропоксифурана составляет всего 40% и выделение продукта реакции требует длительной перегонки с водяным паром. Доступность соединений 28 позволила разработать удобные методы синтеза пирроло[1,2-а]хиноксалинов на основе реакций с соединениями, являющимися синтетическими эквивалентами синтона типа R¹R²CH²⁺. 1-(2-Аминофенил)пиррол реагирует с бензойным, анисовым и вератровым альдегидами в кипящем этаноле с образованием 4,5-дигидро-4-фенилпирроло-[1,2-а]хиноксалинов 58 с высокими выходами [31]. Метод удалось распространить на другие альдегиды, содержащие предпочтительно электронодонорные заместители, и циклические кетоны (циклопентанон и циклогексанон), что привело к получению пирролохиноксалинов с выходами от умеренных до хороших в зависимости от природы карбонильного соединения [31-33].

28 a
$$\mathbb{R}^3 = \mathbb{H}$$
, b $\mathbb{R}^3 = \mathbb{M}e$, f $\mathbb{R}^3 = \mathbb{O}Me$;
58 a-s $\mathbb{R}^2 = \mathbb{R}^3 = \mathbb{H}$, a $\mathbb{R}^1 = \mathbb{P}h$, b $\mathbb{R}^1 = 4$ -MeOC₆H₄, c $\mathbb{R}^1 = 3,4$ -(MeO)₂C₆H₃, d $\mathbb{R$

е $\mathbb{R}^1 = 2,3-(HO)_2C_6H_3$, **f** $\mathbb{R}^1 = 3,4,5-(MeO)_3C_6H_2$, **g** $\mathbb{R}^1 = 3,5-Cl_2-2-(HO)C_6H_2$, **h** $\mathbb{R}^1 = CF_3$, **i** $\mathbb{R}^1 = 3$ -Ру, **j** $\mathbb{R}^1 =$ хромон-3-ил, **k** $\mathbb{R}^1 =$ стирил, **l** $\mathbb{R}^1 = i$ -Ви, **m** $\mathbb{R}^1 = C_{11}H_{23}$, **n** $\mathbb{R}^1 = H$, **o** $\mathbb{R}^1 = Me$, **p** $\mathbb{R}^1 = Et$, **q** $\mathbb{R}^1 = CMe_2(CH_2)_2CN$, **r** $\mathbb{R}^1 = 2$ -HOC₆H₄, **s** $\mathbb{R}^1 = 3$ -MeOC₆H₄; **t** $\mathbb{R}^1 = Me$, $\mathbb{R}^2 = CO_2Et$; $\mathbb{R}^3 = H$; **u** $\mathbb{R}^1 = H$, $\mathbb{R}^2 = Ph$, $\mathbb{R}^3 = Me$; **v** $\mathbb{R}^1 = H$, $\mathbb{R}^2 = Ph$, $\mathbb{R}^3 = OMe$

Несмотря на то, что 1-(2-аминофенил)пиррол признан превосходным реагентом в синтезе 4-замещенных 4,5-дигидропирроло[1,2-а]хиноксалинов, возможность его использования во многом зависит от природы карбонильного соединения и условий проведения реакции. Образование 4,5-дигидропирроло[1,2-а]хиноксалинов по вышеприведенным схемам включает в себя реакцию типа Манниха, для протекания которой необходимы первичный или вторичный амин, альдегид (в основном формальдегид) и нуклеофильный атом углерода. Как правило, использование кроме формальдегида других активных альдегидов в реакции Манниха иногда не приводит к желаемым результатам [34, 35]. По этой причине авторами работы [36] была предпринята попытка расширить границы синтеза пирроло[1,2-а]хиноксалинов с использованием 1-(2-аминофенил)пиррола, который содержит в своем составе одновременно аминогруппу и нуклеофильный атом углерода. Установлено, что нагревание до 50 °C раствора соединения 28 и альдегидов 57 в этаноле в присутствии каталитического количества уксусной кислоты независимо от характера применяемого альдегида приводит к 4,5-дигидропирроло[1,2-а]хиноксалинам 58 с выходами 70–96% [36]. При использовании алифатических альдегидов, таких как изобутаналь или ундеканаль, образующиеся 4,5-дигидропирроло[1,2-а]хиноксалины постепенно окисляются до пирролохиноксалинов, поэтому они были охарактеризованы в виде N(5)-ацилпроизводных. Мягкие условия проведения реакции (50 °C, каталитическое количество AcOH) гарантируют широкое применение этой методики. Хотя надо отметить, что 2,4-динитробензальдегид ни при каких условиях не давал продуктов циклизации. Реакция даже в очень жестких условиях завершается образованием основания Шиффа типа 59.

4-CF₃OC₆H₄.

Взаимодействие бисальдегидов **60** с 2-аминофенилпирролом **28а** приводит к биспирролохиноксалинам **61** [32].

60, 61 a A = (CH₂)₅, **b** A = (CH₂)₆

В случае реакции бензальдегида с производным 1-(2-аминофенил)пиррола циклизация происходит даже в основной среде. Например, обработка аминоэфира **28g** эквимолярным количеством безальдегида в пиридине дает 4,5-дигидропирроло[1,2-*a*]хиноксалин **64**, а не предполагаемый пирролобензотриазоцин **63** [37]. Постулируемым интермедиатом этой реакции, по-видимому, является имин **62**. Взаимодействие соединения **28a** с бензальдегидом в присутствие ацетата меди приводит к 4-фенилпирролохиноксалину **19c**.

28 a R = H, $g R = CH_2NHCO_2Et$

При использовании фосгена или трифосгена в качестве синтетического эквивалента синтона R_2C^{2+} при построении пирролохиноксалиновой системы из производных 1-(2-аминофенил)пиррола образуются 4,5-дигидропирроло[1,2-*a*]хиноксалин-4-оны **65** с высоко реакционноспособной карбамоильной функцией. Описаны синтезы по этой методике ряда представляющих фармакологический интерес функциональнозамещенных производных пирроло[1,2-*a*]хиноксалинов **65** [8, 10, 38–45].

a-f $R^1 = H$, **a** $R^2 = Cl$, **b** $R^2 = H$, **c** $R^2 = OMe$, **d** $R^2 = Me$, **e** $R^2 = CN$, **f** $R^2 = BnO$; **g** $R^1 = Cl$, $R^2 = H$, **h** $R^1 = R^2 = Cl$; **i** $R^1 = OMe$, $R^2 = H$; **j** $R^1 = R^2 = Me$

Взаимодействие аминофенилпиррола **28a** с сероуглеродом в присутствии гидроксида натрия и с тиофосгеном приводит соответственно к 4-меркаптопирролохиноксалину (**66**) и к сульфиду **67** [8, 43], а с BrCN в присутствии карбоната натрия происходит образование 4-аминопирролохиноксалина **68** [8].

Распространение вышеописанных методов построения пирроло[1,2-*a*]хиноксалиновой системы на основе 1-(2-аминофенил)пирролов [11] на конденсированные гетероциклические системы, содержащие вицинальные аминогруппы в бензольном фрагменте, позволяет синтезировать поликонденсированные гетероциклические системы с пирроло[1,2-*a*]хиноксалиновыми структурными фрагментами. Например, показано, что в зависимости от природы источника одноуглеродного фрагмента и способа циклизации 4-амино-3-(пиррол-1-ил)карбазола (**69**) и изомерных ему 2-амино-3-(пирролил-1)- (**71**) и 3-амино-2-(пирролил-1-ил)карбазолов (**73**) получаются, соответственно, три различные пентациклические конденсированные гетероциклические системы – производные пирролопиразинокарбазолов **24**, **72**, **74** [12–14, 46].

74 a R = H, **b** R = OH

При использовании аналогичной стратегии этими же авторами на базе 2-амино-3-(пиррол-1-ил)дибензофурана (75) синтезированы функциональные производные бензофуро[3,2-g]пирроло[1,2-a]хиноксалинов **23с**, 76, 77 [13].

1776

Аналогичным образом авторами работы [12] из гидрогалогенида 6-амино-5-(пиррол-1-ил)хинолина (78) синтезированы пиридо[2,3-*h*]пирроло[1,2-*a*]хиноксалины 79, 21b. Реакции 6-аминопроизводного 78 с анисовым альдегидом и ацетоном в обычных условиях и с пировиноградной кислотой, и с бензилметилкетоном в условиях циклизации по типу Манниха дают соответствующие 4,5-дигидропроизводные пиридо[2,3-*h*]пирроло[1,2-*a*]хиноксалинов 79 [12].

79 a $R^1 = H$, $R^2 = 4$ -MeOC₆H₄, HX отсутствует, **b** $R^1 = R^2 = Me$, X = Cl, **c** $R^1 = Me$, $R^2 = CO_2H$, X = Cl, **d** $R^1 = Me$, $R^2 = CH_2Ph$, X = Br

Синтетическими эквивалентами синтона RC^{3+} могут служить и различные гетерокумулены. Иминофосфаты **80**, получаемые из *о*-(1-пирролил)фенилазида, реагируя с изоционатами, изотиоцианатами, углекислым газом или сероуглеродом по реакции Виттига, образуют *о*-пирролилфенилгетерокумулены, которые циклизуются в конденсированные пирролохиноксалины **19**, **65k** ($R^1 = R^2 = R^3 = H$), **66**, **81** [47, 48].

19 b R = Ph, **s** R = 2-Pr, **t** R = 4-ClC₆H₄, **u** R = 3-MeC₆H₄, **v** R = 4-MeC₆H₄, **w** R = 4-MeOC₆H₄

Реакция 1-(2-аминофенил)пиррола (28а) с диметиловым эфиром ацетилендикарбоновой кислоты, который выступает в качестве поставщика одноуглеродного фрагмента при построении пирроло[1,2-*a*]хиноксалиновой системы, протекает в кипящем хлороформе в течение 36 ч с образованием пирролохиноксалина **31** (выход 45%) и диметилового эфира 2-(пиррол-1-ил)анилинофумаровой кислоты (29) (выход 40%). Соединение **31** могло бы образоваться из диметилового эфира фумаровой кислоты в результате внутримолекулярной еновой циклизации. Действительно, такое превращение наблюдалось, но для полного завершения оно требовало кипячения соединения **29** в хлороформе в течение недели. Хотя надо отметить, что фиксируемое спектральными методами количество соединения **31** образуется после кратковременного нагревания реакционной смеси. Поэтому не исключено, что часть соединения **31** образуется по нижеприведенной схеме [15].

N-Метилизатин (84) также может служить одноуглеродным фрагментом, который, реагируя с 1-(2-аминофенил)тетрагидропирролом (85) в этаноле в присутствии конц. HCl, замыкает пиразиновое кольцо по ниже приведенной схеме [49].

Экспериментально показано, что если первые две стадии реакции – образование основания Шиффа **86** и производного бензимидазола **87** – могут протекать и в отсутствие соляной кислоты, то для того, чтобы происходило расширение имидазольного кольца до пиразинового по схеме, аналогичной перегруппировке Стивенса, обязательно необходимо присутствие кислотного катализатора.

Методы получения по типу В2

При реализации подхода, соответствующего ретросинтетическому пути **B2**, в отличие от всех вышеприведенных методов синтеза пирроло[1,2-*a*]хиноксалинов, где замыкание пиразинового кольца происходит в результате внутримолекулярной циклизации, завершающая стадия образования цикла происходит с участием двух реагентов, то есть межмолекулярно. Предложенный метод синтеза пирроло[1,2-*a*]хиноксалина, соответствующий пути **B2**, включает в себя алкилирование натриевого производного 2-бензоилпиррола (**90**) диметилкеталем α -бромциклогексанона (**91**) с последующей обработкой продукта реакции ацетатом аммония в уксусной кислоте. Причем надо отметить, что этим способом синтезировано только одно соединение – 4-фенилпирроло[1,2-*a*]хиноксалин **93** [50].

Методы получения по типу D

Конденсированные азиридины типа **94**, реагируя с производными α-аминокислот (глицином, L-аланином, L-фенилаланином и L-пролином) с раскрытием азиридинового кольца и спонтанным замыканием пиперазинового цикла, приводят к оптически активным представителям новых *транс*-бициклопергидро-2(1H)-хиноксалинов и трициклопергидропирроло-[1,2-*a*]хиноксалин-4(5H)-онам **96** и **97** (в случае пролина), получение которых является реализацией ретросинтетического подхода **D** [51].

В работе [52] предложен эффективный *one-pot* метод синтеза пирролохиноксалинов, базирующийся на катализируемой иодидом меди и L-пролином конденсации *o*-аминоиодбензола и его производных **98** с метоксикарбонилпирролами **99** в присутствии карбоната калия.

98 X = I, Br; Y = H, COCF₃; **98**, **100** R¹ = H, OMe, Me, F, Ac **99**, **100** R² = H, Et, Cl, Ac, CO₂Me

1780

Прочие методы синтеза

Под такими методами синтеза пирроло[1,2-*а*]хиноксалинов мы подразумеваем подходы, базирующиеся или (а) на конденсированных производных пирролов, или (b) на соединениях, не содержащих в своем составе ни пиррольного кольца, ни хиноксалиновой системы. При реализации подхода (b) образование пирролохиноксалиновой системы может протекать через первоначальное образование хиноксалиновой системы (b-*I*) или пиррольного кольца (b-*II*). В этом обзоре мы рассматриваем только второй подвариант (b-*II*).

Типичным примером может служить превращение 4-(индолин-3-ил)пирролидинобензимидазола **87** в спиропроизводное пирролидинохиноксалина **89** под действием соляной кислоты по схеме перегруппировки Стивенса, что было показано выше [49].

Кипячение 6-гидрокси-6-(2,3,5-три-О-бензоил-β-D-рибофуранозил)-2Нпиран-3-она (101), получаемого окислением 2-гидроксиметил-5-(2,3,5-три-О-бензоил-β-D-рибофуранозил)фурана с использованием м-хлорнадбензойной кислоты [53] или хлорхромата пиразиния [54], и о-фенилендиамина в хлороформе в течение 2 ч дает с выходом 43% производное хиноксалина 103 и с выходом 16% производное пирроло[1,2-а]хиноксалина 102, приемлемый механизм образования которого, по-видимому, включает в себя нуклеофильную атаку о-фенилендиамина по карбонильной группе пиранового кольца в соединении 101 с последующим образованием основания Шиффа 104, которое в условиях реакции раскрывается, давая иминокетон 105. Соединение 105 циклизуется в енольную форму 106 и, после дегидратации, превращается в трицикл 102 (путь а). Образование же соединения **103**, вероятно, происходит по пути b через присоединение о-фенилендиамина к соединению 101 по типу реакции Михаэля и раскрытие цикла, приводящее к дикетодиамину 107. Соединение 107, подвергаясь циклизации, дает дигидрохиноксалин 108, который после потери гидроксиацетона образует соединение 103 [55].

101–103 a R = 2,3,5-три-О-бензоил-β-D-рибофуранозил; **102**, **103 a** X = H, **b** X = NO₂, **c** X = Cl

При использовании в этой реакции производных *о*-фенилендиамина образуются изомеры, различающиеся заместителями в положениях 6 и 7 в случае соединений типа **103** и в положениях 7 и 8 в случае соединений типа **102** [56].

Производные бензимидазолов **109** под действием полифторалканатов **110** в присутствии оснований перегруппировываются, образуют с хорошими выходами различные 4-замещенные пирроло[1,2-*a*]хиноксалины **111–113** [57, 58].

R = H, Ph; Rf = HCF₂, ClCF₂, CF₃, Cl(CF₂)₃, Cl(CF₂)₅, Cl(CF₂)₇, F(CF₂)₇

Образование пирролохиноксалиновой системы из бензимидазольной протекает, по мнению авторов [57, 58], по ниже приведенной схеме.

Как уже рассматривалось выше, замещенные амиды пирролкарбоновых кислот **49** циклизуются под действием гидрида натрия в 5-замещенные пирролохиноксалин-4-оны **50** [26]. Однако, наряду с обычным *ипсо*-замещением нитрогруппы, приводящим к образованию пирролохиноксалинов **117**, происходит перегруппировка Смайлса аниона **115** в анион **116**, дальнейшая циклизация которого приводит к формированию пирролохиноксалина **118** [26].

При наличии в амидном фрагменте *о*-фторзамещенной фенильной группы атака перегруппировочного аниона **121** приводит как к циклизации с замещением нитрогруппы в одном из арильных фрагментов и образованию пирролохиноксалина **122**, так и к замещению атома фтора в другой арильной группе и формированию пирролохиноксалина **123** [26].

1784

ЗАКЛЮЧЕНИЕ

На основе фенилпирролов						
Возможные	Реализованные (число статей)					
A1, A2, A3, A4	A1 (12), A2 (8), A3 (2), A4 (1)					
B1 , B2	B1 (28), B2 (1)					
C1, C2	C1 (0), C2 (0)					
D	D (2)					
E	E (0)					

Возможные и реализованные методы синтеза пирроло[1,2-*a*]хиноксалинов на основе производных фенилпирролов

Согласно данным таблицы, из 10 возможных методов синтеза пирроло-[1,2-a]хиноксалинов наиболее успешными являются методы, базирующиеся на подходах **A1**, **B1**, а методы, базирующиеся на подходах **C1**, **C2** и **E**, как показано на с. 1764, могут быть реализованы только после того, как будут разработаны эффективные методы для C–N сочетания производных бензола, аминов и пирролов, позволяющие в зависимости от поставленной цели синтезировать необходимые структурные блоки для получения пирроло[1,2-a]хиноксалинов.

СПИСОК ЛИТЕРАТУРЫ

- 1. В. А. Мамедов, А. А. Калинин, *ХГС*, 803 (2010). [*Chem. Heterocycl. Comp.*, **46**, 641 (2010)].
- K. Kobayashi, S. Irisawa, T. Matoba, T. Matsumoto, K. Yoneda, O. Morikawa, H. Konishi, *Bull. Chem. Soc. Jpn.*, 74, 1109 (2001).
- 3. K. Kobayashi, T. Matoba, S. Irisawa, T. Matsumoto, O. Morikawa, K. Yoneda, H. Konishi, *Chem. Lett*, 551 (1998).
- 4. K. Kobayashi, T. Matsumoto, S. Irisawa, K. Yoneda, O. Morikawa, H. Konishi, *Heterocycles*, 973 (2001).
- 5. G. W. H Cheeseman, B. Tuck, J. Chem. Soc. (C), 852 (1966).
- 6. E. E. Garcia, J. G. Riley, R. I. Fryer, J. Org. Chem., 33, 1359 (1968).
- G. W. H Cheeseman, B. Tuck, Chem. Ind., 31, 1382 (1965); Chem. Abstr. 63, 11562 (1965).
- 8. K. Nagarajan, V. R. Rao, A. Venkateswarlu, Indian J. Chem, 10, 344 (1972).
- S. Alleca, P. Corona, M. Loriga, G. Paglietti, R. Loddo, V. Mascia, B. Busonera, P. Colla, *Farmaco*, 58, 639 (2003).
- J. Guillon, I. Forfar, M. Mamani-Matsuda, V. Desplat, M. Saliege, D. Thiolat, S. Massip, A. Tabourier, J. M. Leger, B. Dufaure, G. Haumont, C. Jarry, D. Mossalayi, *Bioorg. Med. Chem.*, 15, 194 (2007).
- 11. N. Clauson-Kaas, Z. Tyle, Acta Chem. Scand., 6, 667 (1952).
- 12. J. C. Lancelot, S. Rault, Chem. Pharm. Bull., 31, 3160 (1983).
- 13. S. Rault, M. C. Sevricourt, D. Laduree, M. Robba, Synthesis, 586 (1979).
- 14. J. C. Lancelot, J. M. Gazengel, S. Rault, N. H. Dung, M. Robba, *Chem. Pharm. Bull.*, **32**, 4447 (1984).
- 15. H. Suschitzky, B. J. Wakefield, R. A. Whittaker, J. Chem. Soc., Perkin Trans, 1, 2409 (1975).

- 16. E. A. Adegoke, A. Babajide, J. Heterocycl. Chem., 20, 1509 (1983).
- M. Abou-Gharbia, M. E. Freed, R. J. McCaully, P. Silver, R. L. Wendt, J. Med. Chem, 27, 1743 (1984).
- M. E. Freed, M. Abou-Gharbia, Pat US 4446323; Chem. Abstr., 101, 110957 (1984).
- 19. R. Silvestri, A. Pifferi, G. Martino, S. Massa, C. Saturnino, M. Artico, *Heterocycles*, **53**, 2163 (2000).
- 20. R. Chicharro, S. Castro, J. L. Reino, V. J. Aran, Eur. J. Org. Chem., 2314 (2003).
- 21. A. Y. Merwade, S. B. Rajur, L. D. Basanagoudar, *Indian J. Chem.*, **29B**, 1113, (1990).
- 22. L. D. Basanagoudar, C. S. Mahajanshetti, S. B. Dambal, *Indian J. Chem.*, **30B**, 883 (1991).
- S. B. Rajur, A. Y. Merwade, L. D. Basanagoudar, K. S. Rajur, V. N. Biradar, R. V. Patwari, *Indian J. Chem.*, **31B**, 551 (1992).
- 24. G. Campiani, V. Nacci, F. Corelli, M. Anzini, Synth. Commun., 21, 1567 (1991).
- G. Campiani, A. Cappelli, V. Nacci, M. Anzini, S. Vomero, M. Hamon, A. Cagnotto, C. Fracasso, C. Uboldi, S. Caccia, S. Consolo, T. Mennini, *J. Med. Chem.*, 40, 3670 (1997).
- 26. G. Rotas, A. Kimbaris, G. Varvounis, Tetrahedron, 60, 10825 (2004).
- 27. M. Mory, G. E. Purvaneckas, M. Shikura, Yo. Ban, *Chem. Pharm. Bull.*, **32**, 3840 (1984).
- 28. J. Gob, G. W. H. Cheeseman, Mag. Res. Chem., 24, 321 (1986).
- 29. D. Hou, H. Balli, Helv. Chim. Acta, 75, 2608 (1992).
- 30. D. A.-J. Al-Sammerrai, J. T. Ralph, D. E. West, J. Heterocycl. Chem., 17, 1705 (1980).
- 31. G. W. H Cheeseman, M. Rafic, J. Chem. Soc. (C), 15, 2732 (1971).
- 32. S. Raines, S. Ye. Chai, F. P. Palopoli, J. Heterocyclic Chem., 13, 711 (1976).
- G. Szabo, R. Kiss, D. Payer-Lengyel, K. Vukics, J. Szikra, A. Baki, L. Molnar, J. Fischer, G. M. Keseru, *Bioorg. Med. Chem. Lett.*, 19, 3471 (2009).
- 34. F. Blicke. Org. Reactions, 1, 303 (1942).
- 35. M. Tramontini, Synthesis, 703 (1973).
- R. Abonia, B. Insuasty, J. Quiroga, H. Kolshorn, H. Meier, J. Heterocycl. Chem., 38, 671 (2001).
- 37. D. Korakas, A. Kimbaris, G. Varrounis, Tetrahedron, 52, 10751 (1996).
- J. Guillon, S. Moreau, E. Mouray, V. Sinou, I. Forfar, S. B. Fabre, V. Desplat, P. Millet, D. Parzy, C. Jarry, P. Grellier, *Bioor. Med. Chem.*, 15, 9133 (2008).
- F. Grande, F. Aiello, O. De Grazie, A. Brizzi, A. Garafalo, N. Neamati, *Bioorg. Med. Chem.*, 15, 288 (2007).
- H. Prunier, S. Rault, J. C. Lancelot, M. Robba, P. Renard, P. Delagrange, B. Pfeiffer, D. H. Caignard, R. Misslin, B. Guardiola-Lemaitre, M. Hamon, *J. Med. Chem.*, 40, 1808 (1997).
- G. Campiani, E. Morelli, S. Gemma, V. Nacci, S. Butini, M. Hammon, E. Novellino, G. Greco, A. Cagnotto, M. Goegan, L. Cervo, F. D. Valle, C. Fracasso, S. Caccia, T. Mennini, *J. Med. Chem.*, 42, 4362 (1999).
- J. Guillon, P. Greèllier, M. Labaied, P. Sonnet, J. M. Leger, R. Deprez-Poulain, I. Forfar-Bares, P. Dallemagne, N. Lemaitre, F. Pehoureq, J. Rochette, C. Sergheraert, C. Jarry, J. Med. Chem., 47, 1997 (2004).
- 43. J. Guillon, I. Forfar, V. Desplat, S. B. Fabre, D. Thiolat, S. Massip, H. Carrie, D. Mossalayi, C. Jarry, J. Enzyme. Inhib. Med. Chem., 22, 541 (2007).
- 44. C. Vidaillac, J. Guillon, S. Moreau, C. Arpin, A. Lagardère, S. Larrouture, P. Dallemagne, D.-H. Caignard, C. Quentin, C. Jarry, *J. Enzyme Inhibition Med. Chem.*, **22**, 620 (2007).

- V. Desplat, A. Geneste, M. A. Begorre, S. B. Fabre, S. Brajot, S. Massip, D. Thiolat, D. Mossalayi, C. Jarry, J. Guillon, *J. Enzyme. Inhib. Med. Chem.*, 23, 648 (2008).
- 46. J. C. Lancelot, J. M. Gazengel, S. Rault, M. Robba, Chem. Pharm. Bull., 31, 45 (1983).
- 47. P. Molina, M. Alajarin, A. Vidal, Tetrahedron Lett., 30, 2847 (1989).
- 48. P. Molina, M. Alajarin, A. Vidal, Tetrahedron, 46, 1063 (1990).
- 49. R. K. Grantham, O. Meth-Cohn, Chem. Com., 500 (1968).
- 50. В. И. Шведов, Л. Б. Алтухова, А. Н. Гринев, *XГС*, 1048 (1970). [*Chem. Heterocycl. Comp.*, **6**, 975 (1970)].
- 51. D. C. Rees, J. Heterocycl. Chem., 24, 1297 (1987).
- 52. Q. Yuan, D. Ma, J. Org. Chem., 73, 5159 (2008).
- 53. Y. Lefebvre, Tetrahedron Lett., 13, 133 (1972).
- 54. G. Piancatelli, A. Scettri, M. D'Auria, Tetrahedron Lett., 18, 2199 (1977).
- 55. I. Maeba, T. Takeuchi, T. Iijima, H. Furukawa, J. Org. Chem., 53, 1401 (1988).
- 56. I. Maeba, K. Kitaori, Yo. Itaya, C. Ito, J. Chem. Soc., Perkin Trans. 1, 67 (1990).
- 57. X. Zhang, W. Huang, Tetrahedron Lett., 38, 4827 (1997).
- 58. X. Zhang, W. Huang, Tetrahedron, 54, 12465 (1998).

Институт органической и физической химии им. А. Е. Арбузова Казанского научного центра РАН, Казань 420088, Россия e-mail: mamedov@iopc.kcn.ru Поступило 19.08.2009