И.Б.Дзвинчук*, М.О.Лозинский

СИНТЕЗ И ТАУТОМЕРИЯ 2-(3,5-ДИАРИЛ-1Н-ПИРАЗОЛ-4-ИЛ)-1-МЕТИЛ-1Н-БЕНЗИМИДАЗОЛОВ

Циклоконденсацией 1-метил-2-фенацил-1Н-бензимидазола с ароилгидразинами получены 2-(3,5-диарил-1Н-пиразол-4-ил)-1-метил-1Н-бензимидазолы. По данным спектров ЯМР ¹Н, продукты проявляют таутомерию, причём более стабильны таутомеры, содержащие электронодонорные арильные заместители в положении 5, а электроноакцепторные – в положении 3 пиразольного цикла.

Ключевые слова: ароилгидразины, бензимидазолы, пиразолы, таутомерия.

Таутомерия пиразола и его производных известна давно [1], но изучается до сих пор [2–11], поскольку для многих соединений, в том числе и новых, является неотъемлемой характеристикой, которая выявляет тонкие особенности их строения, обусловленные внутримолекулярными и сольватационными взаимодействиями, а также регистрируется всё более совершенными методами и раскрывается в новых закономерностях.

Нами разрабатывается способ образования пиразольного кольца, в котором известные реагенты – ароилгидразины впервые используются в качестве 1,3-N,N,C-нуклеофилоэлектрофила. Так, их циклоконденсация с 2-фенацил-1Н-бензимидазолом приводит к 2-(3,5-диарил-1Н-пиразол-4ил)-1Н-бензимидазолам типа 1, в спектрах ЯМР ¹Н которых отдельные сигналы удвоены из-за миграции протона между атомами азота пиразольного цикла, ведущей к образованию таутомеров **A** и **B** [12, 13] (схема 1). Аналогично из ароилгидразонов 2-фенацил-1Н-имидазола синтезированы 2-(3,5-диарил-1Н-пиразол-4-ил)-1Н-имидазолы типа **2**, для которых, напротив, в большинстве случаев не отмечено удвоения сигналов в спектрах [14].

Схема 1

1 $R = H, R^{1} + R^{1} = CH=CH=CH$; **2** $R = R^{1} = H$; **3** $R = Me, R^{1} + R^{1} = CH=CH=CH$

Соеди-	Брутто-формула	<u>Найдено, %</u> Вычислено, %			Т. пл., °С	Выход,
нение		С	Н	Ν	,	%
3 a	$C_{23}H_{18}N_4$	<u>78.75</u> 78.83	<u>5.07</u> 5.18	<u>15.85</u> 15.99	279–280	69
3b	$C_{24}H_{20}N_4O$	<u>75.57</u> 75.77	<u>5.24</u> 5.30	<u>14.58</u> 14.73	242–245	71
3c	$C_{23}H_{17}N_5O_2$	<u>69.75</u> 69.86	<u>4.18</u> 4.33	<u>17.63</u> 17.71	265.0–266.5	70
3d	$C_{22}H_{17}N_5$	<u>75.07</u> 75.19	<u>4.64</u> 4.88	<u>19.78</u> 19.93	223.0-224.5	72
3e	$\begin{array}{c} C_{26}H_{24}N_4O_3\times\\ \times H_2O \end{array}$	<u>68.33</u> 68.11	<u>5.45</u> 5.72	<u>12.38</u> 12.22	142–145	51
3f	$C_{23}H_{17}ClN_4$	<u>71.58</u> 71.78	<u>4.38</u> 4.45	<u>14.47</u> 14.56	220–222	67

Характеристики синтезированных соединений*

* Продолжительность реакции при синтезе соединений **3a,c-e** составляет 30 мин, при синтезе соединений **3b,f-50** мин.

Указанная гетероциклизация имеет, вероятно, более общий характер, а таутомерия её продуктов зависит от природы гетарильного заместителя в положении 4 пиразольного кольца. Для подтверждения этого предположения нами в настоящей работе синтезированы неизвестные ранее 4-гетарилпиразолы типа **3**, в которых гетарил – 1-метил-1Н-бенз-имидазол-2-ил.

Сплавлением 1-метил-2-фенацил-1Н-бензимидазола (4) и ароилгидразинов **5а–f** при 200 °C с выходами 51–78% синтезированы 2-(3,5диарил-1Н-пиразол-4-ил)-1-метил-1Н-бензимидазолы **3а–f** (схема 2).

3, 5 a Ar = Ph, **b** Ar = C₆H₄OMe-*p*, **c** Ar = C₆H₄NO₂-*p*, **d** Ar = 4-пиридил, **e** Ar = C₆H₂(OMe)₃-*m*,*m*',*p*, **f** Ar = C₆H₄Cl-*o*

1801

Реакция протекает при катализе бензойной кислотой. Без катализатора процесс сопровождается диспропорционированием ароилгидразинов, которое ведёт к образованию 1,2-диароилгидразинов и осложняет выделение целевых продуктов. Продолжительность процесса (30–50 мин) зависит от реакционной способности карбонильной группы исходного ароилгидразина и легко контролируется по выделению паров воды.

Состав и строение полученных продуктов **3** подтверждены результатами их элементного анализа (табл. 1) и данными спектров $\text{ЯМР}^{-1}\text{H}$ (табл. 2).

Соединения **3b**–**d**,**f**, согласно данным их спектров ЯМР ¹H, существуют в ДМСО-**d**₆ в виде равновесной смеси таутомеров **A** и **B** (схема 1), что проявляется в удвоении сигналов отдельных протонов (см. табл. 2). В спектрах соединений **3a**, **e** присутствуют только одиночные сигналы, что, однако, не исключает возможности существования продукта **3e** в разных таутомерных формах (в случае продукта **3a**, где Ar = Ph, формы **A** и **B** идентичны: **A** = **B**). Для изучения таутомерии соединений **3a–f** мы использовали в качестве объектов сравнения два их структурных аналога **6a,b** (см. рисунок), различающихся характером замещения пиразольного цикла: наличием в нем группы NMe вместо NH и двух 4-метоксифенильных (**6a**) или двух 4-нитрофенильных заместителей (**6b**).

Их синтез и отнесение сигналов в спектрах ЯМР ¹Н с помощью NOEи COSY-экспериментов были описаны ранее [13]; при этом установлено, что протоны заместителя 5-Ar (независимо от его электронной природы) резонируют в более слабом поле, чем протоны заместителя 3-Ar. По-видимому, заместитель Ar в положении 5 испытывает общее электроноакцепторное действие 1-метилбензимидазол-2-ильного фрагмента, а в

Модельные соединения **6a** и **6b** с химическими сдвигами сигналов (δ, м. д.) в спектрах ЯМР ¹Н (стрелками указаны основные донорно-акцепторные взаимодействия)

положении 3 – только его индукционную составляющую и, возможно, электронодонорное влияние пиразольного атома азота пиррольного типа. Исходя из этих данных, мы по химическим сдвигам и интегральным интенсивностям сигналов в спектрах ЯМР ¹Н соединений **3а–f** определили их таутомерный состав и его зависимость от природы заместителя Ar (см. схему 1 и табл. 3). В случае близких по электронной природе заместителей пиразольного кольца, вероятно, миграция протона между атомами азота происходит настолько быстро, что отдельные таутомеры не успевают проявиться в спектре (соединение **3e**). При больших различиях между Ar и Ph таутомеры **A** и **B** видны в спектрах, причем более стабилен тот из них, у которого электронодонорный заместитель находится в положении 5, а электроноакцепторный – в положении 3 (таутомер **A** соединения **3b**, таутомеры **B** соединений **3c,d**).

Сравнение данных о таутомерии соединений 3a-f и их структурных аналогов 1a-d и 2a-d (табл. 3) показывает, что электронодонорный заместитель Ar способствует стабилизации таутомера A (соединение 1b), причем введение группы Me в бензимидазолильный фрагмент (3b) или замена последнего на имидазолильный (2b) заметно её снижают. Напротив, в случае электроноакцепторных Ar (1c,d) более стабильны таутомеры B, и введение группы Me в бензимидазолильный фрагмент несколько снижает их стабильность (3c,d). У имидазолильных аналогов

Таблица 2

Соеди- нение	Химические сдвиги, б, м. д. (Ј, Гц)				
3a	3.29 (3H, c, NCH ₃); 7.26–7.33 (8H, м, <i>m</i> -, <i>p</i> -H Ph, H-5,6); 7.39–7.41 (4H, м, <i>o</i> -H Ph); 7.51–7.54 (1H, м, H-7); 7.70–7.73 (1H, м, H-4); 13.88 (1H, c, NH)				
3b	3.29 (3H, с, NCH ₃); 3.69 и 3.72 (1.29Н и 1.71Н, два с, OCH ₃); 6.83 и 6.93 (0.82Н и 1.18Н, два д, $J_1 = J_2 = 8.4$, <i>m</i> -H Ar); 7.25–7.38 (9Н, м, <i>o</i> -, <i>m</i> -, <i>p</i> -H Ph, <i>o</i> -H Ar, H-5,6); 7.51–7.54 (1Н, м, H-7); 7.70–7.72 (1Н, м, H-4); 13.72 и 13.75 (0.57Н и 0.43Н, два с, NH)				
3c	3.31 (3H, c, NCH ₃); 7.26–7.38 (7H, м, H-5,6, <i>o</i> -, <i>m</i> -, <i>p</i> -H Ph); 7.54–7.56 (1H, м, H-7); 7.68–7.74 (3H, м, <i>o</i> -H Ar, H-4); 8.16 и 8.21–8.23 (1.50H и 0.50H, д, <i>J</i> = 8.1 и м, <i>m</i> -H Ar); 14.20 (1H, c, NH)				
3d	3.33 (3H, c, NCH ₃); 7.27–7.38 (9H, м, H-5,6, <i>o</i> -, <i>m</i> -, <i>p</i> -H Ph, <i>o</i> -H Ar); 7.55–7.58 (1H, м, H-7); 7.73–7.75 (1H, м, H-4); 8.49, 8.55–8.57 (1.46H и 0.54H, д, <i>J</i> = 4.8 и м, <i>m</i> -H Ar); 14.18 и 14.26 (0.73H и 0.27H, два с, NH)				
3e	3.30 (3H, c, NCH ₃); 3.46 (6H, c, <i>m</i> -OCH ₃); 3.61 (3H, c, <i>p</i> -OCH ₃); 6.80 (2H, c, C ₆ H ₂); 7.25–7.35 (5H, м, H-5,6, <i>m</i> -, <i>p</i> -H Ph); 7.46 (2H, д, <i>J</i> = 7.8, <i>o</i> -H Ph); 7.52–7.55 (1H, м, H-7); 7.71–7.74 (1H, м, H-4); 13.86 (1H, c, NH)				
3f	2.24, 3.26 (1.5H и 1.5H, два с, NCH ₃); 7.16–7.34 (2H, м, H-5,6); 7.31–7.45 (10H, м, H-7, <i>o</i> -, <i>m</i> -, <i>p</i> -H Ph, <i>o</i> -, <i>m</i> -, <i>p</i> -H Ar); 7.58–7.60 (1H, м, H-4); 13.79, 13.95 (0.50H и 0.50H, два с, NH)				

Параметры спектров ЯМР ¹Н синтезированных соединений

Таблица З

	Содержание А, %					
Ar	3	1	2 [14]			
Ph (a)	$\mathbf{A} \equiv \mathbf{B}$	$\mathbf{A} \equiv \mathbf{B} [12]$	$\mathbf{A} \equiv \mathbf{B}$			
$C_{6}H_{4}OMe-p(\mathbf{b})$	59	100 [13]	60			
$C_6H_4NO_2$ - $p(c)$	25	20 [12, 13]	_*			
4-Пиридил (d)	27	21 [12]	_*			
$C_{6}H_{2}(OMe)_{3}$ - <i>m</i> , <i>m'</i> , <i>p</i> (e)	_*	-	-			
$C_6H_4Cl-o(\mathbf{f})$	50	-	_			

Содержание таутомера А соединений 3 и их структурных аналогов 1 и 2 в равновесной смеси с таутомером В, по данным спектров ЯМР¹ Н

* В спектре ЯМР ¹Н различия таутомеров **A** и **B** не проявляются.

рассматриваемых соединений (**2с,d**) нет заметных различий между формами **A** и **B**, и они отдельно в спектрах ЯМР ¹Н не проявляются. Отмеченные выше особенности, вероятно, связаны с действием стерических и электронных факторов: присутствием в соединениях **3** объёмной электронодонорной метильной группы, не благоприятствующей перекрыванию π -орбиталей в системе сопряжения бензимидазолильного фрагмента с заместителем Ar; наличием в соединениях **2** менее электроноакцепторного, но более основного имидазолильного фрагмента.

Интересно, что у соединения **3f** таутомерные формы неэквивалентны, но, тем не менее, энергетически равноценны. Первое вытекает из того, что сигналы группы NH таутомеров различаются по химическим сдвигам на 0.16 м. д. (у соединений **3b,d** на 0.03-0.08 м. д.), а второе – из соотношения интегральных интенсивностей этих сигналов (1 : 1). Вероятно, существенное отличие *о*-хлорфенильного заместителя от фенильного по пространственному и дезэкранирующему влиянию на протон при атоме азота пиррольного типа обусловливает снижение скорости таутомерных взаимопревращений и отчетливое проявление в спектре каждого из таутомеров.

Таким образом, 2-(3,5-диарил-1Н-пиразол-4-ил)-1-метил-1Нбензимида- золы легко образуются при циклоконденсации 1-метил-2фенацил-1Н-бензимидазола с ароилгидразинами. Введение метильной группы к атому азота бензимидазольного фрагмента сохраняет предпочтительную устой- чивость таутомеров, в которых электроноакцепторные арильные замести- тели находятся в положении 3, а электронодонорные в положении 5 пиразольного кольца, но снижает различие заместителей, находящихся в этих положениях.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н соединений записаны на спектрометре Varian VXR-300 (300 МГц) в ДМСО- d_6 , внутренний стандарт ТМС. Контроль за ходом реакций и чистотой синтезированных соединений проводился методом ТСХ на пластинках Silufol UV-254 в системе растворителей бензол—этанол, 9 : 1, проявление в УФ свете.

2-(3,5-Дифенил-1Н-пиразол-4-ил)-1-метил-1Н-бензимидазол (3а). Смесь 0.250 г (1 ммоль) соединения **4**, 0.136 г (1 ммоль) ароилгидразина **5а** и 0.030 г (0.25 ммоль) бензойной кислоты сплавляют на бане при 195–200 °C в течение 30 мин. Остывший плав растворяют при нагревании до кипения в 1.5 мл пиридина. Раствор осторожно при перемешивании разбавляют водой до начала кристаллизации. Остывшую массу фильтруют, осадок промывают охлаждённым 2-пропанолом, высушивают в вакууме водоструйного насоса при 115 °C и получают 0.241 г продукта **3а** в аналитически чистом состоянии.

Продукты **3b-f** получают аналогично из соединений **4** и **5b-f**, продолжительность реакции указана в табл. 1.

СПИСОК ЛИТЕРАТУРЫ

- 1. J. Elguero, C. Marzin, A. R. Katritzky, P. Linda, *The Taytomerism of Heterocycles*, Acad. Press, New York, 1976, 266 p.
- A. Hadhiri, H. W. Lerner, M. Wagner, J. W. Bats, Acta Crystallogr., E58, 1378 (2002).
- M. A. P. Martins, R. F. Blanko, C. M. P. Pereira, P. Beck, S. Brondani, W. Cunico, N. E. K. Zimmermann, H. G. Bonacorso, N. Zanatta, *J. Fluorine Chem.*, **118**, 69 (2002).
- 4. A. F. C. Flores, S. Brondani, N. Zanatta, A. Rosa, M. A. P. Martins, *Tetrahedron Lett.*, **43**, 8701 (2002).
- 5. M. Yaronczyk, J. C. Dobrovolski, A. P. Mazurek, J. Mol. Struct., 672, 1-3, 17 (2004).
- 6. M. Yaronczyk, J. C. Dobrovolski, A. P. Mazurek, Theochem., 673, 17 (2004).
- M. A. P. Martins, C. M. P. Pereira, N. E. K. Zimmermann, W. Cunico, S. Moura, P. Beck, N. Zanatta, H. G. Bonacorso, *J. Fluorine Chem.*, **123**, 261 (2003).
- 8. П. Ф. Чмутова, Э. 3. Исмаилова, Г. А. Шамов, *ЖОХ*, **76**, 1166 (2006).
- 9. I. Alkota, J. Elguero, J. Liebmann, Struct. Chem., 17, 439 (2006).
- S. Trofimenko, G. P. A. Yap, F. A. Jove, R. M. Claramunt, M. A. Garsia, M. D. Santa Maria, I. Alkorta, J. Elguero, *Tetrahedron*, 63, 8104 (2007).
- A. Levai, A. M. S. Silva, J. A. S. Cavaleiro, J. Elguero, I. Alkorta, J. Jeko, Austral. J. Chem., 60, 905 (2007).
- 12. И. Б. Дзвинчук, А. В. Выпирайленко, В. В. Пироженко, М. О. Лозинский, *XГС*, 1512 (1999). [*Chem. Heterocycl. Comp.*, **35**, 1319 (1999)].
- 13. И. Б. Дзвинчук, А. В. Туров, М. О. Лозинский, *XTC*, 1651 (2009). [*Chem. Heterocycl. Comp.*, **45**, 1325 (2009)].
- 14. И. Б. Дзвинчук, А. М. Нестеренко, М. О. Лозинский, *ХГС*, 77 (2010). [*Chem. Heterocycl. Comp.*, **46**, 66 (2010)].

Институт органической химии НАН Украины, Киев 02094, Украина e-mail: Rostov@ioch.kiev.ua Поступило 28.05.2010 После доработки 15.10.2010

1805