И. В. Украинец,* Н. Ю. Голик, К. В. Андреева, О. В. Горохова

4-ГИДРОКСИХИНОЛОНЫ-2

194.* АЛКИЛАМИДЫ 1-ГИДРОКСИ-3-ОКСО-6,7-ДИГИДРО-3Н,5Н-ПИРИДО[3,2,1-*ij*]ХИНОЛИН-2-КАРБОНОВОЙ КИСЛОТЫ. СИНТЕЗ, СТРОЕНИЕ И БИОЛОГИЧЕСКИЕ СВОЙСТВА

Предложены модифицированные методики получения этилового эфира и алкиламидов 1-гидрокси-3-оксо-6,7-дигидро-3H,5H-пиридо[3,2,1-*ij*]хинолин-2-карбоновой кислоты. Проведен сравнительный анализ пространственного строения и диуретических свойств синтезированных соединений с изученными ранее близкими структурными аналогами – 1-гидрокси-3-оксо-5,6-дигидро-3H-пирроло-[3,2,1-*ij*]хинолин-2-карбоксамидами.

Ключевые слова: алкиламиды 4-гидрокси-2-оксохинолин-3-карбоновой кислоты, амидирование, диуретическая активность, PCA.

Случайно обнаруженная у 4-гидрокси-2-оксо-1,2-дигидрохинолин-3карбоксамидов не свойственная им, как считалось ранее, способность стимулировать мочевыделительную функцию почек [2] со временем послужила своеобразным толчком к проведению широких исследований по уже целенаправленному поиску диуретиков нового химического класса. В результате были синтезированы вещества, которые за счёт механизма выведения большого количества жидкости [3] оказались эффективными средствами в борьбе с такими серьёзными патологиями, как гипертоническая болезнь, а также отёк головного мозга и лёгких [4].

С целью выявления новых соединений, представляющих интерес в качестве основы для создания терапевтически пригодных мочегонных лекарств, одно из направлений наших дальнейших изысканий посвящено N-R-амидам 1-гидрокси-3-оксо-6,7-дигидро-3H,5H-пиридо[3,2,1-*ij*]хинолин-2-карбоновой кислоты **1**. Предпосылкой к изучению именно таких веществ послужило их близкое структурное сходство с проявившими высо-кий диуретический эффект 1-гидрокси-3-оксо-5,6-дигидро-3H-пирроло-[3,2,1-*ij*]хинолин-2-карбоксамидами [4, 5]. Расширение аннелированного с хинолоновым ядром цикла всего лишь на одно дополнительное метиленовое звено должно заведомо привести к конформационной перестрой-ке базовой молекулы, что, в свою очередь, может вызвать изменения и в оказываемых ею фармакологических свойствах.

^{*} Сообщение 193 см. [1].

В принципе, синтез исходного этилового эфира 1-гидрокси-3-оксо-6,7дигидро-3H,5H-пиридо[3,2,1-*ii*]хинолин-2-карбоновой кислоты (2) можно осуществить реакцией 1,2,3,4-тетрагидрохинолина (3) с триэтилметантрикарбоксилатом (4), используя различные методики: выдерживая смесь амина с двукратным избытком ацилирующего агента при 220 °C [6] или же постепенно прибавляя амин к предварительно нагретому до 215 °C эквимолярному количеству триэфира [7]. Следует отметить, что оба варианта хорошие результаты дают только при наработке малых – до 0.1 моль – количеств эфира 2. При больших загрузках появляются проблемы, специфические для каждого из способов. В первом, например, помимо нерационального использования дорогостоящего триэтилметантрикарбоксилата, становится невозможным достаточно быстрый нагрев значительной по объёму реакционной массы до необходимых 220 °C. В результате активизируются побочные процессы, основным из которых является частичная трансформация первоначально образующегося монохинолин-1-иламида диэтилового эфира метантрикарбоновой кислоты не в целевой продукт, а в метанди- или три(хинолин-1-ил)карбоксамиды. При использовании второго способа реакционная смесь в конце синтеза становится слишком вязкой. При больших количествах её сложно перемешивать с требуемой эффективностью, вследствие чего последние порции 1,2,3,4тетрагидрохинолина (3) в заметной степени расходуются не на реакцию с остатками триэтилметантрикарбоксилата (4), а на амидирование ставшего основным компонентом смеси трициклического эфира 2.

1 а R = Me; b R = Et; c R = All; d R = Pr; e R = *i*-Pr; f R = Bu; g R = *i*-Bu; h R = *s*-Bu; i R = C_5H_{11} ; j R = *i*- C_5H_{11} ; k R = C_6H_{13} ; l R = 2-гидроксиэтил; m R = 3-гидроксипропил; n R = *cyclo*- C_3H_5 ; o R = *cyclo*- C_5H_9 ; p R = *cyclo*- C_6H_{11} ; q R = *cyclo*- C_7H_{13}

Устранить отмеченные недостатки позволяет модифицированная нами методика проведения реакции, адаптированная под большие загрузки. По сути это всё тот же упомянутый второй способ, отличающийся только тем, что амин прибавляют не к триэтилметантрикарбоксилату, а к его раствору в инертном высококипящем растворителе (дифенилоксид или даутерм А). Это, на первый взгляд, незначительное усовершенствование позволяет синтезировать практически в любых количествах не только эфир 2, но и его многочисленные аналоги. Единственным ограничением метода может стать лишь степень термической устойчивости используемого вторичного амина.

Со- еди-	Брутто-	<u>Н</u> Ві	<u>Найдено, %</u> ычислено,	<u>%</u> %	Т. пл., °С	Выхол	Ди- урети-
не- ние	формула	С	Н	N	(этанол)	%	ческая актив- ность, %*
1a	$C_{14}H_{14}N_2O_3$	<u>65.23</u> 65.11	<u>5.55</u> 5.46	<u>10.93</u> 10.85	147–149	97	- 48
1b	$C_{15}H_{16}N_2O_3$	<u>66.27</u> 66.16	<u>6.04</u> 5.92	<u>10.18</u> 10.29	116–118	96	- 73
1c	$C_{16}H_{16}N_2O_3$	<u>67.47</u> 67.59	<u>5.59</u> 5.67	<u>9.96</u> 9.85	135–137	94	- 81
1d	$C_{16}H_{18}N_2O_3$	<u>67.20</u> 67.12	<u>6.45</u> 6.34	<u>9.91</u> 9.78	141–143	93	+ 27
1e	$C_{16}H_{18}N_2O_3$	<u>67.23</u> 67.12	<u>6.46</u> 6.34	<u>9.88</u> 9.78	137–139	78	- 78
1f	$C_{17}H_{20}N_2O_3$	<u>68.09</u> 67.98	<u>6.80</u> 6.71	<u>9.39</u> 9.33	90–92	93	- 76
1g	$C_{17}H_{20}N_2O_3$	<u>68.07</u> 67.98	<u>6.83</u> 6.71	<u>9.42</u> 9.33	103–105	95	+ 8
1h	$C_{17}H_{20}N_2O_3$	<u>67.90</u> 67.98	<u>6.78</u> 6.71	<u>9.26</u> 9.33	138–140	82	+ 11
1i	$C_{18}H_{22}N_2O_3$	<u>68.65</u> 68.77	<u>6.94</u> 7.05	<u>8.83</u> 8.91	75–77	90	- 84
1j	$C_{18}H_{22}N_2O_3$	<u>68.66</u> 68.77	<u>6.92</u> 7.05	<u>8.97</u> 8.91	101–103	92	- 81
1k	$C_{19}H_{24}N_2O_3$	<u>69.58</u> 69.49	<u>7.45</u> 7.37	<u>8.44</u> 8.53	69–71	95	- 82
11	$C_{15}H_{16}N_2O_4$	<u>62.39</u> 62.49	<u>5.51</u> 5.59	<u>9.63</u> 9.72	130–132	97	- 5
1m	$C_{16}H_{18}N_2O_4$	<u>63.46</u> 63.57	<u>5.92</u> 6.00	<u>9.19</u> 9.27	109–111	96	- 71
1n	$C_{16}H_{16}N_2O_3$	<u>67.67</u> 67.59	<u>5.76</u> 5.67	<u>9.97</u> 9.85	104–106	84	- 26
10	$C_{18}H_{20}N_2O_3$	<u>69.32</u> 69.21	<u>6.55</u> 6.45	<u>9.08</u> 8.97	156–158	88	+ 17
1p	$C_{19}H_{22}N_2O_3$	<u>70.04</u> 69.92	<u>6.92</u> 6.79	<u>8.47</u> 8.58	193–195	88	+ 43
1q	$C_{20}H_{24}N_2O_3$	<u>70.48</u> 70.57	<u>7.22</u> 7.11	<u>8.15</u> 8.23	162–164	85	+ 16
	Фуросемид						+ 104

Характеристики алкиламидов 1-гидрокси-3-оксо-6,7-дигидро-3H,5Hпиридо[3,2,1-*ij*]хинолин-2-карбоновой кислоты 1а-q

* "+" – усиление, "-" – угнетение диуреза по отношению к контролю, принятому за 100%.

Строение молекулы *втор*-бутиламида **1h** с нумерацией атомов

Для получения алкиламидов 1-гидрокси-3-оксо-6,7-дигидро-3H,5H-пиридо[3,2,1-*ij*]хинолин-2-карбоновой кислоты **1** ранее предлагалось кипячение в течение 20 ч эфира **2** с 40% избытком соответствующего амина в бромбензоле [6]. Между тем, накопленный нами практический опыт по синтезу 4-гидрокси-2-оксохинолин-3-карбоксамидов подсказывает, что столь жесткие условия явно излишни. Действительно, проведенные далее эксперименты показали, что эфир **2** легко амидируется алкиламинами и в кипящем этаноле. Реакция заканчивается через 2–4 ч, причём полноту её протекания обеспечивает всего лишь 10% избыток алкиламина.

Все синтезированные нами алкиламиды **1а**–**q** (табл. 1) представляют собой бесцветные кристаллические вещества, растворимые в спирте, ДМФА и ДМСО, практически нерастворимые в воде, диэтиловом эфире и гексане. Их строение подтверждено спектрами ЯМР ¹Н (табл. 2), отличительной особенностью которых от описанных ранее аналогичных производных 1-гидрокси-3-оксо-5,6-дигидро-3H-пирроло[3,2,1-*ij*]хинолин-2-кар-боновой кислоты [8] является сигнал протонов метиленовой группы в положении 6 пиридохинолонового ядра, проявляющийся в виде квинтета интенсивностью 2Н в области 2.1 м. д. Кроме того, для выяснения особенностей пространственного строения полученной группы веществ проведено РСИ *втор*-бутиламида **1h** (см. рисунок, табл. 3 и 4).

При этом установлено, что благодаря наличию двух внутримолекулярных водородных связей [O(2)–H(2O)…O(3) 1.72 Å, O–H…O 149° и N(2)–H(2N)…O(1) 1.96 Å, N–H…O 135°], хинолоновый фрагмент полициклической системы и карбамидная группа этого соединения лежат в одной плоскости с точностью 0.01 Å. Образование водородных связей приводит также к значительному перераспределению электронной плотности в этом фрагменте, о чем свидетельствует удлинение связей O(1)–C(9) 1.241(2) Å и C(13)–O(3) 1.268(2) по сравнению с их средним значением [9] 1.210 Å, а также C(7)–C(8) 1.370(3) Å (1.326 Å). Связь O(2)–C(7) 1.326(2) Å заметно укорочена (среднее значение 1.362 Å). Таблица 2

Спектры ЯМР¹Н синтезированных соединений

					Химически	е сдвиги, 8, м.	. д. (Ј, Гц)		
Соеди-	1 011	III			ониходиди	пиновое ядро			
нение	11 c)	(HI)	H-10	H-8	6-H	5-CH ₂	7-CH ₂	6-CH ₂	R
_	(2 ()	(***)	(1Н, д)	(1Н, д)	(1H, T)	(2H, T)	(2H, T)	(2H, kb)	
1a	17.09	10.18	7.95	7.39	7.13	4.09	2.98	2.11	3.02 (3H, A , $J = 4.9$, CH_3)
		(K, J = 4.1)	(J = 8.0)	(J = 7.4)	(J = 7.5)	(J = 5.8)	(J = 6.0)	(J = 5.8)	
1b	16.98	10.27	7.96	7.40	7.15	4.08	2.98	2.11	$3.48 (2H, KB, J = 6.3, CH_2 CH_3);$
		(T, J = 5.2)	(J = 8.0)	(J = 7.2)	(J = 7.7)	(J = 5.8)	(J = 6.0)	(J = 5.9)	1.29 (3H, T, $J = 6.9$, CH_2CH_3)
1c	16.93	10.42	7.95	7.40	7.14	CM. R	2.99	2.11	5.95 (1Н, м, СН); 5.29 (1Н, д. д,
_		(T, J = 5.3)	(J = 8.1)	(J = 7.3)	(J = 7.7)		(J = 6.0)	(J = 5.8)	J = 17.3 M J = 1.4,
									NCH ₂ CH=C <u>H</u> -trans); 5.18 (1Н, д. д,
_									$J = 10.1 \text{ n} J = 1.4, \text{ NCH}_2\text{CH}=\text{CH}-cis);$
_									4.08 (4H, m, 5-CH ₂ + NC <u>H₂</u> CH=CH ₂)
1d	17.16	10.33	7.94	7.39	7.13	4.08	2.98	2.10	3.38 (2H, \mathbf{K} , $J = 6.7$, NCH ₂ CH ₂ CH ₃);
_		(T, J = 5.3)	(J = 8.2)	(J = 7.2)	(J = 7.7)	(J = 5.8)	(J = 6.1)	(J = 6.0)	1.67 (2H, M, NCH ₂ CH ₃);
_									1.03 (3H, T, $J = 7.3$, CH ₃)
1e	17.17	10.24	7.93	7.40	7.13	4.07	2.98	2.09	4.17 (1H, m, CH);
		$({\rm A}, J = 6.9)$	(J = 8.2)	(J = 7.4)	(J = 7.8)	(J = 6.0)	(J = 6.0)	(J = 6.0)	1.30 (6H, A , $J = 6.5$, $2CH_3$)
1f	17.16	10.33	7.94	7.40	7.14	4.09	2.98	2.10	3.41 (2H, K, $J = 6.3$, NC <u>H</u> ₂);
_		(T, (J = 5.2)	(J = 8.0)	(J = 7.3)	(J = 7.8)	(J = 5.8)	(J = 6.1)	(J = 6.1)	1.63 (2H, kB, $J = 7.3$, NCH ₂ C <u>H₂</u>);
_									1.46 (2H, m, NCH ₂ CH ₂ CH ₂ CH ₃);
_									$1.00 (3H, T, J = 7.2, CH_3)$
1g	17.15	10.40	7.93	7.39	7.13	4.09	2.99	2.10	3.26 (2H, T, $J = 6.3$, NHC <u>H</u> ₂);
_		(T, J = 5.4)	(J = 8.0)	(J = 7.1)	(J = 7.7)	(J = 5.8)	(J = 6.1)	(J = 5.9)	1.93 (1H, M, CH);
									1.02 (6H, A , $J = 6.7$, 2CH ₃)
1h	17.20	10.25	7.93	7.40	7.13	4.08	2.98	2.09	4.02 (1H, m, NC <u>H</u>); 1.62 (2H, KB,
_		$({\rm A}, J = 8.0)$	(J = 8.0)	(J = 7.0)	(J = 7.5)	(J = 6.0)	(J = 6.0)	(J = 6.0)	$J = 7.2$, NCHC <u>H2</u>); 1.27 (3H, μ ,

1810

1811									
(CH ₂) ₆ циклогептана)	(J = 5.9)	(J = 6.1)	(J = 5.8)	(J = 7.6)	(J = 7.1)	(J = 8.0)	$({\rm A}, J = 7.5)$		
4.08 (1H, m, CH); 1.94–1.45 (12H, m,	2.10	2.99	4.10	7.13	7.40	7.92	10.32	17.16	1q
(CH ₂) ₅ циклогексана)	(J = 5.9)	(J = 6.0)	(J = 5.9)	(J = 7.7)	(J = 7.1)	(J = 8.1)	$({\tt A}, J=7.1)$		
3.92 (1H, m, CH); 1.91–1.24 (10H, m,	2.09	2.98	4.10	7.14	7.40	7.93	10.37	17.19	1p
(CH ₂) ₄ циклопентана)	(J = 6.0)	(J = 6.1)	(J = 5.8)	(J = 7.7)	(J = 7.2)	(J = 8.0)	$({ m A}, J=7.2)$		
4.32 (1H, m, CH); 2.03–1.57 (8H, m,	2.09	2.98	4.07	7.13	7.39	7.93	10.34	17.18	10
0.68 (2H, м, CH ₂ циклопропана)									
0.87 (2Н, м, СН ₂ циклопропана);	(J = 5.9)	(J = 6.0)	(J = 5.9)	(J = 7.6)	(J = 7.3)	(J = 8.1)	$({\rm A}, J = 3.4)$		
2.91 (1H, M, CH);	2.09	2.99	4.09	7.13	7.38	7.94	10.30	17.14	1 n
$1.77 (2H, \text{kB}, J = 6.4, \text{NCH}_2\text{CH}_2)$									
3.55 (2H, K, $J = 6.0$, CH ₂ O); 2.40 (2H, $K, J = 6.0$, NCH.):	(J = 6.0)	(J = 6.0)	(J = 5.8)	(J = 7.8)	(J = 7.4)	(J = 8.2)	(T, J = 5.2)		
4.22 (1H, τ , $J = 5.1$, OH);	2.09	2.98	4.08	7.12	7.39	7.92	10.33	17.21	1m
3.48 (2H, $\mathbf{K}, J = 5.7, \text{NHCH}_2$)	~	~	~	~	~	~			
$3.61 (2H, K, J = 5.5, CH_{2}O);$	(J = 5.9)	(J = 6.1)	(J = 6.0)	(J = 7.6)	(J = 7.4)	(J = 8.0)	(T, J = 5.0)) !	:
4.60 (1H, T , $J = 4.6$, OH);	2.10	2.98	4.10	7.13	7.40	7.93	10.40	17.20	11
1.40 (6H, m, $(CH_2)_3CH_3)$; 0.92 (3H, r, $J = 6.6$, CH_3)									
1.63 (2H, κ_B , $J = 7.0$, NCH ₂ C <u>H₂</u>);	(J = 5.8)	(J = 6.0)	(J = 6.0)	(J = 7.6)	(J = 7.3)	(J = 8.2)	(T, J = 5.4)		
3.39 (2H, κ , $J = 6.6$, NC <u>H</u> ₂);	2.09	2.99	4.08	7.13	7.39	7.93	10.30	17.15	1k
1.55 (2H, K, $J = 6.9$, NCH ₂ CH ₂); 0.99 (6H, μ , $J = 6.2$, 2CH ₃)									
1.72 (1Н, м, СН);	(J = 5.9)	(J = 6.0)	(J = 5.8)	(J = 7.5)	(J = 7.0)	(J = 8.0)	(T, J = 5.5)		
3.42 (2H, κ , $J = 6.6$, NHC <u>H</u> ₂);	2.09	2.98	4.08	7.14	7.39	7.92	10.29	17.14	1j
$0.94 (3H, T, J = 6.7, CH_3)$									
1.61 (ZH, КВ, J = 6.7, NCH ₂ C <u>H₂);</u> 1.39 (4Н. м. (СH ₂),СH ₂):	(9.0 = f)	(J = 0.1)	(9.0 = f)	(9.7) = (7.8)	(7.1 = f)	(J = 8.1)	(T, J = 5.4)		
3.38 (2H, K, $J = 6.3$, NCH ₂);	2.07	2.97	4.07	7.16	7.44	7.91	10.38	17.18	1i
J = 7.0, NCHC <u>H3</u>); 0.99 (3H, T, J = 7.4, CH ₂ C <u>H</u> 3)									
	_		_	_			_		

Таблица З

Связь	l, Å	Связь	l, Å
N(1)–C(9)	1.377(2)	N(1)–C(1)	1.388(2)
N(1)–C(10)	1.477(2)	N(2)–C(13)	1.322(3)
N(2)–C(14B)	1.471(1)	N(2)–C(14A)	1.471(1)
O(1)–C(9)	1.241(2)	O(2)–C(7)	1.326(2)
O(3)–C(13)	1.268(2)	C(1)–C(2)	1.401(3)
C(1)–C(6)	1.409(2)	C(2)–C(3)	1.377(3)
C(2)–C(12)	1.494(3)	C(3)–C(4)	1.376(3)
C(4)–C(5)	1.364(3)	C(5)–C(6)	1.410(3)
C(6)–C(7)	1.434(3)	C(7)–C(8)	1.370(3)
C(8)–C(9)	1.451(3)	C(8)–C(13)	1.472(3)
C(10)–C(11)	1.464(3)	C(11)–C(12)	1.502(3)
C(14A)–C(16A)	1.540(1)	C(14A)–C(15A)	1.540(1)
C(16A)–C(17A)	1.540(1)	C(14B)C(16B)	1.539(1)
C(14B)–C(15B)	1.539(1)	C(16B)–C(17B)	1.540(1)

Длины связей (*l*) в структуре *втор*-бутиламида 1h

Таблица 4

Валентные углы (ω) в структуре *втор*-бутиламида 1h

Угол	ω, град.	Угол	ω, град.
C(9)–N(1)–C(1)	123.6(2)	C(9)–N(1)–C(10)	116.4(2)
C(1)-N(1)-C(10)	120.0(2)	C(13)–N(2)–C(14B)	118.7(3)
C(13)–N(2)–C(14A)	128.4(4)	N(1)-C(1)-C(2)	120.8(2)
N(1)-C(1)-C(6)	119.3(2)	C(2)-C(1)-C(6)	120.0(2)
C(3)–C(2)–C(1)	117.7(2)	C(3)–C(2)–C(12)	121.3(2)
C(1)-C(2)-C(12)	121.0(2)	C(4)–C(3)–C(2)	123.2(2)
C(5)-C(4)-C(3)	119.7(2)	C(4)–C(5)–C(6)	119.8(2)
C(1)-C(6)-C(5)	119.7(2)	C(1)–C(6)–C(7)	118.5(2)
C(5)–C(6)–C(7)	121.8(2)	O(2)–C(7)–C(8)	122.4(2)
O(2)–C(7)–C(6)	116.5(2)	C(8)–C(7)–C(6)	121.1(2)
C(7)–C(8)–C(9)	120.1(2)	C(7)–C(8)–C(13)	118.5(2)
C(9)–C(8)–C(13)	121.4(2)	O(1)–C(9)–N(1)	119.2(2)
O(1)–C(9)–C(8)	123.4(2)	N(1)-C(9)-C(8)	117.4(2)
C(11)–C(10)–N(1)	111.7(2)	C(10)-C(11)-C(12)	113.1(2)
C(2)–C(12)–C(11)	111.1(2)	O(3)–C(13)–N(2)	121.2(2)
O(3)–C(13)–C(8)	119.8(2)	N(2)-C(13)-C(8)	119.0(2)
N(2)-C(14A)-C(16A)	105.0(5)	N(2)-C(14A)-C(15A)	114.7(7)
C(16A)–C(14A)–C(15A)	101.1(8)	C(14A)-C(16A)-C(17A)	112.1(6)
N(2)-C(14B)-C(16B)	102.9(4)	N(2)-C(14B)-C(15B)	114.4(5)
C(16B)-C(14B)-C(15B)	106.9(6)	C(14B)-C(16B)-C(17B)	110.3(7)

Тетрагидропиридиновый цикл находится в конформации *софа* (параметры складчатости [10]: S = 0.69, $\Theta = 38.8^{\circ}$, $\Psi = 10.3^{\circ}$). Отклонение атома C(11) от среднеквадратичной плоскости остальных атомов цикла составляет –0.59 Å. Между метиленовой группой C(10)H₂ и карбонильной группой C(9)–O(1) обнаружено аттрактивное взаимодействие H(10a)···O(1) 2.29 Å (сумма ван-дер-ваальсовых радиусов [11] 2.46 Å), которое некор-ректно рассматривать как внутримолекулярную водородную связь вслед-ствие достаточно острого угла C–H···O (101°).

Вторичный бутильный заместитель при атоме N(2) разупорядочен по двум положениям (**A** и **B**) с равновероятной заселенностью вследствие вращения вокруг связей C(13)–N(2) и N(2)–C(14) и находится в антиперипланарной конформации относительно связи C(8)–C(13) [торсионный угол C(14)–N(2)–C(13)–C(8) 157.7(5)° в конформере **A** и –174.6(3)° в **B**]. Метильная группа этого заместителя в конформере **A** находится в –*ac*-конформации относительно связи C(13)–N(2), а в **B** расположена практически перпендикулярно этой связи [торсионный угол C(13)–N(2)–C(14)–C(15) –132.5(7)° в **A** и 81.7(6)° в **B**]. Этильная группа находится в +*ac*- и *ар*конформации относительно связи N(2)–C(13) в **A** и **B**, соответственно, и развернута относительно связи N(2)–C(14) [торсионные углы C(13)–N(2)– C(14)–C(16) 117.5(7)° в **A** и –162.8(5)° в **B**, N(2)–C(14)–C(16)–C(17) –54(1)° в **A** и 65.4(9)° в **B**]. При этом возникают укороченные внутримолекулярные контакты H(17b)···N(2) 2.44 (2.67), H(17f)···N(2) 2.52 (2.67) и H(2Nb)···C(17b) 2.77 Å (2.87 Å).

В кристалле молекулы *втор*-бутиламида **1h** образуют димеры, молекулы в которых расположены "голова к хвосту", а расстояние между плоскостями хинолоновых фрагментов составляет 3.6 Å. Это позволяет предположить существование в димерах стэкинг-взаимодействия.

Сравнительный анализ данных РСА по *втор*-бутиламиду **1h** и его прямому аналогу – *втор*-бутиламиду 1-гидрокси-3-оксо-5,6-дигидро-3H-пирроло[3,2,1-*ij*]хинолин-2-карбоновой кислоты [8] – показывает, что расширение аннелированного с хинолоновым ядром цикла действительно вызывает конформационную перестройку молекулы. В частности, в отличие от совершенно плоской пирролохинолоновой системы тетрагидропиридиновое ядро в пиридохинолоне **1h** приобретает чётко выраженную конформацию *софы*. Однако на этом все различия в пространственном строении двух гомологов и заканчиваются – остальные показатели оказались практически идентичными. Интересно, что и кристаллические упаковки *втор*-бутиламида **1h** и его пирролохинолонового аналога удивительно похожи.

Фармакологические свойства алкиламидов 1-гидрокси-3-оксо-5,6-дигидро-3Н-пирроло- и 1-гидрокси-3-оксо-6,7-дигидро-3Н,5Н-пиридо[3,2,1-*ij*]хинолин-2-карбоновых кислот также довольно близки – по крайней мере, влияние на мочевыводящую функцию почек.

Исследования проводили на белых беспородных крысах весом 180–200 г по стандартной методике [12]; в качестве препарата сравнения использовали фуросемид [13]; испытуемые соединения вводили перорально в дозе 25 мг/кг (эффективная доза фуросемида); регистрация диуреза через 2 ч.

При этом и структурно-биологические закономерности обнаружены при-

мерно те же – отсутствие активности и даже антидиуретический эффект у соединений с открытыми алкильными цепями в амидных фрагментах, усиление мочегонных свойств с переходом к некоторым циклическим производным (табл. 1).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н синтезированных соединений записаны на приборе Bruker WM-360 (360 МГц) в растворе ДМСО- d_6 , внутренний стандарт ТМС. В синтезе этилового эфира **2** использованы коммерческие 1,2,3,4-тетрагидрохинолин и три-этилметантрикарбоксилат фирмы Aldrich.

Алкиламиды 1-гидрокси-3-оксо-6,7-ди-гидро-3H,5H-пиридо[3,2,1-*ij*]хинолин-2-карбоновой кислоты **1а–q** получены по методикам, описанным в работе [8].

Этиловый эфир 1-гидрокси-3-оксо-6,7-дигидро-3Н,5Н-пиридо[3,2,1-*ij*]хинолин-2-карбоновой кислоты (2). В нагретую до 215 °C смесь 46.4 г (0.2 моль) триэтилметантрикарбоксилата (4) и 100 мл дифенилоксида при перемешивании по каплям прибавляют 25 мл (0.2 моль) 1,2,3,4-тетрагидрохинолина (3) с таким расчётом, чтобы температура реакционной смеси поддерживалась в пределах 215 ± 5 °C. Выделяющийся в процессе реакции этанол отгоняют. После прибавления всего 1,2,3,4-тетрагидрохинолина реакционную смесь выдерживают 20 мин при 220 °C для завершения реакции. Охлаждают, прибавляют раствор 30 г Na₂CO₃ в 500 мл, тщательно перемешивают и переносят в делительную воронку. После разделения фаз водный слой сливают, а экстракцию повторяют ещё дважды (5 г Na₂CO₃ в 200 мл воды). Полученные растворы натриевой соли эфира 2 объединяют, чистят углём, фильтруют. Фильтрат подкисляют разбавленной (1:1) HCl до pH 4.5-5.0. Осадок эфира 2 отфильтровывают, промывают холодной водой, сушат. Выход 51.9 г (95%). Т. пл. 102-104 °С (гексан). Смешанная проба с образцом эфира 2 [7] не даёт депрессии температуры плавления, спектры ЯМР ¹Н этих соединений идентичны.

Рентгеноструктурное исследование. Кристаллы втор-бутиламида 1h триклинные (этанол), при 20 °C: a = 6.938(5), b = 8.677(5), c = 13.257(5) Å, $\alpha = 101.335(5)^\circ$, $\beta = 97.258(5)^\circ$, $\gamma = 97.795(5)^\circ$, V = 765.6(8) Å³, $M_r = 300.35$, Z = 2, пространственная группа $P\bar{1}$, $d_{\rm выч} = 1.303$ г/см³, μ (МоК α) = 0.090 мм⁻¹, F(000) = 320. Параметры элементарной ячейки и интенсивности 5947 отражений (2649 независимых, $R_{\rm int} = 0.032$) измерены на дифрактометре Xcalibur-3 (МоК α излучение, СССР-детектор, графитовый монохроматор, ω -сканирование, $2\theta_{\rm max} = 50^\circ$).

Структура расшифрована прямым методом по комплексу программ SHELXTL [14]. При уточнении структуры налагались ограничения на длины связей в разупорядоченном фрагменте N–C_{sp3} 1.47(1) и C_{sp3}–C_{sp3} 1.54(1) Å. Положения атомов водорода выявлены из разностного синтеза электронной плотности, а для разупорядоченной части рассчитаны геометрически и уточнены по модели "наездника" с $U_{iso} = nU_{eq}$ неводородного атома, связанного с данным водородным (n = 1.5 для метильной и гидроксильной групп и n = 1.2 для остальных атомов водорода). Структура уточнена по F^2 полноматричным МНК в анизотропном приближении для неводородных атомов до $wR_2 = 0.090$ по 2589 отражениям ($R_1 = 0.043$ по 1095 отражениям с $F > 4\sigma(F)$, S = 0.760). Полная кристаллографическая информация депонирована в Кембриджском банке структурных данных (депонент ССDС 801475). Межатомные расстояния и валентные углы представлены в табл. 3 и 4 соответственно.

СПИСОК ЛИТЕРАТУРЫ

- S. V. Shishkina, O. V. Shishkin, I. V. Ukrainets, E. V. Mospanova, Acta Crystallogr., E66, 03195 (2010).
- 2. И. В. Украинец, Дис. канд. фармац. наук, Харьков, 1988.
- 3. І. В. Українець, О. К. Ярош, А. М. Демченко, Н. Л. Березнякова, О. І. Набока, Пат. України 86883; Бюл. № 10 (2009). http://base.ukrpatent.org/searchINV/
- 4. О. И. Набока, Дис. докт. мед. наук, Киев, 2009.
- 5. Е. В. Моспанова, Дис. канд. фармац. наук, Харьков, 2008.
- 6. A. Kutyrev, T. Kappe, J. Heterocycl. Chem., 34, 969 (1997).
- 7. И. В. Украинец, А. А. Ткач, Л. А. Гриневич, *ХГС*, 1189 (2008). [*Chem. Heterocycl. Comp.*, **44**, 956 (2008)].
- 8. И. В. Украинец, Н. Л. Березнякова, Е. В. Моспанова, *XГС*, 1015 (2007). [*Chem. Heterocycl. Comp.*, **43**, 856 (2007)].
- 9. H.-B. Burgi, J. D. Dunitz, *Structure Correlation*, VCH, Weinheim, 1994, vol. 2, p. 741.
- 10. N. S. Zefirov, V. A. Palyulin, E. E. Dashevskaya, J. Phys. Org. Chem., 3, 147 (1990).
- 11. Ю. В. Зефиров, Кристаллография, 42, 936 (1997).
- 12. Л. Н. Сернов, В. В. Гацура, Элементы экспериментальной фармакологии, Москва, 2000, с. 103.
- 13. М. Д. Машковский, *Лекарственные средства*, РИА Новая волна: издатель Умеренков, Москва, 2009, с. 502.
- 14. G. M. Sheldrick, Acta Crystallogr., A64, 112 (2008).

Национальный фармацевтический университет, Харьков 61002, Украина e-mail: uiv@kharkov.ua Поступило 22.06.2010